Advertisement

Interaction of Nano-sized Nutrients with Plant Biomass: A Review

  • Gea Guerriero
  • Giampiero Cai
Chapter

Abstract

Plant lignocellulosic biomass is a renewable resource which provides wood, a major commodity for mankind, as well as molecules used as building blocks in chemical industry.

It is known that nutrition impacts plant biomass production, by acting, either directly or indirectly, on cell wall-associated processes. Well-documented are the roles of both macro- and micronutrients on plant growth and development. Nanotechnology has given a new impetus to agriculture: several studies have indeed published the effects of nano-sized nutrients/nanoparticles on plants. We here review the published literature on the effects of nano-sized nutrients on plants, by adopting, when documented, a cell wall perspective, and we underline both the positive and negative aspects.

Keywords

Plant biomass Cell wall Nano-sized nutrients Macronutrients Micronutrients Silicon 

References

  1. Alghuthaymi MA, Almoammar H, Rai M et al (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29:221–236.  https://doi.org/10.1080/13102818.2015.1008194 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aslani F, Bagheri S, Muhd Julkapli N et al (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J. https://www.hindawi.com/journals/tswj/2014/641759/. Accessed 10 Jul 2017
  3. Baskar V, Venkatesh J, Park SW (2015) Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. pekinensis. Environ Sci Pollut Res Int 22:17672–17682.  https://doi.org/10.1007/s11356-015-4864-1 CrossRefPubMedGoogle Scholar
  4. Briat J-F, Dubos C, Gaymard F (2015) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20:33–40.  https://doi.org/10.1016/j.tplants.2014.07.005 CrossRefPubMedGoogle Scholar
  5. Chatzistathis T, Therios I (2013) How soil nutrient availability influences plant biomass and how biomass stimulation alleviates heavy metal toxicity in soils: the cases of nutrient use efficient genotypes and phytoremediators, respectively.  https://doi.org/10.5772/53594
  6. Dahle JT, Arai Y (2015) Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. Int J Environ Res Public Health 12:1253–1278.  https://doi.org/10.3390/ijerph120201253 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Davarpanah S, Tehranifar A, Davarynejad G et al (2016) Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hortic 210:57–64.  https://doi.org/10.1016/j.scienta.2016.07.003 CrossRefGoogle Scholar
  8. Deb (2012) Plant nutrient coated nanoparticles and methods for their preparation and use US20160318820A1Google Scholar
  9. Deepa M, Sudhakar P, Nagamadhuri KV et al (2015) First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique. Appl Nanosci 5:545–551.  https://doi.org/10.1007/s13204-014-0348-8 CrossRefGoogle Scholar
  10. Detmann KC, Araújo WL, Martins SCV et al (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196:752–762.  https://doi.org/10.1111/j.1469-8137.2012.04299.x CrossRefPubMedGoogle Scholar
  11. Dimkpa CO, McLean JE, Martineau N et al (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090.  https://doi.org/10.1021/es302973y CrossRefPubMedGoogle Scholar
  12. El-Kereti MA, El-feky SA, Khater MS et al (2013) ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Pat Food Nutr Agric 5:169–181CrossRefPubMedGoogle Scholar
  13. Euring D, Bai H, Janz D, Polle A (2014) Nitrogen-driven stem elongation in poplar is linked with wood modification and gene clusters for stress, photosynthesis and cell wall formation. BMC Plant Biol 14:391.  https://doi.org/10.1186/s12870-014-0391-3
  14. Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6.  https://doi.org/10.1016/j.femsle.2005.06.034 CrossRefPubMedGoogle Scholar
  15. Fauteux F, Chain F, Belzile F et al (2006) The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. Proc Natl Acad Sci USA 103:17554–17559.  https://doi.org/10.1073/pnas.0606330103 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Feng Y, Cui X, He S et al (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504.  https://doi.org/10.1021/es402109n CrossRefPubMedGoogle Scholar
  17. Fleischer A, Titel C, Ehwald R (1998) The boron requirement and cell wall properties of growing and stationary suspension-cultured Chenopodium album L. cells. Plant Physiol 117:1401–1410.  https://doi.org/10.1104/pp.117.4.1401 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838CrossRefPubMedPubMedCentralGoogle Scholar
  19. García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16:341.  https://doi.org/10.1186/s12864-015-1530-4 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gengmao Z, Shihui L, Xing S et al (2015) The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress. Sci Rep 5:12696.  https://doi.org/10.1038/srep12696 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Giroto AS, Guimarães GGF, Foschini M, Ribeiro C (2017) Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil. Sci Rep 7:srep46032.  https://doi.org/10.1038/srep46032 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Guerriero G, Sergeant K, Hausman J-F (2014) Wood biosynthesis and typologies: a molecular rhapsody. Tree Physiol 34:839–855.  https://doi.org/10.1093/treephys/tpu031 CrossRefPubMedGoogle Scholar
  23. Guerriero G, Hausman J-F, Legay S (2016a) Silicon and the plant extracellular matrix. Front Plant Sci 7:463.  https://doi.org/10.3389/fpls.2016.00463
  24. Guerriero G, Hausman J-F, Strauss J et al (2016b) Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng Life Sci 16:1–16.  https://doi.org/10.1002/elsc.201400196 CrossRefGoogle Scholar
  25. Guerriero G, Law C, Stokes I, Moore KL, Exley C (2018) Rough and tough. How does silicic acid protect horsetail from fungal infection? J Trace Elem Med Biol 47:45–52CrossRefPubMedGoogle Scholar
  26. Gui X, Zhang Z, Liu S et al (2015) Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment. PLoS One 10:e0134261.  https://doi.org/10.1371/journal.pone.0134261 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: an urgent problem. Crop J 4:83–91.  https://doi.org/10.1016/j.cj.2015.11.003 CrossRefGoogle Scholar
  28. Hocking B, Tyerman SD, Burton RA, Gilliham M (2016) Fruit calcium: transport and physiology. Front Plant Sci 7:569.  https://doi.org/10.3389/fpls.2016.00569
  29. Karunakaran G, Suriyaprabha R, Manivasakan P et al (2013) Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol 7:70–77.  https://doi.org/10.1049/iet-nbt.2012.0048 CrossRefPubMedGoogle Scholar
  30. Kasana RC, Panwar NR, Kaul RK, Kumar P (2017) Biosynthesis and effects of copper nanoparticles on plants. Environ Chem Lett 15:233–240.  https://doi.org/10.1007/s10311-017-0615-5 CrossRefGoogle Scholar
  31. Kavi Kishor PB, Hima Kumari P, Sunita MSL, Sreenivasulu N (2015) Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front Plant Sci 6:544.  https://doi.org/10.3389/fpls.2015.00544 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kim J-H, Lee Y, Kim E-J et al (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477–3485.  https://doi.org/10.1021/es4043462 CrossRefPubMedGoogle Scholar
  33. Kole C, Kole P, Randunu KM et al (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37.  https://doi.org/10.1186/1472-6750-13-37 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kottegoda N, Sandaruwan C, Priyadarshana G et al (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11:1214–1221.  https://doi.org/10.1021/acsnano.6b07781 CrossRefPubMedGoogle Scholar
  35. Larue C, Veronesi G, Flank A-M et al (2012) Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health A 75:722–734.  https://doi.org/10.1080/15287394.2012.689800 CrossRefPubMedGoogle Scholar
  36. Law C, Exley C (2011) New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Biol 11:112.  https://doi.org/10.1186/1471-2229-11-112 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lee S, Kim S, Kim S, Lee I (2013) Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res Int 20:848–854.  https://doi.org/10.1007/s11356-012-1069-8 CrossRefPubMedGoogle Scholar
  38. Li J, Chang PR, Huang J et al (2013) Physiological effects of magnetic iron oxide nanoparticles towards watermelon. J Nanosci Nanotechnol 13:5561–5567CrossRefPubMedGoogle Scholar
  39. Li X, Gui X, Rui Y et al (2014) Bt-transgenic cotton is more sensitive to CeO2 nanoparticles than its parental non-transgenic cotton. J Hazard Mater 274:173–180.  https://doi.org/10.1016/j.jhazmat.2014.04.025 CrossRefPubMedGoogle Scholar
  40. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585CrossRefGoogle Scholar
  41. Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:srep05686.  https://doi.org/10.1038/srep05686 CrossRefGoogle Scholar
  42. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139.  https://doi.org/10.1016/j.scitotenv.2015.01.104 CrossRefPubMedGoogle Scholar
  43. Luyckx M, Hausman J-F, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411.  https://doi.org/10.3389/fpls.2017.00411 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lyu S, Wei X, Chen J et al (2017) Titanium as a beneficial element for crop production. Front Plant Sci 8:597.  https://doi.org/10.3389/fpls.2017.00597 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85:3036–3049.  https://doi.org/10.1021/ac303636s CrossRefPubMedPubMedCentralGoogle Scholar
  46. Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot 120:8–17.  https://doi.org/10.1016/j.envexpbot.2015.07.001 CrossRefGoogle Scholar
  47. Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261.  https://doi.org/10.1093/jxb/eri121 CrossRefPubMedGoogle Scholar
  48. Morris ER, Powell DA, Gidley MJ, Rees DA (1982) Conformations and interactions of pectins. I Polymorphism between gel and solid states of calcium polygalacturonate. J Mol Biol 155:507–516CrossRefPubMedGoogle Scholar
  49. Plénet D, Mollier A, Pellerin S (2000) Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield components. Plant Soil 224:259–272.  https://doi.org/10.1023/A:1004835621371 CrossRefGoogle Scholar
  50. Printz B, Guerriero G, Sergeant K et al (2016a) Combining -Omics to unravel the impact of copper nutrition on alfalfa (Medicago sativa) stem metabolism. Plant Cell Physiol 57:407–422.  https://doi.org/10.1093/pcp/pcw001 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Printz B, Lutts S, Hausman J-F, Sergeant K (2016b) Copper trafficking in plants and its implication on cell wall dynamics. Front Plant Sci 7:601.  https://doi.org/10.3389/fpls.2016.00601 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26.  https://doi.org/10.1016/j.btre.2014.10.009 CrossRefGoogle Scholar
  53. Rangaraj S, Gopalu K, Rathinam Y et al (2014) Effect of silica nanoparticles on microbial biomass and silica availability in maize rhizosphere. Biotechnol Appl Biochem 61:668–675.  https://doi.org/10.1002/bab.1191 CrossRefPubMedGoogle Scholar
  54. Rico CM, Barrios AC, Tan W et al (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res Int 22:10551–10558.  https://doi.org/10.1007/s11356-015-4243-y CrossRefPubMedGoogle Scholar
  55. Rose TJ, Kretzschmar T, Liu L et al (2016) Phosphorus deficiency alters nutrient accumulation patterns and grain nutritional quality in rice. Agronomy 6:52.  https://doi.org/10.3390/agronomy6040052 CrossRefGoogle Scholar
  56. Rossi L, Zhang W, Lombardini L, Ma X (2016) The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ Pollut Barking Essex 219:28–36.  https://doi.org/10.1016/j.envpol.2016.09.060 CrossRefGoogle Scholar
  57. Rui M, Ma C, Hao Y et al (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815.  https://doi.org/10.3389/fpls.2016.00815 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sánchez E, Garcia PC, López-Lefebre LR et al (2002) Proline metabolism in response to nitrogen deficiency in French Bean plants (Phaseolus vulgaris L. cv Strike). Plant Growth Regul 36:261–265.  https://doi.org/10.1023/A:1016583430792 CrossRefGoogle Scholar
  59. Schiltz S, Gaillard I, Pawlicki-Jullian N et al (2015) A review: what is the spermosphere and how can it be studied? J Appl Microbiol 119:1467–1481.  https://doi.org/10.1111/jam.12946 CrossRefPubMedGoogle Scholar
  60. Servin A, Elmer W, Mukherjee A et al (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92.  https://doi.org/10.1007/s11051-015-2907-7 CrossRefGoogle Scholar
  61. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479.  https://doi.org/10.1021/es901695c CrossRefPubMedGoogle Scholar
  62. Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262.  https://doi.org/10.1007/s40003-014-0113-y CrossRefGoogle Scholar
  63. Taran N, Storozhenko V, Svietlova N et al (2017) Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res Lett 12:60.  https://doi.org/10.1186/s11671-017-1839-9 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Thomas E, Rathore I, Tarafdar JC (2016) Bio-inspired synthesis of nitrogen nanoparticles and its application on pearl millet (Pennisetum americanum L) cv. HHB 67. J Bionanosci 10:300–306CrossRefGoogle Scholar
  65. Voxeur A, Fry SC (2014) Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II. Plant J 79:139–149.  https://doi.org/10.1111/tpj.12547 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wang N, Yang C, Pan Z et al (2015a) Boron deficiency in woody plants: various responses and tolerance mechanisms. Front Plant Sci 6:916.  https://doi.org/10.3389/fpls.2015.00916 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wang S, Wang F, Gao S (2015b) Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ Sci Pollut Res Int 22:2837–2845.  https://doi.org/10.1007/s11356-014-3525-0 CrossRefPubMedGoogle Scholar
  68. Wang X, Yang X, Chen S et al (2016) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6(1243).  https://doi.org/10.3389/fpls.2015.01243
  69. Wissuwa M, Gamat G, Ismail AM (2005) Is root growth under phosphorus deficiency affected by source or sink limitations? J Exp Bot 56:1943–1950.  https://doi.org/10.1093/jxb/eri189 CrossRefPubMedGoogle Scholar
  70. Yokoyama R, Nishitani K (2004) Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45:1111–1121.  https://doi.org/10.1093/pcp/pch151 CrossRefPubMedGoogle Scholar
  71. Yuvakkumar R, Elango V, Rajendran V et al (2011) Influence of nanosilica powder on the growth of maize crop (Zea Mays L.). Int J Green Nanotechnol 3:180–190.  https://doi.org/10.1080/19430892.2011.628581 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Environmental Research and InnovationLuxembourg Institute of Science and TechnologyEsch-sur-AlzetteLuxembourg
  2. 2.Dipartimento Scienze della VitaUniversità di SienaSienaItaly

Personalised recommendations