Advertisement

Biological and Phytotoxic Impacts of a Nanomaterial

  • Usha Rani Pathipati
  • Prasanna Laxmi Kanuparthi
Chapter

Abstract

The enhanced utilization of nanoparticles (NPs) in various sectors all over the globe amplified the necessity to explore its effects on environment and biota. Being minute in size, NPs can reach inside the plant cells and might directly induce alterations of membranes and other cell structures and molecules, as well as protective mechanisms. Indirect effects of NPs depend on their chemical and physical properties and may affect physiology and growth of plants as well as may induce production of reactive oxygen species. Many questions regarding the bioavailability of engineered nanoparticles (ENPs) and their uptake by plants in either aerial and/or terrestrial mode of toxicity mechanisms are briefly discussed.

References

  1. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32(5):577–584CrossRefPubMedGoogle Scholar
  2. Bhattacharyya A, Bhaumik A, Usha Rani P et al (2010) Nano-particles: a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493Google Scholar
  3. Chakravarthy AK, Chandrashekharaiah SB, Kandakoor A et al (2012) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6:271–281Google Scholar
  4. Cui Y, Zhao N (2011) Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant Soil Environ 57(1):34–39CrossRefGoogle Scholar
  5. Da Silva LC, Oliva MA, Azevedo AA et al (2006) Responses of resting a plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241–256CrossRefGoogle Scholar
  6. Dimkpa C, McLean J, Latta D et al (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand grown wheat. J Nanopart Res 14(9):1–15CrossRefGoogle Scholar
  7. Feng Y, Cui X, He S et al (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 4:9496–9504.  https://doi.org/10.1021/es402109n CrossRefGoogle Scholar
  8. Fraceto LF, Grillo R, de Medeiros GA et al (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20.  https://doi.org/10.3389/fenvs.2016.00020 CrossRefGoogle Scholar
  9. Ghosh M, Jana A, Sinha S et al (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Genet Toxicol Environ Mutagen 807:25–32CrossRefPubMedGoogle Scholar
  10. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930CrossRefGoogle Scholar
  11. Jasim B, Thomas R, Mathew J et al (2016) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25:443–447.  https://doi.org/10.1016/j.jsps.2016.09.012 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jiang HS, Qiu XN, Li GB et al (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33(6):1398–1405CrossRefPubMedGoogle Scholar
  13. Jiang HS, Yin LY, Ren NN et al (2017) Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology 11(2):157–167CrossRefPubMedGoogle Scholar
  14. Judy JD, Unrine JM, Rao W et al (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467–8474.  https://doi.org/10.1021/es3019397 CrossRefPubMedGoogle Scholar
  15. Jyothsna Y, Usha Rani P (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth and plant physiology. Environ Sci Pollut Res 20(12):8636–8648CrossRefGoogle Scholar
  16. Kostner B (2001) Evaporation and transpiration from forests in Central Europe relevance of patch-level studies for spatial scaling. Meteorol Atmos Phys 76:69–82CrossRefGoogle Scholar
  17. Kumari M, Khan SS, Pakrashi S et al (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1−3):613–621CrossRefPubMedGoogle Scholar
  18. Landa P, Vankova R, Andrlova J et al (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241−242:55–62CrossRefPubMedGoogle Scholar
  19. Landa P, Cyrusova T, Jerabkova J et al (2016) Effect of metal oxides on plant germination: phytotoxicity of nanoparticles, bulk materials, and metal ions. Water Air Soil 227:448.  https://doi.org/10.1007/s11270-016-3156-9 CrossRefGoogle Scholar
  20. Ma C, Chhikara S, Xing B et al (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778CrossRefGoogle Scholar
  21. Ma C, Liu H, Guo H et al (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano 3:1369–1379CrossRefGoogle Scholar
  22. Martin-Ortigosa S, Peterson DJ, Valenstein JS et al (2014) Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164:537–547.  https://doi.org/10.1104/pp.113.233650 CrossRefPubMedGoogle Scholar
  23. Mazumdar H, Ahmed GU (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J ChemTech Res 3:1494–1500Google Scholar
  24. Mirzajani F, Askari H, Hamzelou S et al (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54.  https://doi.org/10.1016/j.ecoenv.2012.10.018 CrossRefPubMedGoogle Scholar
  25. Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43:203–213CrossRefPubMedGoogle Scholar
  26. Okupnik A, Pflugmacher S (2016) Oxidative stress response of the aquatic macrophyte Hydrilla verticillata exposed to TiO2 nanoparticles. Environ Toxicol Chem 35:2859–2866.  https://doi.org/10.1002/etc.3469 CrossRefPubMedGoogle Scholar
  27. Ovecka M, Lang I, Baluska F et al (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54CrossRefPubMedGoogle Scholar
  28. Pallavi CM, Srivastava R, Arora S et al (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6:254.  https://doi.org/10.1007/s13205-016-0567-7 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Panacek A, Prucek R, Safarova D et al (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45:4974–4979CrossRefPubMedGoogle Scholar
  30. Panda KK, Achary VMM, Krishnaveni R et al (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25(5):1097–1105CrossRefPubMedGoogle Scholar
  31. Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:12.  https://doi.org/10.3389/fenvs.2017.00012 CrossRefGoogle Scholar
  32. Qian H, Peng X, Han X et al (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1955CrossRefGoogle Scholar
  33. Rajasekharreddy P, Usha Rani P, Sreedhar B (2010) Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach. J Nanopart Res 12:1711CrossRefGoogle Scholar
  34. Rajasekharreddy P, Usha Rani P, Saidulu M et al (2017) Ultra-small silver nanoparticles induced ROS activated toll-pathway against Staphylococcus aureus disease in silkworm model. Mater Sci Eng C 77:990–1002CrossRefGoogle Scholar
  35. Ramsden C, Henry T, Handy R (2013) Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish. Aquat Toxicol 126:404–413CrossRefPubMedGoogle Scholar
  36. Reddy AM, Kumar SG, Jyonthsna kumari G et al (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengal gram (Cicer arietinum L.). Chemosphere 60:97–104CrossRefPubMedGoogle Scholar
  37. Sankar MV, Abideen S (2015) Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. Int J Nanomater Biostruct 5:32–39Google Scholar
  38. Sharma P, Bhatt D, Zaidi MGH et al (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233CrossRefPubMedGoogle Scholar
  39. Siva C, Kumar MS (2015) Pesticidal activity of eco-friendly synthesized silver nanoparticles using Aristolochia indica extract against Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Int J Adv Sci Tech Res 2:197–226Google Scholar
  40. Song JY, Kim BS (2008) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84CrossRefPubMedGoogle Scholar
  41. Song U, Jun HJ, Waldman B, Roh JK et al (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on Tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67CrossRefPubMedGoogle Scholar
  42. Song G, Hou W, Gao Y et al (2016) Effects of CuO nanoparticles on Lemna minor. Bot Stud 57:3.  https://doi.org/10.1186/s40529-016-0118-x CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tenhunen JD, Mauser W (2001) Ecological studies. In: Lenz R (ed) Ecosystems approaches to landscape management in Central Europe, vol 147. Springer, Berlin, p 652CrossRefGoogle Scholar
  44. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028CrossRefGoogle Scholar
  45. Torney F, Trewyn BG, Lin VS et al (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300.  https://doi.org/10.1038/nnano.2007.108 CrossRefPubMedGoogle Scholar
  46. Tripathi DK, Singh S, Srivastava PK et al (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177.  https://doi.org/10.1016/j.plaphy.2016.06.015 CrossRefPubMedGoogle Scholar
  47. U.S. Environmental Protection Agency (2005) Nanotechnology white paper external review draft. Available from: https://www.epa.gov/osa/pdfs/EPA_nanotechnology_white_paper_external_review_draft_12-02-2005
  48. Usha Rani P, Rajasekharreddy P (2011) Green synthesis of silver-protein (core–shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloids Surf A Physicochem Eng Asp 389(1–3):188–194CrossRefGoogle Scholar
  49. Usha Rani P, Madhusudhanamurthy J, Sreedhar B (2014) Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J Pest Sci 87(1):191–200CrossRefGoogle Scholar
  50. Usha Rani P, Jyothsna Y, Karthik Sharma L et al (2016) Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. Acta Physiol Plant 38(2):1–9Google Scholar
  51. Vinopal S, Ruml T, Kotrba P (2007) Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int Biodeter Biodegr 60:96–102CrossRefGoogle Scholar
  52. Wan R, Mo Y, Feng L et al (2012) DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem Res Toxicol 25(7):1402–1411CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wang X, Sun C, Gao S (2001) Validation of germination rate and root elongation as an indicator to assess phytotoxicity with Cucumis sativus. Chemosphere 44:1711–1721CrossRefPubMedGoogle Scholar
  54. Wang Z, Li N, Zhao J et al (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25(7):1512–1521CrossRefPubMedGoogle Scholar
  55. Wang F, Liu X, Shi Z et al (2016) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants – a soil microcosm experiment. Chemosphere 147:88–97.  https://doi.org/10.1016/j.chemosphere.2015.12.076 CrossRefPubMedGoogle Scholar
  56. Wang P, Lombi E, Zhao FJ et al (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712.  https://doi.org/10.1016/j.tplants.2016.04.005 CrossRefPubMedGoogle Scholar
  57. Zhang HY, Jiang YN, He ZY et al (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984CrossRefPubMedGoogle Scholar
  58. Zhao L, Peng B, Hernandez-Viezcas JA et al (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6(11):9615–9622CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhao J, Wang Z, Dai Y et al (2013) Mitigation of CuO nanoparticle induced bacterial membrane damage by dissolved organic matter. Water Res 47:4169–4178CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Usha Rani Pathipati
    • 1
  • Prasanna Laxmi Kanuparthi
    • 1
  1. 1.Biology and Biotechnology DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations