Advertisement

Natural Origin Materials for Osteochondral Tissue Engineering

  • Walter Bonani
  • Weerasak Singhatanadgige
  • Aramwit Pornanong
  • Antonella Motta
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1058)

Abstract

Materials selection is a critical aspect for the production of scaffolds for osteochondral tissue engineering. Synthetic materials are the result of man-made operations and have been investigated for a variety of tissue engineering applications. Instead, the products of physiological processes and the metabolic activity of living organisms are identified as natural materials. Over the recent decades, a number of natural materials, namely, biopolymers and bioceramics, have been proposed as the main constituent of osteochondral scaffolds, but also as cell carriers and signaling molecules. Overall, natural materials have been investigated both in the bone and in the cartilage compartment, sometimes alone, but often in combination with other biopolymers or synthetic materials. Biopolymers and bioceramics possess unique advantages over their synthetic counterparts due similarity with natural extracellular matrix, the presence of cell recognition sites and tunable chemistry. However, the characteristics of natural origin materials can vary considerably depending on the specific source and extraction process. A deeper understanding of the relationship between material variability and biological activity and the definition of standardized manufacturing procedures will be crucial for the future of natural materials in tissue engineering.

Keywords

Proteins Polysaccharides Polyhydroxyalkanoates Bioceramics Osteochondral tissue engineering 

References

  1. 1.
    Mano JF, Silva GA, Azevedo HS et al (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57:1–25PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Yan LP, Oliveira JM, Oliveira AL, Reis RL (2013) Silk fibroin/nano-CaP bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 587:245–248CrossRefGoogle Scholar
  4. 4.
    Levingstone TJ, Thompson E, Matsiko A, Schepens A, Gleeson JP, O’Brien FJ (2016) Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater 32:149–160PubMedCrossRefGoogle Scholar
  5. 5.
    Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16:2247–2270PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Silva TH, Alves A, Ferreira BM, Oliveira JM, Reys LL, Ferreira RJF, Sousa RA, Silva SS, Mano JF, Reis RL (2012) Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev 57:276–306CrossRefGoogle Scholar
  7. 7.
    Ige OO, Umoru LE, Aribo S (2012) Natural products: a minefield of biomaterials. ISRN Mater Sci 2012:1–20CrossRefGoogle Scholar
  8. 8.
    Ali I, Jamil N (2016) Polyhydroxyalkanoates: current applications in the medical field. Front Biol (Beijing) 11:19–27CrossRefGoogle Scholar
  9. 9.
    Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233PubMedCrossRefGoogle Scholar
  10. 10.
    Baino F, Novajra G, Vitale-Brovarone C (2015) Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol.  https://doi.org/10.3389/fbioe.2015.00202
  11. 11.
    Wang X, Schröder HC, Grebenjuk V, Diehl-Seifert B, Mailänder V, Steffen R, Schloßmacher U, Müller WEG (2014) The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis. Mar Drugs 12:1131–1147PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kon E, Filardo G, Shani J, Altschuler N, Levy A, Zaslav K, Eisman JE, Robinson D (2015) Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model. J Orthop Surg Res 10:81PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496PubMedCrossRefGoogle Scholar
  14. 14.
    Bartnikowski M, Akkineni A, Gelinsky M, Woodruff M, Klein T (2016) A hydrogel model incorporating 3D-plotted hydroxyapatite for osteochondral tissue engineering. Materials (Basel) 9:285CrossRefGoogle Scholar
  15. 15.
    Gong Y, Wang C, Lai RC et al (2009) An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro. J Mater Chem 19:1968CrossRefGoogle Scholar
  16. 16.
    Salinas AJ, Vallet-Regí M (2013) Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv 3:11116–11131CrossRefGoogle Scholar
  17. 17.
    Sprio S, Sandri M, Ruffini A, Adamiano A, Iafisco M, Dapporto M, Panseri S, Montesi M, Tampieri A (2017) Tissue engineering and biomimetics with bioceramics. In: Adv Ceram Biomater. Elsevier, pp 407–432CrossRefGoogle Scholar
  18. 18.
    Ramachandran GN, Kartha G (1954) Structure of collagen. Nature 174:269–270PubMedCrossRefGoogle Scholar
  19. 19.
    Puxkandl R, Zizak I, Paris O, Keckes J, Tesch W, Bernstorff S, Purslow P, Fratzl P (2002) Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philos Trans R Soc B Biol Sci 357:191–197CrossRefGoogle Scholar
  20. 20.
    Pal GK, Suresh PV, Kalal KM, Laxman RS, Saxena RK, Okabe A, FitzGerald RJ, Nasri M, Zhang YZ, Murayama K (2016) Microbial collagenases: challenges and prospects in production and potential applications in food and nutrition. RSC Adv 6:33763–33780CrossRefGoogle Scholar
  21. 21.
    Krishnamoorthi J, Ramasamy P, Shanmugam V, Shanmugam A (2017) Isolation and partial characterization of collagen from outer skin of Sepia pharaonis (Ehrenberg, 1831) from Puducherry coast. Biochem Biophys Reports 10:39–45CrossRefGoogle Scholar
  22. 22.
    Mayne R (1989) Cartilage collagens. What is their function, and are they involved in articular disease? Arthritis Rheum 32:241–246PubMedCrossRefGoogle Scholar
  23. 23.
    Niyibizi C, Eyre DR (1994) Structural characteristics of cross-linking sites in type V collagen of bone. Chain specificities and heterotypic links to type I collagen. Eur J Biochem 224:943–950PubMedCrossRefGoogle Scholar
  24. 24.
    Walker GD, Fischer M, Gannon J, Thompson RC, Oegema TR (1995) Expression of type-X collagen in osteoarthritis. J Orthop Res 13:4–12PubMedCrossRefGoogle Scholar
  25. 25.
    Wong MWN, Qin L, Lee KM, Leung KS (2009) Articular cartilage increases transition zone regeneration in bone-tendon junction healing. Clin Orthop Relat Res 467:1092–1100PubMedCrossRefGoogle Scholar
  26. 26.
    Zhao W, Jin X, Cong Y, Liu Y, Fu J (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88:327–339CrossRefGoogle Scholar
  27. 27.
    Tongnuanchan P, Benjakul S, Prodpran T (2012) Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chem 134:1571–1579PubMedCrossRefGoogle Scholar
  28. 28.
    Yousefi M, Ariffin F, Huda N (2017) An alternative source of type I collagen based on by-product with higher thermal stability. Food Hydrocoll 63:372–382CrossRefGoogle Scholar
  29. 29.
    Miles CA, Avery NC, Rodin VV, Bailey AJ (2005) The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres. J Mol Biol 346:551–556PubMedCrossRefGoogle Scholar
  30. 30.
    Pati F, Adhikari B, Dhara S (2010) Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour Technol 101:3737–3742PubMedCrossRefGoogle Scholar
  31. 31.
    Sewing J, Klinger M, Notbohm H (2017) Jellyfish collagen matrices conserve the chondrogenic phenotype in two- and three-dimensional collagen matrices. J Tissue Eng Regen Med 11:916–925PubMedCrossRefGoogle Scholar
  32. 32.
    Hoyer B, Bernhardt A, Lode A, Heinemann S, Sewing J, Klinger M, Notbohm H, Gelinsky M (2014) Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater 10:883–892PubMedCrossRefGoogle Scholar
  33. 33.
    Pustlauk W, Paul B, Gelinsky M, Bernhardt A (2016) Jellyfish collagen and alginate: combined marine materials for superior chondrogenesis of hMSC. Mater Sci Eng C 64:190–198CrossRefGoogle Scholar
  34. 34.
    Womack SA, Milner DJ, Weisgerber DW, Harley BAC, Wheeler MB (2017) Behavior of porcine mesenchymal stem cells on a collagen-glycosaminoglycan hydrogel scaffold for bone and cartilage tissue engineering. Reprod Fertil Dev 29:205CrossRefGoogle Scholar
  35. 35.
    Meng F, Zhang ZZ, Huang G, Chen W, Zhang ZZ, He A, Liao W (2016) Chondrogenesis of mesenchymal stem cells in a novel hyaluronate-collagen-tricalcium phosphate scaffolds for knee repair. Eur Cells Mater 31:79–94CrossRefGoogle Scholar
  36. 36.
    Filová E, Jelínek F, Handl M, Lytvynets A, Rampichová M, Varga F, Činátl J, Soukup T, TrČ T, Amler E (2008) Novel composite hyaluronan/type I collagen/fibrin scaffold enhances repair of osteochondral defect in rabbit knee. J Biomed Mater Res Part B Appl Biomater 87B:415–424CrossRefGoogle Scholar
  37. 37.
    Benthien JP, Behrens P (2010) Autologous matrix-induced Chondrogenesis (AMIC): combining microfracturing and a collagen I/III matrix for articular cartilage resurfacing. Cartilage 1:65–68PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Piontek T, Bąkowski P, Ciemniewska-Gorzela K, Naczk J (2015) Arthroscopic treatment of chondral and osteochondral defects in the ankle using the autologous matrix-induced chondrogenesis technique. Arthrosc Tech 4:e463–e469PubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kon E, Delcogliano M, Filardo G et al (2009) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28:116–124Google Scholar
  40. 40.
    Delcogliano M, de Caro F, Scaravella E, Ziveri G, De Biase CF, Marotta D, Marenghi P, Delcogliano A (2013) Use of innovative biomimetic scaffold in the treatment for large osteochondral lesions of the knee. Knee Surgery, Sport Traumatol Arthrosc 22:1260–1269Google Scholar
  41. 41.
    Kon E, Perdisa F, Filardo G, Marcacci M (2014) MaioRegen: Our experience. In: Tech. Cartil. Repair Surg. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 81–95CrossRefGoogle Scholar
  42. 42.
    Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M (2016) Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surgery, Sport Traumatol Arthrosc 24:2380–2387CrossRefGoogle Scholar
  43. 43.
    Sartori M, Pagani S, Ferrari A, Costa V, Carina V, Figallo E, Maltarello MC, Martini L, Fini M, Giavaresi G (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C 70:101–111CrossRefGoogle Scholar
  44. 44.
    Echave MC, Burgo LS, Pedraz JL, Orive G (2017) Gelatin as biomaterial for tissue engineering. Curr Pharm Des 23:3567–3584PubMedCrossRefGoogle Scholar
  45. 45.
    Van Nieuwenhove I, Salamon A, Adam S, Dubruel P, Van Vlierberghe S, Peters K (2017) Gelatin- and starch-based hydrogels. Part B: in vitro mesenchymal stem cell behavior on the hydrogels. Carbohydr Polym 161:295–305PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang S, Chen L, Jiang Y et al (2013) Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater 9:7236–7247PubMedCrossRefGoogle Scholar
  47. 47.
    Petrenko YA, Ivanov RV, Petrenko AY, Lozinsky VI (2011) Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells. J Mater Sci Mater Med 22:1529–1540PubMedCrossRefGoogle Scholar
  48. 48.
    Mazaki T, Shiozaki Y, Yamane K et al (2015) A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Rep 4:4457CrossRefGoogle Scholar
  49. 49.
    Han F, Yang X, Zhao J, Zhao Y, Yuan X (2015) Photocrosslinked layered gelatin-chitosan hydrogel with graded compositions for osteochondral defect repair. J Mater Sci Mater Med 26:160PubMedCrossRefGoogle Scholar
  50. 50.
    Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ (2010) Insect silk: one name, many materials. Annu Rev Entomol 55:171–188PubMedCrossRefGoogle Scholar
  51. 51.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen JS, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416PubMedCrossRefGoogle Scholar
  52. 52.
    Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470PubMedCrossRefGoogle Scholar
  53. 53.
    Kim U-J, Park J, Joo Kim H, Wada M, Kaplan DL (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26:2775–2785PubMedCrossRefGoogle Scholar
  54. 54.
    Sangkert S, Kamonmattayakul S, Chai WL, Meesane J (2017) Modified porous scaffolds of silk fibroin with mimicked microenvironment based on decellularized pulp/fibronectin for designed performance biomaterials in maxillofacial bone defect. J Biomed Mater Res Part A 105:1624–1636CrossRefGoogle Scholar
  55. 55.
    Singh BN, Pramanik K (2017) Development of novel silk fibroin/polyvinyl alcohol/sol–gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation. Biofabrication 9:15028CrossRefGoogle Scholar
  56. 56.
    Wang Y, Kim U-J, Blasioli DJ, Kim H-J, Kaplan DL (2005) In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26:7082–7094PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kambe Y, Yamamoto K, Kojima K, Tamada Y, Tomita N (2010) Effects of RGDS sequence genetically interfused in the silk fibroin light chain protein on chondrocyte adhesion and cartilage synthesis. Biomaterials 31:7503–7511PubMedCrossRefGoogle Scholar
  58. 58.
    Murphy AR, John PS, Kaplan DL (2008) Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 29:2829–2838PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Saha S, Kundu B, Kirkham J, Wood D, Kundu SC, Yang XB (2013) Osteochondral tissue engineering in vivo: a comparative study using layered silk fibroin scaffolds from mulberry and non-mulberry silkworms. PLoS One 8:e80004PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ding X, Zhu M, Xu B et al (2014) Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells. ACS Appl Mater Interfaces 6:16696–16705PubMedCrossRefGoogle Scholar
  61. 61.
    Lamboni L, Gauthier M, Yang G, Wang Q (2015) Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol Adv 33:1855–1867PubMedCrossRefGoogle Scholar
  62. 62.
    Siritientong T, Aramwit P (2012) A novel silk sericin/poly (vinyl alcohol) composite film crosslinked with genipin: fabrication and characterization for tissue engineering applications. Adv Mater Res 506:359–362CrossRefGoogle Scholar
  63. 63.
    Nayak S, Kundu SC (2014) Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material. J Biomed Mater Res Part A 102:1928–1940CrossRefGoogle Scholar
  64. 64.
    Jiayao Z, Guanshan Z, Jinchi Z, Yuyin C, Yongqiang Z (2017) Antheraea pernyi silk sericin mediating biomimetic nucleation and growth of hydroxylapatite crystals promoting bone matrix formation. Microsc Res Tech 80:305–311PubMedCrossRefGoogle Scholar
  65. 65.
    Yang M, Shuai Y, Zhang C, Chen Y, Zhu L, Mao C, OuYang H (2014) Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Biomacromolecules 15:1185–1193PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3:1894–1904PubMedCrossRefGoogle Scholar
  67. 67.
    Laurens N, Koolwijk P, De Maat MPM (2006) Fibrin structure and wound healing. J Thromb Haemost 4:932–939PubMedCrossRefGoogle Scholar
  68. 68.
    Spotnitz WD, Burks S (2010) State-of-the-art review: hemostats, sealants, and adhesives II: update as well as how and when to use the components of the surgical toolbox. Clin Appl Thromb 16:497–514CrossRefGoogle Scholar
  69. 69.
    Eyrich D, Brandl F, Appel B, Wiese H, Maier G, Wenzel M, Staudenmaier R, Goepferich A, Blunk T (2007) Long-term stable fibrin gels for cartilage engineering. Biomaterials 28:55–65PubMedCrossRefGoogle Scholar
  70. 70.
    Schek RM, Michalek AJ, Iatridis JC (2011) Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair. Eur Cell Mater 21:373–383PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Li B, Yang J, Ma L, Li F, Tu Z, Gao C (2013) Fabrication of poly(lactide-co-glycolide) scaffold filled with fibrin gel, mesenchymal stem cells, and poly(ethylene oxide)-b-poly(L-lysine)/TGF-β1 plasmid DNA complexes for cartilage restoration in vivo. J Biomed Mater Res Part A 101:3097–3108CrossRefGoogle Scholar
  72. 72.
    Pei M, He F, Boyce BM, Kish VL (2009) Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthr Cartil 17:714–722PubMedCrossRefGoogle Scholar
  73. 73.
    Wang W, Li B, Yang J, Xin L, Li Y, Yin H, Qi Y, Jiang Y, Ouyang H, Gao C (2010) The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 31:8964–8973PubMedCrossRefGoogle Scholar
  74. 74.
    Jang K-M, Lee J-H, Park CM, Song H-R, Wang JH (2014) Xenotransplantation of human mesenchymal stem cells for repair of osteochondral defects in rabbits using osteochondral biphasic composite constructs. Knee Surgery, Sport Traumatol Arthrosc 22:1434–1444CrossRefGoogle Scholar
  75. 75.
    Snyder TN, Madhavan K, Intrator M, Dregalla RC, Park D (2014) A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. J Biol Eng 8:10PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wang B, Yang W, McKittrick J, Meyers MA (2016) Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 76:229–318CrossRefGoogle Scholar
  77. 77.
    Bragulla HH, Homberger DG (2009) Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 214:516–559PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wegst UGK, Ashby MF (2004) The mechanical efficiency of natural materials. Philos Mag 84:2167–2186CrossRefGoogle Scholar
  79. 79.
    Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials (Basel) 3:999–1014CrossRefGoogle Scholar
  80. 80.
    Dias GJ, Peplow PV, McLaughlin A, Teixeira F, Kelly RJ (2010) Biocompatibility and osseointegration of reconstituted keratin in an ovine model. J Biomed Mater Res Part A 92A:513–520Google Scholar
  81. 81.
    Tachibana A, Furuta Y, Takeshima H, Tanabe T, Yamauchi K (2002) Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J Biotechnol 93:165–170PubMedCrossRefGoogle Scholar
  82. 82.
    Arslan YE, Sezgin Arslan T, Derkus B, Emregul E, Emregul KC (2017) Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: from waste to regenerative medicine products. Colloids Surfaces B Biointerfaces 154:160–170PubMedCrossRefGoogle Scholar
  83. 83.
    Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4:411–427Google Scholar
  84. 84.
    Muzzarelli C, Muzzarelli RAA (2002) Natural and artificial chitosan-inorganic composites. J Inorg Biochem 92:89–94PubMedCrossRefGoogle Scholar
  85. 85.
    Cho YW, Cho YN, Chung SH, Yoo G, Ko SW (1999) Water-soluble chitin as a wound healing accelerator. Biomaterials 20:2139–2145PubMedCrossRefGoogle Scholar
  86. 86.
    Mi F-L, Wu Y-B, Shyu S-S, Schoung J-Y, Huang Y-B, Tsai Y-H, Hao J-Y (2002) Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J Biomed Mater Res 59:438–449PubMedCrossRefGoogle Scholar
  87. 87.
    Xia Z, Wu S, Chen J (2013) Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide. Int J Biol Macromol 59:242–245PubMedCrossRefGoogle Scholar
  88. 88.
    Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18:567–575PubMedCrossRefGoogle Scholar
  89. 89.
    Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30:2544–2551PubMedCrossRefGoogle Scholar
  90. 90.
    Sheehy EJ, Mesallati T, Vinardell T, Kelly DJ (2015) Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels. Acta Biomater 13:245–253PubMedCrossRefGoogle Scholar
  91. 91.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27:6123–6137PubMedCrossRefGoogle Scholar
  92. 92.
    Sechriest VF, Miao YJ, Niyibizi C, Westerhausen-Larson A, Matthew HW, Evans CH, Fu FH, Suh JK (2000) GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J Biomed Mater Res 49:534–541PubMedCrossRefGoogle Scholar
  93. 93.
    Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mohan N, Mohanan P, Sabareeswaran A, Nair P (2017) Chitosan-hyaluronic acid hydrogel for cartilage repair. Int J Biol Macromol 104:1936–1945PubMedCrossRefGoogle Scholar
  95. 95.
    Reed S, Lau G, Delattre B, Lopez DD, Tomsia AP, Wu BM (2016) Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Biofabrication 8:15003CrossRefGoogle Scholar
  96. 96.
    Lastra ML, Molinuevo MS, Cortizo AM, Cortizo MS (2017) Fumarate copolymer-chitosan cross-linked scaffold directed to osteochondrogenic tissue engineering. Macromol Biosci.  https://doi.org/10.1002/mabi.201600219
  97. 97.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630PubMedCrossRefGoogle Scholar
  99. 99.
    Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53PubMedCrossRefGoogle Scholar
  100. 100.
    Goh CH, Heng PWS, Chan LW (2012) Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym 88:1–12CrossRefGoogle Scholar
  101. 101.
    Gasperini L, Maniglio D, Migliaresi C (2013) Microencapsulation of cells in alginate through an electrohydrodynamic process. J Bioact Compat Polym 28:413–425CrossRefGoogle Scholar
  102. 102.
    Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10:1646–1662PubMedCrossRefGoogle Scholar
  103. 103.
    Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ (2001) Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 80:2025–2029PubMedCrossRefGoogle Scholar
  104. 104.
    Comisar WA, Kazmers N, Mooney DJ, Linderman J (2007) Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: a combined computational and experimental approach. Biomaterials 28:4409–4417PubMedCrossRefGoogle Scholar
  105. 105.
    Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Herlofsen SR, Küchler AM, Melvik JE, Brinchmann JE (2011) Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in self-gelling alginate discs reveals novel chondrogenic signature gene clusters. Tissue Eng Part A 17:1003–1013PubMedCrossRefGoogle Scholar
  107. 107.
    Kim D-H, Kim D-D, Yoon I-S (2013) Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in sodium alginate beads with or without hyaluronic acid. J Pharm Investig 43:145–151CrossRefGoogle Scholar
  108. 108.
    Wayne JS, McDowell CL, Shields KJ, Tuan RS (2005) In vivo response of polylactic acid–alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng 11:953–963PubMedCrossRefGoogle Scholar
  109. 109.
    Reyes R, Delgado A, Sánchez E, Fernández A, Hernández A, Evora C (2012) Repair of an osteochondral defect by sustained delivery of BMP-2 or TGF-β1 from a bilayered alginate-PLGA scaffold. J Tissue Eng Regen Med 8:521–533PubMedGoogle Scholar
  110. 110.
    Coluccino L, Stagnaro P, Vassalli M, Scaglione S (2016) Bioactive TGF-β1/HA alginate-based scaffolds for osteochondral tissue repair: design, realization and multilevel characterization. J Appl Biomater Funct Mater 14:0–0Google Scholar
  111. 111.
    Hemshekhar M, Thushara RM, Chandranayaka S, Sherman LS, Kemparaju K, Girish KS (2016) Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int J Biol Macromol 86:917–928PubMedCrossRefGoogle Scholar
  112. 112.
    Zhang H, Zhang K, Zhang X et al (2015) Comparison of two hyaluronic acid formulations for safety and efficacy (CHASE) study in knee osteoarthritis: a multicenter, randomized, double-blind, 26-week non-inferiority trial comparing Durolane to Artz. Arthritis Res Ther 17:51PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Sparavigna A, Fino P, Tenconi B, Giordan N, Amorosi V, Scuderi N (2014) A new dermal filler made of cross-linked and auto-cross-linked hyaluronic acid in the correction of facial aging defects. J Cosmet Dermatol 13:307–314PubMedCrossRefGoogle Scholar
  114. 114.
    Burdick JA, Chung C, Jia X, Randolph MA, Langer R (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6:386–391PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Nettles DL, Vail TP, Morgan MT, Grinstaff MW, Setton LA (2004) Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann Biomed Eng 32:391–397PubMedCrossRefGoogle Scholar
  116. 116.
    Knudson CB, Nofal GA, Pamintuan L, Aguiar DJ (1999) The chondrocyte pericellular matrix: a model for hyaluronan-mediated cell-matrix interactions. Biochem Soc Trans 27:142–147PubMedCrossRefGoogle Scholar
  117. 117.
    Bian L, Zhai DY, Tous E, Rai R, Mauck RL, Burdick JA (2011) Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 32:6425–6434PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Marcacci M, Berruto M, Brocchetta D et al (2005) Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res 436:96–105CrossRefGoogle Scholar
  119. 119.
    Kon E, Filardo G, Berruto M, Benazzo F, Zanon G, Della Villa S, Marcacci M (2011) Articular cartilage treatment in high-level male soccer players. Am J Sports Med 39:2549–2557PubMedCrossRefGoogle Scholar
  120. 120.
    Kontturi L-S, Järvinen E, Muhonen V, Collin EC, Pandit AS, Kiviranta I, Yliperttula M, Urtti A (2014) An injectable, in situ forming type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering. Drug Deliv Transl Res 4:149–158PubMedCrossRefGoogle Scholar
  121. 121.
    Fialho AM, Martins LO, Donval M-L, Leitao JH, Ridout MJ, Jay AJ, Morris VJ, Sa-Correia I (1999) Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey. Appl Environ Microbiol 65:2485–2491PubMedPubMedCentralGoogle Scholar
  122. 122.
    Prajapati VD, Jani GK, Zala BS, Khutliwala TA (2013) An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym 93:670–678PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Chandrasekaran R, Radha A (1995) Molecular architectures and functional properties of gellan gum and related polysaccharides. Trends Food Sci Technol 6:143–148CrossRefGoogle Scholar
  124. 124.
    Yuguchi Y, Urakawa H, Kajiwara K (1997) Structural characteristics of crosslinking domain in gellan gum gel. Macromol Symp 120:77–89CrossRefGoogle Scholar
  125. 125.
    Morris ER, Nishinari K, Rinaudo M (2012) Gelation of gellan – a review. Food Hydrocoll 28:373–411CrossRefGoogle Scholar
  126. 126.
    Stevens LR, Gilmore KJ, Wallace GG et al (2016) Tissue engineering with gellan gum. Biomater Sci 4:1276–1290PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Ferris CJ, Gilmore KJ, Wallace GG, Panhuis M (2013) Modified gellan gum hydrogels for tissue engineering applications. Soft Matter 9:3705CrossRefGoogle Scholar
  128. 128.
    Lee H, Fisher S, Kallos MS, Hunter CJ (2011) Optimizing gelling parameters of gellan gum for fibrocartilage tissue engineering. J Biomed Mater Res Part B Appl Biomater 98B:238–245CrossRefGoogle Scholar
  129. 129.
    Shin H, Olsen BD, Khademhosseini A (2012) The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 33:3143–3152PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Pacelli S, Paolicelli P, Pepi F, Garzoli S, Polini A, Tita B, Vitalone A, Casadei MA (2014) Gellan gum and polyethylene glycol dimethacrylate double network hydrogels with improved mechanical properties. J Polym Res 21:409CrossRefGoogle Scholar
  131. 131.
    Pacelli S, Paolicelli P, Dreesen I, Kobayashi S, Vitalone A, Casadei MA (2015) Injectable and photocross-linkable gels based on gellan gum methacrylate: a new tool for biomedical application. Int J Biol Macromol 72:1335–1342PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Oliveira JT, Santos TC, Martins L, Silva MA, Marques AP, Castro AG, Neves NM, Reis RL (2009) Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice. J Tissue Eng Regen Med 3:493–500PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Oliveira JT, Gardel LS, Rada T, Martins L, Gomes ME, Reis RL (2010) Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects. J Orthop Res 28:1193–1199PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Pereira DR, Canadas RF, Silva-Correia J, Marques AP, Reis RL, Oliveira JM (2013) Gellan gum-based hydrogel bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 587:255–260CrossRefGoogle Scholar
  135. 135.
    Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247CrossRefGoogle Scholar
  136. 136.
    Marchesini S, Erard N, Glumoff T, Hiltunen JK, Poirier Y (2003) Modification of the monomer composition of polyhydroxyalkanoate synthesized in Saccharomyces Cerevisiae expressing variants of the beta-oxidation-associated multifunctional enzyme. Appl Environ Microbiol 69:6495–6499PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Shishatskaya EI, Volova TG, Gordeev SA, Puzyr AP (2005) Degradation of P(3HB) and P(3HB-co-3HV) in biological media. J Biomater Sci Polym Ed 16:643–657PubMedCrossRefGoogle Scholar
  138. 138.
    Baek J-Y, Xing Z-C, Kwak G, Yoon K-B, Park S-Y, Park LS, Kang I-K (2012) Fabrication and characterization of collagen-immobilized porous PHBV/HA nanocomposite scaffolds for bone tissue engineering. J Nanomater 2012:1–11Google Scholar
  139. 139.
    Peschel G, Dahse H-M, Konrad A, Wieland GD, Mueller P-J, Martin DP, Roth M (2008) Growth of keratinocytes on porous films of poly(3-hydroxybutyrate) and poly(4-hydroxybutyrate) blended with hyaluronic acid and chitosan. J Biomed Mater Res Part A 85A:1072–1081CrossRefGoogle Scholar
  140. 140.
    Wang Y, Lu L, Zheng Y, Chen X (2006) Improvement in hydrophilicity of PHBV films by plasma treatment. J Biomed Mater Res Part A 76A:589–595CrossRefGoogle Scholar
  141. 141.
    Chen G, Wang Y (2013) Medical applications of biopolyesters polyhydroxyalkanoates. Chinese J Polym Sci 31:719–736CrossRefGoogle Scholar
  142. 142.
    Zheng Z, Bei F-F, Tian H-L, Chen G-Q (2005) Effects of crystallization of polyhydroxyalkanoate blend on surface physicochemical properties and interactions with rabbit articular cartilage chondrocytes. Biomaterials 26:3537–3548PubMedCrossRefGoogle Scholar
  143. 143.
    Wu J, Xue K, Li H, Sun J, Liu K (2013) Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS One 8:e71563PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    You M, Peng G, Li J, Ma P, Wang Z, Shu W, Peng S, Chen G-Q (2011) Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials 32:2305–2313PubMedCrossRefGoogle Scholar
  145. 145.
    Vago R (2008) Beyond the skeleton: cnidarian biomaterials as bioactive extracellular microenvironments for tissue engineering. Organogenesis 4:18–22PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Demers C, Hamdy CR, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12:15–35PubMedGoogle Scholar
  147. 147.
    Viateau V, Manassero M, Sensébé L, Langonné A, Marchat D, Logeart-Avramoglou D, Petite H, Bensidhoum M (2016) Comparative study of the osteogenic ability of four different ceramic constructs in an ectopic large animal model. J Tissue Eng Regen Med 10:177–187CrossRefGoogle Scholar
  148. 148.
    Kon E, Robinson D, Verdonk P, Drobnic M, Patrascu JM, Dulic O, Gavrilovic G, Filardo G (2016) A novel aragonite-based scaffold for osteochondral regeneration: early experience on human implants and technical developments. Injury 47:27–32CrossRefGoogle Scholar
  149. 149.
    Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2:187–208PubMedCrossRefGoogle Scholar
  150. 150.
    Samavedi S, Whittington AR, Goldstein AS (2013) Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 9:8037–8045PubMedCrossRefGoogle Scholar
  151. 151.
    Habraken W, Habibovic P, Epple M, Bohner M (2016) Calcium phosphates in biomedical applications: materials for the future? Mater Today 19:69–87CrossRefGoogle Scholar
  152. 152.
    Venkatesan J, Kim S-K (2014) Nano-hydroxyapatite composite biomaterials for bone tissue engineering: a review. J Biomed Nanotechnol 10:3124–3140PubMedCrossRefGoogle Scholar
  153. 153.
    Vecchio KS, Zhang X, Massie JB, Wang M, Kim CW (2007) Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater 3:910–918PubMedCrossRefGoogle Scholar
  154. 154.
    Ivankovic H, Tkalcec E, Orlic S, Gallego Ferrer G, Schauperl Z (2010) Hydroxyapatite formation from cuttlefish bones: kinetics. J Mater Sci Mater Med 21:2711–2722PubMedCrossRefGoogle Scholar
  155. 155.
    Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781PubMedCrossRefGoogle Scholar
  156. 156.
    Ivankovic H, Orlic S, Kranzelic D, Tkalcec E (2010) Highly porous hydroxyapatite ceramics for engineering applications. Adv Sci Technol 63:408–413CrossRefGoogle Scholar
  157. 157.
    Pon-On W, Suntornsaratoon P, Charoenphandhu N, Thongbunchoo J, Krishnamra N, Tang IM (2016) Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material. Mater Sci Eng C 62:183–189CrossRefGoogle Scholar
  158. 158.
    Mondal S, Pal U, Dey A (2016) Natural origin hydroxyapatite scaffold as potential bone tissue engineering substitute. Ceram Int 42:18338–18346CrossRefGoogle Scholar
  159. 159.
    Zhang X, Vecchio KS (2013) Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Front Mater Sci 7:103–117CrossRefGoogle Scholar
  160. 160.
    Dong C, Lv Y (2016) Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers (Basel) 8:42–62CrossRefGoogle Scholar
  161. 161.
    Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nano-composite multilayered biomaterial for osteochondral regeneration. Am J Sports Med 39:1180–1190PubMedCrossRefGoogle Scholar
  162. 162.
    Calabrese G, Forte S, Gulino R et al (2017) Combination of collagen-based scaffold and bioactive factors induces adipose-derived mesenchymal stem cells chondrogenic differentiation in vitro. Front Physiol 8:1–27Google Scholar
  163. 163.
    Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, Wang R, Guo T, Zhao J, Zhang J (2011) Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32:4793–4805PubMedCrossRefGoogle Scholar
  164. 164.
    Abarrategi A, Lópiz-Morales Y, Ramos V, Civantos A, López-Durán L, Marco F, López-Lacomba JL (2010) Chitosan scaffolds for osteochondral tissue regeneration. J Biomed Mater Res Part A 95A:1132–1141CrossRefGoogle Scholar
  165. 165.
    Naderi-Meshkin H, Andreas K, Matin MM, Sittinger M, Bidkhori HR, Ahmadiankia N, Bahrami AR, Ringe J (2014) Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol Int 38:72–84PubMedCrossRefGoogle Scholar
  166. 166.
    Liao J, Wang B, Huang Y, Qu Y, Peng J, Qian Z (2017) Injectable alginate hydrogel cross-linked by calcium gluconate-loaded porous microspheres for cartilage tissue engineering. ACS Omega 2:443–454CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Fisher MB, Belkin NS, Milby AH et al (2016) Effects of mesenchymal stem cell and growth factor delivery on cartilage repair in a mini-pig model. Cartilage 7:174–184PubMedCrossRefGoogle Scholar
  168. 168.
    Park JY, Choi J-C, Shim J-H, Lee J-S, Park H, Kim SW, Doh J, Cho D-W (2014) A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication 6:35004CrossRefGoogle Scholar
  169. 169.
    Oliveira JT, Santos TC, Martins L, Picciochi R, Marques AP, Castro AG, Neves NM, Mano JF, Reis RL (2010) Gellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluation. Tissue Eng Part A 16:343–353PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Zheng L, Jiang X, Chen X, Fan H, Zhang X (2014) Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering. Biomed Mater 9:65004CrossRefGoogle Scholar
  171. 171.
    Bian W, Li D, Lian Q, Li X, Zhang W, Wang K, Jin Z (2012) Fabrication of a bio-inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering. Rapid Prototyp J 18:68–80CrossRefGoogle Scholar
  172. 172.
    Lin H-Y, Tsai W-C, Chang S-H (2017) Collagen-PVA aligned nanofiber on collagen sponge as bi-layered scaffold for surface cartilage repair. J Biomater Sci Polym Ed 28:664–678PubMedCrossRefGoogle Scholar
  173. 173.
    Getgood A, Henson F, Skelton C, Brooks R, Guehring H, Fortier LA, Rushton N (2014) Osteochondral tissue engineering using a biphasic collagen/GAG scaffold containing rhFGF18 or BMP-7 in an ovine model. J Exp Orthop 1:13PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Ren X, Weisgerber DW, Bischoff D, Lewis MS, Reid RR, He T-C, Yamaguchi DT, Miller TA, Harley BAC, Lee JC (2016) Nanoparticulate mineralized collagen scaffolds and BMP-9 induce a long-term bone cartilage construct in human mesenchymal stem cells. Adv Healthc Mater 5:1821–1830PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Taniyama T, Masaoka T, Yamada T et al (2015) Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein-2. Artif Organs 39:529–535PubMedCrossRefGoogle Scholar
  176. 176.
    Lee P, Tran K, Zhou G, Bedi A, Shelke NB, Yu X, Kumbar SG (2015) Guided differentiation of bone marrow stromal cells on co-cultured cartilage and bone scaffolds. Soft Matter 11:7648–7655PubMedCrossRefGoogle Scholar
  177. 177.
    Miralles G, Baudoin R, Dumas D, Baptiste D, Hubert P, Stoltz JF, Dellacherie E, Mainard D, Netter P, Payan E (2001) Sodium alginate sponges with or without sodium hyaluronate: in vitro engineering of cartilage. J Biomed Mater Res 57:268–278PubMedCrossRefGoogle Scholar
  178. 178.
    Solchaga LA, Yoo JU, Lundberg M, Dennis JE, Huibregtse BA, Goldberg VM, Caplan AI (2000) Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthop Res 18:773–780PubMedCrossRefGoogle Scholar
  179. 179.
    Deng T, Lv J, Pang J, Liu B, Ke J (2012) Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med 8:546–556PubMedGoogle Scholar
  180. 180.
    Lee J-C, Lee SY, Min HJ, Han SA, Jang J, Lee S, Seong SC, Lee MC (2012) Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng Part A 18:2173–2186PubMedCrossRefGoogle Scholar
  181. 181.
    Solchaga LA, Gao J, Dennis JE, Awadallah A, Lundberg M, Caplan AI, Goldberg VM (2002) Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng 8:333–347PubMedCrossRefGoogle Scholar
  182. 182.
    Kasahara Y, Iwasaki N, Yamane S, Igarashi T, Majima T, Nonaka S, Harada K, Nishimura S-I, Minami A (2008) Development of mature cartilage constructs using novel three-dimensional porous scaffolds for enhanced repair of osteochondral defects. J Biomed Mater Res Part A 86A:127–136CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Walter Bonani
    • 1
  • Weerasak Singhatanadgige
    • 2
  • Aramwit Pornanong
    • 3
  • Antonella Motta
    • 1
  1. 1.BIOtech Research Center and Department of Industrial EngineeringEuropean Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of TrentoTrentoItaly
  2. 2.Department of Orthopedic Surgery, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
  3. 3.Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand

Personalised recommendations