Advertisement

Current Status of Nanoclay Phytotoxicity

  • Giuseppe Lazzara
  • Marina Massaro
  • Serena Riela
Chapter

Abstract

The use of nanotechnology in several fields has created a great interest and its rapid development with application in material science, nanomedicine, medical diagnosis, computer chips, catalysis, and so on.

The use of nanomaterials represents various advantages, including size, highly active surfaces, unique physicochemical properties, and in some cases a controlled release of chemicals.

In this context phyto-nanotechnology is growing and has promising application in agricultural aspects, such as use of soil remediation, antioxidants, adsorbents, nano-sensor for detection of soil quality, delivery of fertilizers, and many others.

Plants are very important components of the terrestrial ecosystem and essential for the planet life. Studies on the influence of nanomaterial on plant growth indicate that they influence seed germination in different way depending on the nanoparticle used.

Among the different nanomaterials, nanoclays and in particular halloysite have, in the last years, attracted a great interest for their intrinsic properties. Usually, clays are natural, nontoxic, and abundant in thousands of tons a low price. The use of nanoclay in nanotechnology not only diminishes the risks of ecotoxicity but also opens up enormous scope for employing nanotechnology in agriculture.

References

  1. Abdullayev E, Lvov Y (2011) Halloysite clay nanotubes for controlled release of protective agents. J Nanosci Nanotechnol 11:10007–10026.  https://doi.org/10.1166/jnn.2011.5724 CrossRefPubMedGoogle Scholar
  2. Abdullayev E, Lvov Y (2013) Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release. J Mater Chem B 1:2894–2903.  https://doi.org/10.1039/C3TB20059K CrossRefGoogle Scholar
  3. Abdullayev E, Price R, Shchukin D et al (2009) Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Appl Mater Interfaces 1:1437–1443.  https://doi.org/10.1021/am9002028 CrossRefPubMedGoogle Scholar
  4. Abdullayev E, Joshi A, Wei W et al (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6:7216–7226.  https://doi.org/10.1021/nn302328x CrossRefPubMedGoogle Scholar
  5. Abdullayev E, Abbasov V, Tursunbayeva A et al (2013) Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. ACS Appl Mater Interfaces 5:4464–4471.  https://doi.org/10.1021/am400936m CrossRefPubMedGoogle Scholar
  6. Additives EPo, Products or Substances used in Animal Feed (2013) Scientific Opinion on the safety and efficacy of a preparation of bentonite-and sepiolite (Toxfin® Dry) as feed additive for all species. EFSA J 11:3179.  https://doi.org/10.2903/j.efsa.2013.3179 CrossRefGoogle Scholar
  7. Ahmed F, Arshi N, Kumar S et al (2013) Nanobiotechnology: scope and potential for crop improvement. In: Media SSB (ed) Crop improvement under adverse conditions. Springer, New York.  https://doi.org/10.1007/978-1-4614-4633-0_11 CrossRefGoogle Scholar
  8. Aslani F, Bagheri S, Muhd Julkapli N et al (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 2014:28.  https://doi.org/10.1155/2014/641759 CrossRefGoogle Scholar
  9. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584.  https://doi.org/10.1111/j.1365-3040.2009.01952.x CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barreca S, Orecchio S, Pace A (2014) The effect of montmorillonite clay in alginate gel beads for polychlorinated biphenyl adsorption: isothermal and kinetic studies. Appl Clay Sci 99:220–228.  https://doi.org/10.1016/j.clay.2014.06.037 CrossRefGoogle Scholar
  11. Bellani L, Giorgetti L, Riela S et al (2016) Ecotoxicity of halloysite nanotube–supported palladium nanoparticles in Raphanus sativus L. Environ Toxicol Chem 35:2503–2510.  https://doi.org/10.1002/etc.3412 CrossRefPubMedGoogle Scholar
  12. Bhabra G, Sood A, Fisher B et al (2009) Nanoparticles can cause DNA damage across a cellular barrier. Nat Nano 4:876–883. http://www.nature.com/nnano/journal/v4/n12/suppinfo/nnano.2009.313_S1.html CrossRefPubMedGoogle Scholar
  13. Bielska D, Karewicz A, Lachowicz T et al (2015) Hybrid photosensitizer based on halloysite nanotubes for phenol-based pesticide photodegradation. Chem Eng J 262:125–132.  https://doi.org/10.1016/j.cej.2014.09.081 CrossRefGoogle Scholar
  14. Bretti C, Cataldo S, Gianguzza A et al (2016) Thermodynamics of proton binding of halloysite nanotubes. J Phys Chem C 120:7849–7859.  https://doi.org/10.1021/acs.jpcc.6b01127 CrossRefGoogle Scholar
  15. Cavallaro G, Lazzara G, Milioto S (2012) Exploiting the colloidal stability and solubilization ability of clay nanotubes/ionic surfactant hybrid nanomaterials. J Phys Chem C 116:21932–21938.  https://doi.org/10.1021/jp307961q CrossRefGoogle Scholar
  16. Cavallaro G, Gianguzza A, Lazzara G et al (2013) Alginate gel beads filled with halloysite nanotubes. Appl Clay Sci 72:132–137.  https://doi.org/10.1016/j.clay.2012.12.001 CrossRefGoogle Scholar
  17. Chen H, Zhao J, Wu J et al (2014) Selective desorption characteristics of halloysite nanotubes for anionic azo dyes. RSC Adv 4:15389–15393.  https://doi.org/10.1039/C3RA47561A CrossRefGoogle Scholar
  18. Chen X, Pan JM, Yan YS (2016) Adsorption of λ-cyhalothrin onto macroporous polymer foams derived from pickering high internal phase emulsions stabilized by halloysite nanotube nanoparticles. Acta Phys-Chim Sin 32:2794–2802.  https://doi.org/10.3866/PKU.WHXB201609073 CrossRefGoogle Scholar
  19. Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomater 5:851CrossRefGoogle Scholar
  20. Chiew CSC, Yeoh HK, Pasbakhsh P et al (2016) Halloysite/alginate nanocomposite beads: kinetics, equilibrium and mechanism for lead adsorption. Appl Clay Sci 119:301–310.  https://doi.org/10.1016/j.clay.2015.10.032 CrossRefGoogle Scholar
  21. Ding Y, Zhao Y, Tao X et al (2009) Assembled alginate/chitosan micro-shells for removal of organic pollutants. Polymer 50:2841–2846.  https://doi.org/10.1016/j.polymer.2009.04.046 CrossRefGoogle Scholar
  22. Du Y, Zheng P (2014) Adsorption and photodegradation of methylene blue on TiO2-halloysite adsorbents. Korean J Chem Eng 31:2051–2056.  https://doi.org/10.1007/s11814-014-0162-8 CrossRefGoogle Scholar
  23. Duan J, Liu R, Chen T et al (2012) Halloysite nanotube-Fe3O4 composite for removal of methyl violet from aqueous solutions. Desalination 293:46–52.  https://doi.org/10.1016/j.desal.2012.02.022 CrossRefGoogle Scholar
  24. Dzamukova MR, Naumenko EA, Lvov YM et al (2015a) Enzyme-activated intracellular drug delivery with tubule clay nanoformulation. Sci Rep 5:10560.  https://doi.org/10.1038/srep10560. http://www.nature.com/articles/srep10560#supplementary-information
  25. Dzamukova MR, Naumenko EA, Lvov YM et al (2015b) Enzyme-activated intracellular drug delivery with tubule clay nanoformulation. Sci Rep 5:10560.  https://doi.org/10.1038/srep10560
  26. Eslinger E, Pevear DR (1988) Clay minerals for petroleum geologists and engineers. SEPMGoogle Scholar
  27. Fakhrullina GI, Akhatova FS, Lvov YM et al (2015) Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study. Environ Sci Nano 2:54–59.  https://doi.org/10.1039/C4EN00135D CrossRefGoogle Scholar
  28. Fu Y, Zhao D, Yao P et al (2015) Highly aging-resistant elastomers doped with antioxidant-loaded clay nanotubes. ACS Appl Mater Interfaces 7:8156–8165.  https://doi.org/10.1021/acsami.5b00993 CrossRefPubMedGoogle Scholar
  29. Ghodake G, Seo YD, Park D et al (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoelectron 5:157–160.  https://doi.org/10.1166/jno.2010.1084 CrossRefGoogle Scholar
  30. Hebbar RS, Isloor AM, Ananda K et al (2016) Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal. J Mater Chem A 4:764–774.  https://doi.org/10.1039/C5TA09281G CrossRefGoogle Scholar
  31. Jia L, Zhou T, Xu J et al (2016) The enhanced catalytic activities of asymmetric Au-Ni nanoparticle decorated halloysite-based nanocomposite for the degradation of organic dyes. Nanoscale Res Lett 11:72.  https://doi.org/10.1186/s11671-016-1252-9 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jiang L, Huang Y, Liu T (2015) Enhanced visible-light photocatalytic performance of electrospun carbon-doped TiO2/halloysite nanotube hybrid nanofibers. J Colloid Interface Sci 439:62–68.  https://doi.org/10.1016/j.jcis.2014.10.026 CrossRefPubMedGoogle Scholar
  33. Jinhua W, Xiang Z, Bing Z et al (2010) Rapid adsorption of Cr (VI) on modified halloysite nanotubes. Desalination 259:22–28.  https://doi.org/10.1016/j.desal.2010.04.046 CrossRefGoogle Scholar
  34. Khodakovskaya MV, de Silva K, Nedosekin DA et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108:1028–1033.  https://doi.org/10.1073/pnas.1008856108 CrossRefPubMedGoogle Scholar
  35. Kiani G (2014) High removal capacity of silver ions from aqueous solution onto halloysite nanotubes. Appl Clay Sci 90:159–164.  https://doi.org/10.1016/j.clay.2014.01.010 CrossRefGoogle Scholar
  36. Kiani G, Dostali M, Rostami A et al (2011) Adsorption studies on the removal of Malachite Green from aqueous solutions onto halloysite nanotubes. Appl Clay Sci 54:34–39.  https://doi.org/10.1016/j.clay.2011.07.008 CrossRefGoogle Scholar
  37. Kohli D, Garg S, Jana AK (2012) Synthesis of cross-linked starch based polymers for sorption of organic pollutants from aqueous solutions. Ind Chem Eng 54:210–222.  https://doi.org/10.1080/00194506.2012.751208 CrossRefGoogle Scholar
  38. Konnova SA, Sharipova IR, Demina TA et al (2013) Biomimetic cell-mediated three-dimensional assembly of halloysite nanotubes. Chem Commun 49:4208–4210.  https://doi.org/10.1039/C2CC38254G CrossRefGoogle Scholar
  39. Kryuchkova M, Danilushkina AA, Lvov YM et al (2016) Evaluation of toxicity of nanoclays and graphene oxide in vivo: a Paramecium caudatum study. Environ Sci Nano 3:442–452.  https://doi.org/10.1039/C5EN00201J CrossRefGoogle Scholar
  40. Kümmerer K (2010) Pharmaceuticals in the environment. Annu Rev Environ Resour 35:57–75.  https://doi.org/10.1146/annurev-environ-052809-161223 CrossRefGoogle Scholar
  41. Kurczewska J, Grzesiak P, Łukaszyk J et al (2015) High decrease in soil metal bioavailability by metal immobilization with halloysite clay. Environ Chem Lett 13:319–325.  https://doi.org/10.1007/s10311-015-0504-8 CrossRefGoogle Scholar
  42. Lazzara G, Riela S, Fakhrullin RF (2017) Clay-based drug-delivery systems: what does the future hold? Ther Deliv 8:633–646.  https://doi.org/10.4155/tde-2017-0041 CrossRefGoogle Scholar
  43. Le V, Rui Y, Gui X et al (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50CrossRefGoogle Scholar
  44. Li C, Zhou T, Zhu T et al (2015a) Enhanced visible light photocatalytic activity of polyaniline-crystalline TiO2-halloysite composite nanotubes by tuning the acid dopant in the preparation. RSC Adv 5:98482–98491.  https://doi.org/10.1039/C5RA20024E CrossRefGoogle Scholar
  45. Li X, Yao C, Lu X et al (2015b) Halloysite–CeO2–AgBr nanocomposite for solar light photodegradation of methyl orange. Appl Clay Sci 104:74–80.  https://doi.org/10.1016/j.clay.2014.11.008 CrossRefGoogle Scholar
  46. Li X, Zhu W, Yan X et al (2016) Hierarchical La0.7Ce0.3FeO3/halloysite nanocomposite for photocatalytic degradation of antibiotics. Appl Phys A 122:723.  https://doi.org/10.1007/s00339-016-0240-3 CrossRefGoogle Scholar
  47. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250.  https://doi.org/10.1016/j.envpol.2007.01.016 CrossRefPubMedGoogle Scholar
  48. Liu R, Zhang B, Mei D et al (2011) Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination 268:111–116.  https://doi.org/10.1016/j.desal.2010.10.006 CrossRefGoogle Scholar
  49. Liu L, Wan Y, Xie Y et al (2012) The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem Eng J 187:210–216.  https://doi.org/10.1016/j.cej.2012.01.136 CrossRefGoogle Scholar
  50. Liu M, Jia Z, Jia D et al (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525.  https://doi.org/10.1016/j.progpolymsci.2014.04.004 CrossRefGoogle Scholar
  51. Loganathan B, Phillips M, Mowery H et al (2009) Contamination profiles and mass loadings of macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant. Chemosphere 75:70–77.  https://doi.org/10.1016/j.chemosphere.2008.11.047 CrossRefPubMedGoogle Scholar
  52. Lui CH, Liu L, Mak KF et al (2009) Ultraflat graphene. Nature 462:339–341. http://www.nature.com/nature/journal/v462/n7271/suppinfo/nature08569_S1.html CrossRefPubMedGoogle Scholar
  53. Luo P, Zhao Y, Zhang B et al (2010) Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water Res 44:1489–1497.  https://doi.org/10.1016/j.watres.2009.10.042 CrossRefPubMedGoogle Scholar
  54. Luo P, Zhang B, Zhao Y et al (2011) Removal of methylene blue from aqueous solutions by adsorption onto chemically activated halloysite nanotubes. Korean J Chem Eng 28:800–807.  https://doi.org/10.1007/s11814-010-0426-x CrossRefGoogle Scholar
  55. Lvov Y, Price R, Gaber B et al (2002) Thin film nanofabrication via layer-by-layer adsorption of tubule halloysite, spherical silica, proteins and polycations. Colloids Surf A Physicochem Eng Asp 198–200:375–382.  https://doi.org/10.1016/S0927-7757(01)00970-0 CrossRefGoogle Scholar
  56. Lvov Y, Aerov A, Fakhrullin R (2014) Clay nanotube encapsulation for functional biocomposites. Adv Colloid Interface Sci 207:189–198.  https://doi.org/10.1016/j.cis.2013.10.006 CrossRefPubMedGoogle Scholar
  57. Lvov Y, Wang W, Zhang L et al (2016a) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28:1227–1250.  https://doi.org/10.1002/adma.201502341 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lvov YM, DeVilliers MM, Fakhrullin RF (2016b) The application of halloysite tubule nanoclay in drug delivery. Expert Opin Drug Deliv 13:977–986.  https://doi.org/10.1517/17425247.2016.1169271 CrossRefPubMedGoogle Scholar
  59. Maisanaba S, Pichardo S, Puerto M et al (2015) Toxicological evaluation of clay minerals and derived nanocomposites: a review. Environ Res 138:233–254.  https://doi.org/10.1016/j.envres.2014.12.024 CrossRefPubMedGoogle Scholar
  60. Massaro M, Colletti CG, Noto R et al (2015a) Pharmaceutical properties of supramolecular assembly of co-loaded cardanol/triazole-halloysite systems. Int J Pharm 478:476–485.  https://doi.org/10.1016/j.ijpharm.2014.12.004 CrossRefPubMedGoogle Scholar
  61. Massaro M, Piana S, Colletti CG et al (2015b) Multicavity halloysite-amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells. J Mater Chem B 3:4074–4081.  https://doi.org/10.1039/C5TB00564G CrossRefGoogle Scholar
  62. Massaro M, Riela S, Baiamonte C et al (2016a) Dual drug-loaded halloysite hybrid-based glycocluster for sustained release of hydrophobic molecules. RSC Adv 6:87935–87944.  https://doi.org/10.1039/c6ra14657k CrossRefGoogle Scholar
  63. Massaro M, Riela S, Cavallaro G et al (2016b) Ecocompatible halloysite/cucurbit[8]uril hybrid as efficient nanosponge for pollutants removal. ChemistrySelect 1:1773–1779.  https://doi.org/10.1002/slct.201600322 CrossRefGoogle Scholar
  64. Massaro M, Riela S, Guernelli S et al (2016c) A synergic nanoantioxidant based on covalently modified halloysite-trolox nanotubes with intra-lumen loaded quercetin. J Mater Chem B 4:2229–2241.  https://doi.org/10.1039/c6tb00126b CrossRefGoogle Scholar
  65. Massaro M, Colletti CG, Lazzara G et al (2017a) Synthesis and characterization of halloysite–cyclodextrin nanosponges for enhanced dyes adsorption. ACS Sustain Chem Eng 5:3346.  https://doi.org/10.1021/acssuschemeng.6b03191 CrossRefGoogle Scholar
  66. Massaro M, Colletti CG, Lazzara G et al (2017b) Halloysite nanotubes as support for metal-based catalysts. J Mater Chem A 5:13276–13293.  https://doi.org/10.1039/c7ta02996a CrossRefGoogle Scholar
  67. Massaro M, Lazzara G, Milioto S et al (2017c) Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. J Mater Chem B 5:2867–2882.  https://doi.org/10.1039/c7tb00316a CrossRefGoogle Scholar
  68. Matusik J, Wścisło A (2014) Enhanced heavy metal adsorption on functionalized nanotubular halloysite interlayer grafted with aminoalcohols. Appl Clay Sci 100:50–59.  https://doi.org/10.1016/j.clay.2014.06.034 CrossRefGoogle Scholar
  69. Maziarz P, Matusik J (2016) The effect of acid activation and calcination of halloysite on the efficiency and selectivity of Pb(II), Cd(II), Zn(II) and As(V) uptake. Clay Miner 51:385–394.  https://doi.org/10.1180/claymin.2016.051.3.06 CrossRefGoogle Scholar
  70. Meng Q, Chen H, Lin J et al (2017) Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater. J Environ Sci 56:254–262.  https://doi.org/10.1016/j.jes.2016.10.010 CrossRefGoogle Scholar
  71. Murray HH (2007) Applied clay mineralogy: occurrences, processing and application of kaolins, bentonites, palygorskite-sepiolite, and common clays. Elsevier, AmsterdamGoogle Scholar
  72. Nair R, Varghese SH, Nair BG et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163.  https://doi.org/10.1016/j.plantsci.2010.04.012 CrossRefGoogle Scholar
  73. Nakata H, Kawazoe M, Arizono K et al (2002) Organochlorine pesticides and polychlorinated biphenyl residues in foodstuffs and human tissues from China: status of contamination, historical trend, and human dietary exposure. Arch Environ Contam Toxicol 43:0473–0480.  https://doi.org/10.1007/s00244-002-1254-8 CrossRefGoogle Scholar
  74. Nel A, Xia T, Mädler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627.  https://doi.org/10.1126/science.1114397 CrossRefPubMedGoogle Scholar
  75. Pan Y, Wang J, Sun C et al (2016) Fabrication of highly hydrophobic organic–inorganic hybrid magnetic polysulfone microcapsules: a lab-scale feasibility study for removal of oil and organic dyes from environmental aqueous samples. J Hazard Mater 309:65–76.  https://doi.org/10.1016/j.jhazmat.2016.02.004 CrossRefPubMedGoogle Scholar
  76. Perego C, Bagatin R, Tagliabue M et al (2013) Zeolites and related mesoporous materials for multi-talented environmental solutions. Microporous Mesoporous Mater 166:37–49.  https://doi.org/10.1016/j.micromeso.2012.04.048 CrossRefGoogle Scholar
  77. Radziemska M, Mazur Z (2016) Content of selected heavy metals in Ni-contaminated soil following the application of halloysite and zeolite. J Ecol Eng 17:125–133.  https://doi.org/10.12911/22998993/63336 CrossRefGoogle Scholar
  78. Riela S, Massaro M, Colletti CG et al (2014) Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity. Int J Pharm 475:205–213.  https://doi.org/10.1016/j.ijpharm.2014.09.019 CrossRefGoogle Scholar
  79. Roh YH, Ruiz RCH, Peng S et al (2011) Engineering DNA-based functional materials. Chem Soc Rev 40:5730–5744.  https://doi.org/10.1039/C1CS15162B CrossRefPubMedGoogle Scholar
  80. Ruffini Castiglione M, Giorgetti L, Geri C et al (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13:2443–2449.  https://doi.org/10.1007/s11051-010-0135-8 CrossRefGoogle Scholar
  81. Sanchez-Ballester NM, Ramesh GV, Tanabe T et al (2015) Activated interiors of clay nanotubes for agglomeration-tolerant automotive exhaust remediation. J Mater Chem A 3:6614–6619.  https://doi.org/10.1039/c4ta06966h CrossRefGoogle Scholar
  82. Santos LHMLM, Araújo AN, Fachini A et al (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95.  https://doi.org/10.1016/j.jhazmat.2009.10.100 CrossRefPubMedGoogle Scholar
  83. Scott N, Chen H (2013) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 9:17–18.  https://doi.org/10.1089/ind.2013.1555 CrossRefGoogle Scholar
  84. Shabeer TPA, Saha A, Gajbhiye VT et al (2015) Exploitation of nano-bentonite, nano-halloysite and organically modified nano-montmorillonite as an adsorbent and coagulation aid for the removal of multi-pesticides from water: a sorption modelling approach. Water Air Soil Pollut 226:41.  https://doi.org/10.1007/s11270-015-2331-8 CrossRefGoogle Scholar
  85. Shaymurat T, Gu J, Xu C et al (2012) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6:241–248.  https://doi.org/10.3109/17435390.2011.570462 CrossRefPubMedGoogle Scholar
  86. Shu Z, Chen Y, Zhou J et al (2016) Preparation of halloysite-derived mesoporous silica nanotube with enlarged specific surface area for enhanced dye adsorption. Appl Clay Sci 132-133:114–121.  https://doi.org/10.1016/j.clay.2016.05.024 CrossRefGoogle Scholar
  87. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17.  https://doi.org/10.1016/j.sjbs.2013.04.005 CrossRefPubMedGoogle Scholar
  88. Sposito G, Skipper NT, Sutton R et al (1999) Surface geochemistry of the clay minerals. Proc Natl Acad Sci 96:3358–3364.  https://doi.org/10.1073/pnas.96.7.3358 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479.  https://doi.org/10.1021/es901695c CrossRefPubMedGoogle Scholar
  90. Świercz A, Smorzewska E, Słomkiewicz P et al (2016) Possibile use of halloysite in phytoremediation of soils contaminated with heavy metals. J Elem 21:559–570.  https://doi.org/10.5601/jelem.2015.20.1.838 CrossRefGoogle Scholar
  91. Tekay E, Şen S, Aydınoğlu D et al (2016) Biosorbent immobilized nanotube reinforced hydrogel carriers for heavy metal removal processes. E-Polymers 16:15–24.  https://doi.org/10.1515/epoly-2015-0168 CrossRefGoogle Scholar
  92. Tully J, Yendluri R, Lvov Y (2016) Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules 17:615–621.  https://doi.org/10.1021/acs.biomac.5b01542 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Veerabadran NG, Price RR, Lvov YM (2007) Clay nanotubes for encapsulation and sustained release of drugs. Nano 02:115–120.  https://doi.org/10.1142/S1793292007000441 CrossRefGoogle Scholar
  94. Vergaro V, Abdullayev E, Lvov YM et al (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 11:820–826.  https://doi.org/10.1021/bm9014446 CrossRefPubMedGoogle Scholar
  95. Wang C, Liu H, Chen J et al (2014a) Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium. J Hazard Mater 274:404–412.  https://doi.org/10.1016/j.jhazmat.2014.04.036 CrossRefPubMedGoogle Scholar
  96. Wang Y, Zhang X, Wang Q et al (2014b) Continuous fixed bed adsorption of Cu(II) by halloysite nanotube-alginate hybrid beads: an experimental and modelling study. Water Sci Technol 70:192–199.  https://doi.org/10.2166/wst.2014.148 CrossRefPubMedGoogle Scholar
  97. Wei W, Minullina R, Abdullayev E et al (2014) Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Adv 4:488–494.  https://doi.org/10.1039/C3RA45011B CrossRefGoogle Scholar
  98. Wu S, Qiu M, Guo B et al (2017) Nanodot-loaded clay nanotubes as green and sustained radical scavengers for elastomer. ACS Sustain Chem Eng 5:1775–1783.  https://doi.org/10.1021/acssuschemeng.6b02523 CrossRefGoogle Scholar
  99. Xianchu LU, Xiuyun C, Aiping W et al (2006) Microstructure and photocatalytic decomposition of methylene blue by TiO2-mounted halloysite, a natural tubular mineral. Acta Geol Sin-Engl Ed 80:278–284.  https://doi.org/10.1111/j.1755-6724.2006.tb00243.x CrossRefGoogle Scholar
  100. Xie J, Li C, Chi L et al (2013) Chitosan modified zeolite as a versatile adsorbent for the removal of different pollutants from water. Fuel 103:480–485.  https://doi.org/10.1016/j.fuel.2012.05.036 CrossRefGoogle Scholar
  101. Xie A, Dai J, Chen X et al (2016a) Ultrahigh adsorption of typical antibiotics onto novel hierarchical porous carbons derived from renewable lignin via halloysite nanotubes-template and in-situ activation. Chem Eng J 304:609–620.  https://doi.org/10.1016/j.cej.2016.06.138 CrossRefGoogle Scholar
  102. Xie A, Dai J, Chen X et al (2016b) Hollow imprinted polymer nanorods with a tunable shell using halloysite nanotubes as a sacrificial template for selective recognition and separation of chloramphenicol. RSC Adv 6:51014–51023.  https://doi.org/10.1039/c6ra08042a CrossRefGoogle Scholar
  103. Xing W, Ni L, Huo P et al (2012) Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method. Appl Surf Sci 259:698–704.  https://doi.org/10.1016/j.apsusc.2012.07.102 CrossRefGoogle Scholar
  104. Xing W, Ni L, Liu X et al (2013) Synthesis of thermal-responsive photocatalysts by surface molecular imprinting for selective degradation of tetracycline. RSC Adv 3:26334–26342.  https://doi.org/10.1039/C3RA44855J CrossRefGoogle Scholar
  105. Xing W, Ni L, Liu X et al (2015) Effect of metal ion (Zn2+, Bi3+, Cr3+, and Ni2+)-doped CdS/halloysite nanotubes (HNTs) photocatalyst for the degradation of tetracycline under visible light. Desalin Water Treat 53:794–805.  https://doi.org/10.1080/19443994.2013.844082 CrossRefGoogle Scholar
  106. Yah WO, Takahara A, Lvov YM (2012) Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc 134:1853–1859.  https://doi.org/10.1021/ja210258y CrossRefPubMedGoogle Scholar
  107. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132.  https://doi.org/10.1016/j.toxlet.2005.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Zeng G, He Y, Zhan Y et al (2016a) Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J Hazard Mater 317:60–72.  https://doi.org/10.1016/j.jhazmat.2016.05.049 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Zeng X, Sun Z, Wang H et al (2016b) Supramolecular gel composites reinforced by using halloysite nanotubes loading with in-situ formed Fe3O4 nanoparticles and used for dye adsorption. Compos Sci Technol 122:149–154.  https://doi.org/10.1016/j.compscitech.2015.11.025 CrossRefGoogle Scholar
  110. Zhai R, Zhang B, Wan Y et al (2013) Chitosan-halloysite hybrid-nanotubes: Horseradish peroxidase immobilization and applications in phenol removal. Chem Eng J 214:304–309.  https://doi.org/10.1016/j.cej.2012.10.073 CrossRefGoogle Scholar
  111. Zhang Y, Chen Y, Zhang H et al (2013) Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder. J Inorg Biochem 118:59–64.  https://doi.org/10.1016/j.jinorgbio.2012.07.025 CrossRefPubMedGoogle Scholar
  112. Zhang Y, Ouyang J, Yang H (2014) Metal oxide nanoparticles deposited onto carbon-coated halloysite nanotubes. Appl Clay Sci 95:252–259.  https://doi.org/10.1016/j.clay.2014.04.019 CrossRefGoogle Scholar
  113. Zhao M, Liu P (2008) Adsorption behavior of methylene blue on halloysite nanotubes. Microporous Mesoporous Mater 112:419–424.  https://doi.org/10.1016/j.micromeso.2007.10.018 CrossRefGoogle Scholar
  114. Zhao Y, Abdullayev E, Vasiliev A et al (2013) Halloysite nanotubule clay for efficient water purification. J Colloid Interface Sci 406:121–129.  https://doi.org/10.1016/j.jcis.2013.05.072 CrossRefPubMedGoogle Scholar
  115. Zheng P, Du Y, Liu D et al (2016) Synthesis, adsorption and photocatalytic property of halloysite-TiO2-Fe3O4 composites. Desalin Water Treat 57:22703–22710.  https://doi.org/10.1080/19443994.2015.1137498 CrossRefGoogle Scholar
  116. Zhu K, Duan Y, Wang F et al (2017) Silane-modified halloysite/Fe3O4 nanocomposites: simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption. Chem Eng J 311:236–246.  https://doi.org/10.1016/j.cej.2016.11.101 CrossRefGoogle Scholar
  117. Zou M, Du M, Zhu H et al (2012) Green synthesis of halloysite nanotubes supported Ag nanoparticles for photocatalytic decomposition of methylene blue. J Phys D Appl Phys 45:325302CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Giuseppe Lazzara
    • 1
  • Marina Massaro
    • 2
  • Serena Riela
    • 2
  1. 1.Dipartimento di Fisica e ChimicaUniversità degli Studi di PalermoPalermoItaly
  2. 2.Dipartimento STEBICEF, Sez. ChimicaUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations