Metal-Based Nanomaterials and Oxidative Stress in Plants: Current Aspects and Overview

  • Cristiano SoaresEmail author
  • Ruth Pereira
  • Fernanda Fidalgo


Oxidative stress is one of the main mechanisms of metal toxicity, both at the nano and non-nanoscale forms. Thus, several molecular and biochemical parameters related with the antioxidant (AOX) stress responses or resulting cellular damages could be extremely useful as early warning indicators of the phytotoxicity of nanomaterials (NMs). Within this context, this chapter aimed at compiling all the data regarding the oxidative stress-induced responses of plants to the most used metal-based NMs and to perceive if the existing data could be used for risk assessment purposes. The available data showed that the plant AOX defense system is responsive to NM, at least when plants are exposed at given concentrations; however, the interplay between different enzymes and AOX metabolites is quite variable between species and exposure conditions. More concerning is the usefulness of available data for risk assessment purposes, due to the great variability of NMs tested (e.g., different sizes), exposure procedures, and duration and experimental designs established, which make ecotoxicological data for each NM almost unique. Despite that, and using a deterministic approach based on assessment factors, a generic predicted no-effect concentration (PNEC) value < 10 mg kg−1 of soil is suggested for oxidative stress in plants (taking lipid peroxidation as endpoint) caused by the metal-based NM addressed in this chapter. Nevertheless, a systematic approach is urgently needed to collect ecotoxicological data for reducing the uncertainty of this former risk limit proposed. The link between oxidative stress in plants and effects at the individual, population, and community levels also needs to be addressed in future studies.


Nanotechnology Metal-based nanomaterials Oxidative stress Antioxidant system Risk assessment Phytotoxicity 


  1. Adrees M, Ali S, Rizwan M et al (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162CrossRefGoogle Scholar
  2. Agency, USEP (2007) Final Nanotechnology White Paper. EPA 100/B-07/001. Office of the Science Advisor WashingtonGoogle Scholar
  3. Albanese A, Sykes EA, Chan WC (2010) Rough around the edges: the inflammatory response of microglial cells to spiky nanoparticles. ACS Nano 4:2490–2493PubMedCrossRefGoogle Scholar
  4. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amooaghaie R, Norouzi M, Saeri M (2016) Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany 955:441–455Google Scholar
  6. Andreescu D, Bulbul G, Özel RE et al (2014) Applications and implications of nanoceria reactivity: measurement tools and environmental impact. Environ Sci Nano 1(5):445–458CrossRefGoogle Scholar
  7. Anjum NA, Adam V, Kizek R et al (2015) Nanoscale copper in the soil–plant system–toxicity and underlying potential mechanisms. Environ Res 138:306–325PubMedCrossRefGoogle Scholar
  8. Arruda SCC, Silva ALD, Galazzi RM et al (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705PubMedCrossRefGoogle Scholar
  9. Barrena R, Casals E, Colón J et al (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857PubMedCrossRefGoogle Scholar
  10. Barrios AC, Rico CM, Trujillo-Reyes J et al (2016) Effects of uncoated and citric acid coated cerium oxide nanoparticles bulk cerium oxide cerium acetate and citric acid on tomato plants. Sci Total Environ 563:956–964PubMedCrossRefGoogle Scholar
  11. Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317PubMedCrossRefGoogle Scholar
  12. Biswas P, Wu CY (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55:708–746CrossRefGoogle Scholar
  13. Bour A, Mouchet F, Silvestre J et al (2015) Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review. J Hazard Mater 283:764–777PubMedCrossRefGoogle Scholar
  14. Boxall P, Purcell J, Wright PM (2008) Human resource management: scope analysis and significance. In: Boxall P, Purcell J, Wright PM (eds) The Oxford handbook of human resource management. Oxford University Press, Oxford, pp 1–18. CrossRefGoogle Scholar
  15. Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE et al (2009) Copper homeostasis. New Phytol 182:799–816PubMedCrossRefGoogle Scholar
  16. Çekiç FÖ, Ekinci S, İnal MS et al (2017) Silver nanoparticles induced genotoxicity and oxidative stress in tomato plants. Turk J Biol 41(5):700–707CrossRefGoogle Scholar
  17. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588PubMedCrossRefGoogle Scholar
  18. Conway JR, Beaulieu AL, Beaulieu NL et al (2015) Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. ACS Nano 9:1137–1149CrossRefGoogle Scholar
  19. Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E et al (2014) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L.). Plant Physiol Biochem 84:277–285PubMedCrossRefGoogle Scholar
  20. Cox A, Venkatachalam P, Sahi S et al (2016) Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 107:147–163PubMedCrossRefGoogle Scholar
  21. Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1):110–119CrossRefGoogle Scholar
  22. Dimkpa CO, McLean JE, Latta DE et al (2012) CuO and ZnO nanoparticles: phytotoxicity metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125CrossRefGoogle Scholar
  23. Dionysiou DD (2004) Environmental applications and implications of nanotechnology and nanomaterials. J Environ Eng 130:723–724CrossRefGoogle Scholar
  24. Doğaroğlu ZG, Köleli N (2017) TiO2 and ZnO nanoparticles toxicity in barley (Hordeum vulgare L.). Clean (Weinh) 45(11):1700096Google Scholar
  25. Du W, Sun Y, Ji R et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828PubMedCrossRefGoogle Scholar
  26. Du W, Gardea-Torresdey JL, Ji R et al (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49(19):11884–11893PubMedPubMedCentralCrossRefGoogle Scholar
  27. El-Temsah YS, Joner EJ (2012) Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89:76–82. CrossRefPubMedGoogle Scholar
  28. Faisal M, Saquib Q, Alatar AA et al (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250:318–332PubMedCrossRefGoogle Scholar
  29. Fayez KA, El-Deeb BA, Mostafa NY (2017) Toxicity of biosynthetic silver nanoparticles on the growth cell ultrastructure and physiological activities of barley plant. Acta Physiol Plant 39(7):155CrossRefGoogle Scholar
  30. Ghodake G, Seo YD, Lee D (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955PubMedCrossRefGoogle Scholar
  31. Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752CrossRefGoogle Scholar
  32. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gorka DE, Osterberg JS, Gwin CA et al (2015) Reducing environmental toxicity of silver nanoparticles through shape control. Environ Sci Technol 49(16):10093–10098PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155PubMedCrossRefGoogle Scholar
  35. Grande F, Tucci P (2016) Titanium dioxide nanoparticles: a risk for human health? Mini Rev Med Chem 16(9):762–769PubMedCrossRefGoogle Scholar
  36. Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159:1551–1559PubMedCrossRefGoogle Scholar
  37. Gui X, Zhang Z, Liu S et al (2015) Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment. PLoS One 10(8):e0134261. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Halliwell B, Gutteridge J (1984) Oxygen toxicity oxygen radicals transition metals and disease. Biochem J 219:1–14PubMedPubMedCentralCrossRefGoogle Scholar
  39. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status knowledge gaps challenges and future needs. Ecotoxicology 17:315–325PubMedCrossRefGoogle Scholar
  40. Hansen SF, Michelson ES, Kamper A et al (2008) Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 17:438–447PubMedCrossRefGoogle Scholar
  41. Helland A, Wick P, Koehler A et al (2008) Reviewing the environmental and human health knowledge base of carbon nanotubes. Cien Saude Colet 13:441–452PubMedCrossRefGoogle Scholar
  42. Hong F, Yang F, Liu C et al (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104(3):249–260PubMedCrossRefGoogle Scholar
  43. Hong J, Rico CM, Zhao L et al (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 17:177–185PubMedCrossRefGoogle Scholar
  44. Horie M, Fukui H, Nishio K et al (2011) Evaluation of acute oxidative stress induced by NiO nanoparticles in vivo and in vitro. J Occup Health 53:64–74PubMedCrossRefGoogle Scholar
  45. Hutter E, Boridy S, Labrecque S et al (2010) Microglial response to gold nanoparticles. ACS Nano 4:2595–2606PubMedCrossRefGoogle Scholar
  46. Javed R, Mohamed A, Yücesan B et al (2017) CuO nanoparticles significantly influence in vitro culture steviol glycosides and antioxidant activities of Stevia rebaudiana Bertoni. Plant Cell Tiss Org Cult 131:611–620CrossRefGoogle Scholar
  47. Jiang HS, Yin LY, Ren NN et al (2017) Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology 11(2):157–167PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jin Y, Fan X, Li X et al (2017) Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum. Environ Pollut 228:517–527CrossRefPubMedGoogle Scholar
  49. Kaveh R, Li YS, Ranjbar S et al (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47(18):10637–10644PubMedCrossRefGoogle Scholar
  50. Keller A, McFerran S, Lazareva A et al (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692CrossRefGoogle Scholar
  51. Khaydarov RR, Khaydarov RA, Gapurova O et al 2009. Antimicrobial effects of silver nanoparticles synthesized by an electrochemical method. Nanostruct Mater Adv Technol App 215–218Google Scholar
  52. Khot LR, Sankaran S, Maja JM et al (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  53. Kim TH, Kim M, Park HS et al (2012) Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 100((4):1033–1043CrossRefGoogle Scholar
  54. Klaine SJ, Alvarez PJ, Batley GE et al (2008) Nanomaterials in the environment: behavior fate bioavailability and effects. Environ Toxicol Chem 27:1825–1851PubMedCrossRefGoogle Scholar
  55. Koce JD, Drobne D, Klančnik K et al (2014) Oxidative potential of ultraviolet-A irradiated or nonirradiated suspensions of titanium dioxide or silicon dioxide nanoparticles on Allium cepa roots. Environ Toxicol Chem 33(4):858–867PubMedCrossRefGoogle Scholar
  56. Kumari M, Khan SS, Pakrashi S et al (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kurwadkar S, Pugh K, Gupta A et al (2014) Nanoparticles in the environment: occurrence distribution and risks. J Hazard Toxic Radioact Waste 19(3)CrossRefGoogle Scholar
  58. Landa P, Dytrych P, Prerostova S et al (2017) Transcriptomic response of Arabidopsis thaliana exposed to CuO nanoparticles bulk material and ionic copper. Environ Sci Technol 51:10814–10824PubMedCrossRefGoogle Scholar
  59. Le Van N, Ma C, Shang J et al (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670PubMedCrossRefGoogle Scholar
  60. Lee S, Kim S, Kim S et al (2013) Assessment of phytotoxicity of ZnO NPs on a medicinal plant Fagopyrum esculentum. Environ Sci Pollut Res 20:848–854CrossRefGoogle Scholar
  61. Li CC, Wang YJ, Dang F et al (2016) Mechanistic understanding of reduced AgNP phytotoxicity induced by extracellular polymeric substances. J Hazard Mater 308:21–28PubMedCrossRefGoogle Scholar
  62. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250CrossRefPubMedGoogle Scholar
  63. López-Moreno ML, Avilés LL, Pérez NG et al (2016) Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Total Environ 550:45–52PubMedCrossRefGoogle Scholar
  64. Ma X, Geiser-Lee J, Deng Y et al (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity uptake and accumulation. Sci Total Environ 408:3053–3061PubMedCrossRefGoogle Scholar
  65. Ma H, Kabengi NJ, Bertsch PM et al (2011) Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ Pollut 159:1473–1480CrossRefPubMedGoogle Scholar
  66. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles – a review. Environ Pollut 172:76–85CrossRefPubMedGoogle Scholar
  67. Ma Y, Zhang P, Zhang Z et al (2015) Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology 9(2):262–270PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ma C, Liu H, Guo H et al (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano 3(6):1369–1379CrossRefGoogle Scholar
  69. Majumdar S, Peralta-Videa JR, Bandyopadhyay S et al (2014) Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J Hazard Mater 278:279–287CrossRefPubMedGoogle Scholar
  70. Manna I, Bandyopadhyay M (2017) Engineered nickel oxide nanoparticle causes substantial physicochemical perturbation in plants. Front Chem 5:92. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Manzo S, Rocco A, Carotenuto R et al (2011) Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environ Sci Pollut Res 18:756–763CrossRefGoogle Scholar
  72. Masarovičová E, Kráľová K (2013) Metal nanoparticles and plants. Ecol Chem Eng S 20:9–22Google Scholar
  73. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165CrossRefGoogle Scholar
  74. Morales MI, Rico CM, Hernandez-Viezcas JA et al (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61(26):6224–6230PubMedCrossRefGoogle Scholar
  75. Mozafari A, Havas F, Ghaderi N (2017) Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria × ananassa Duch.) to cope with drought stress. Plant Cell Tissue Organ Cult 1–13Google Scholar
  76. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S et al (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138PubMedCrossRefGoogle Scholar
  78. Nair PMG, Chung IM (2014a) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth root system development root lignificaion and molecular level changes. Environ Sci Pollut Res 21:12709–12722CrossRefGoogle Scholar
  79. Nair PMG, Chung IM (2014b) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162:342–352PubMedCrossRefGoogle Scholar
  80. Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313PubMedCrossRefGoogle Scholar
  81. Nair PMG, Chung IM (2017) Evaluation of stress effects of copper oxide nanoparticles in Brassica napus L. seedlings. 3 Biotech 7:293PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nowack B, Bucheli TD (2007) Occurrence behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22PubMedCrossRefGoogle Scholar
  83. Nowack B, Ranville JF, Diamond S et al (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59PubMedCrossRefGoogle Scholar
  84. OECD (2006) Test No. 208: terrestrial plant test: seedling emergence and seedling growth test. OECD Publishing, ParisGoogle Scholar
  85. Osborne OJ, Lin S, Chang CH et al (2015) Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano 9:9573–9584PubMedCrossRefGoogle Scholar
  86. Palmqvist NM, Seisenbaeva GA, Svedlindh P et al (2017) Maghemite nanoparticles acts as nanozymes improving growth and abiotic stress tolerance in Brassica napus. Nanoscale Res Lett 12(1):631PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pereira SP, Jesus F, Aguiar S et al (2017) Phytotoxicity of silver nanoparticles to Lemna minor: surface coating and exposure period-related effects. Sci Total Environ 618:1389–1399PubMedCrossRefGoogle Scholar
  88. Perreault F, Popovic R, Dewez D (2014) Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut 185:219–227PubMedCrossRefGoogle Scholar
  89. Prasad TNVKV, Sudhakar P, Sreenivasulu Y et al (2012) Effect of nanoscale zinc oxide particles on the germination growth and yield of peanut. J Plant Nutr 35:905–927CrossRefGoogle Scholar
  90. Praveen A, Khan E, Perwez M et al (2017) Iron oxide nanoparticles as nano-adsorbents: a possible way to reduce arsenic phytotoxicity in Indian mustard plant (Brassica juncea L.). J Plant Growth Regul 1–13Google Scholar
  91. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83PubMedCrossRefGoogle Scholar
  92. Rajeshwari A, Kavitha S, Alex SA et al (2015) Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip—effects of oxidative stress generation and biouptake. Environ Sci Pollut Res 22(14):11057–11066CrossRefGoogle Scholar
  93. Rauscher H, Roebben G, Amenta V et al (2014) Towards a review of the EC recommendation for a definition of the term “nanomaterial”. EU.
  94. Rico CM, Hong J, Morales MI et al (2013a) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642CrossRefPubMedGoogle Scholar
  95. Rico CM, Morales MI, McCreary R et al (2013b) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47(24):14110–14118PubMedCrossRefGoogle Scholar
  96. Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346PubMedCrossRefGoogle Scholar
  97. Salehi H, Chehregani A, Lucini L et al (2018) Morphological proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Sci Total Environ 616:1540–1551PubMedCrossRefGoogle Scholar
  98. Servin AD, Morales MI, Castillo-Michel H et al (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47(20):11592–11598CrossRefPubMedGoogle Scholar
  99. Sharma P, Jha AB, Dubey RS et al (2012) Reactive oxygen species oxidative damage and antioxidative defense mechanism in plants under stressful conditions. J Bot 26:217037Google Scholar
  100. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915PubMedCrossRefGoogle Scholar
  101. Shi H, Magaye R, Castranova V et al (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10(1):15PubMedPubMedCentralCrossRefGoogle Scholar
  102. Silva S, Craveiro SC, Oliveira H et al (2017) Wheat chronic exposure to TiO2-nanoparticles: cyto-and genotoxic approach. Plant Physiol Biochem 121:89–98PubMedCrossRefGoogle Scholar
  103. Soares C, Branco-Neves S, de Sousa A et al (2016) Ecotoxicological relevance of nano-NiO and acetaminophen to Hordeum vulgare L.: combining standardized procedures and physiological endpoints. Chemosphere 165:442–452PubMedCrossRefGoogle Scholar
  104. Soares C, Branco-Neves S, de Sousa A et al (2018) SiO2 nanomaterial as a tool to improve Hordeum vulgare L. tolerance to nano-NiO stress. Sci Total Environ 622:517–525PubMedCrossRefGoogle Scholar
  105. Song U, Jun H, Waldman B et al (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67PubMedPubMedCentralCrossRefGoogle Scholar
  106. Spengler A, Wanninger L, Pflugmacher S (2017) Oxidative stress mediated toxicity of TiO2 nanoparticles after a concentration and time dependent exposure of the aquatic macrophyte Hydrilla verticillata. Aquat Toxicol 190:32–39PubMedCrossRefGoogle Scholar
  107. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479CrossRefPubMedGoogle Scholar
  108. Sun TY, Gottschalk F, Hungerbühler K et al (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76CrossRefPubMedGoogle Scholar
  109. Sun C, Yin N, Wen R et al (2016) Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. Neurotoxicology 52:210–221PubMedCrossRefGoogle Scholar
  110. Tassi E, Giorgetti L, Morelli E et al (2017) Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: modulation of boron phytotoxicity. Plant Physiol Biochem 110:50–58PubMedCrossRefGoogle Scholar
  111. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48CrossRefGoogle Scholar
  112. Tripathi DK, Singh S, Singh S et al (2017a) An overview on manufactured nanoparticles in plants: uptake translocation accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12PubMedCrossRefGoogle Scholar
  113. Tripathi A, Liu S, Singh PK et al (2017b) Differential phytotoxic responses of silver nitrate (AgNO3) and silver nanoparticle (AgNps) in Cucumis sativus L. Plant Gene 11:255–264CrossRefGoogle Scholar
  114. Tripathi DK, Singh S, Shweta Singh Srivastava PK et al (2017c) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem.
  115. Tsonev T, Lidon FJC (2012) Zinc in plants – an overview. Emir J Food Agric 24:322–333Google Scholar
  116. Vishwakarma K, Upadhyay N, Singh J et al (2017) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wang H, Kou X, Pei Z et al (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wang Z, Xie X, Zhao J et al (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441PubMedCrossRefGoogle Scholar
  119. Wang F, Liu X, Shi Z et al (2016a) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants – a soil microcosm experiment. Chemosphere 147:88–97PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wang Z, Xu L, Zhao J et al (2016b) CuO nanoparticle interaction with Arabidopsis thaliana: toxicity parent-progeny transfer and gene expression. Environ Sci Technol 50:6008–6016PubMedCrossRefGoogle Scholar
  121. Whatmore RW (2006) Nanotechnology—what is it? Should we be worried? Occup Med 56:295–299CrossRefGoogle Scholar
  122. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA et al (2009) Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138. CrossRefGoogle Scholar
  123. Yang X, Pan H, Wang P et al (2017) Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana. J Hazard Mater 322:292–300PubMedCrossRefGoogle Scholar
  124. Yin N, Liu Q, Liu J et al (2013) Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small 9(9–10):1831–1841PubMedCrossRefGoogle Scholar
  125. Yruela I (2009) Copper in plants: acquisition transport and interactions. Funct Plant Biol 36:409–430CrossRefGoogle Scholar
  126. Zafar H, Ali A, Ali JS et al (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zhao CM, Wang WX (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892PubMedCrossRefGoogle Scholar
  128. Zhao L, Peng B, Hernandez-Viezcas J et al (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2 heat shock protein and lipid peroxidation. ACS Nano 6(11):9615–9622PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR et al (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Process Impacts 15:260–266PubMedCrossRefGoogle Scholar
  130. Zuverza-Mena N, Martínez-Fernández D, Du W et al (2017) Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses – a review. Plant Physiol Biochem 110:236–264PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cristiano Soares
    • 1
  • Ruth Pereira
    • 1
  • Fernanda Fidalgo
    • 1
  1. 1.Faculty of Sciences, Department of Biology, GreenUPorto – Sustainable Agrifood Production Research CenterUniversity of PortoPortoPortugal

Personalised recommendations