Interplay Between Engineered Nanomaterials (ENMs) and Edible Plants: A Current Perspective

  • Bilal Ahmed
  • Mohammad Saghir Khan
  • Quaiser Saquib
  • Majed Al-Shaeri
  • Javed Musarrat


Predicted augmentation in the release of engineered nanomaterials (ENMs) into the environment has raised serious concerns. Limited studies on assessment of nanomaterials for their uptake, bioaccumulation, long-term persistence and transport to the next trophic level have been undertaken. Also, the behavior of ENMs largely metals (Ag, Au, etc.) metal oxides (SiO2, CeO2, Fe3O4, CuO, ZnO, Al2O3, NiO, etc.), quantum dots, fullerenes, and carbon nanotubes (SWCNT and MWCNT) with plant system has not been extensively explored and clearly understood. Indeed, plants represent a vital living component of the terrestrial biological environment. Physical and the chemical influence of ENMs on plant cell components exhibit unique significance, as plants provide a major route for ENM transmission to higher organisms through the food chain. Moreover, the questions concerning the fate and behavior of ENMs in plant systems, such as the role of surface area or surface reactivity of ENMs on phytotoxicity, the potential route of entrance to plant vascular tissues, and the role of plant cell walls in internalization of ENMs, are the potential areas for further research. The information gap due to relatively less explored aspects necessitates that the physicochemical attributes of ENMs, viz., elemental composition, shape, size, and surface chemistry, must be sufficiently characterized. Besides, the overall impact of ENMs either positive or negative at environmentally and biologically relevant doses of ENMs, depending upon the species, growth conditions, and growth phase of the plant, must be taken into account for providing a tangible solution to the emerging problems. Thus, the aim of this chapter is to provide a comprehensive overview regarding the uptake, translocation, and biotransformation of ENMs in plant cell/tissue(s) and to discuss the mechanistic aspects for better understanding of the nature of ENM interaction with cellular components and associated hazards.


  1. Abou-Zeid HM, Moustafa Y (2014) Physiological and cytogenetic response of wheat and barley to silver nanopriming treatment. Int J Appl Biol Pharm Technol 5:265–278Google Scholar
  2. Adhikari T, Kundu S, Biswas AK et al (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2:815–823Google Scholar
  3. Ahmed B, Dwivedi S, Abdin MZ et al (2017) Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Sci Rep 7:40685. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Albersheim P (2011) Plant cell walls: from chemistry to biology. Garland Science, New YorkGoogle Scholar
  5. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355PubMedCrossRefGoogle Scholar
  6. Amooaghaie R, Norouzi M, Saeri M (2016) Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany.
  7. Andersen CP, King G, Plocher M et al (2016) Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ Toxicol Chem 35:222–2229CrossRefGoogle Scholar
  8. Arruda SC, Silva AL, Galazzi RM et al (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705PubMedCrossRefGoogle Scholar
  9. Aslani F, Bagheri S, Julkapli NM et al (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 28.
  10. Asli S, Neumann M (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584PubMedPubMedCentralCrossRefGoogle Scholar
  11. Atha DH, Wang H, Petersen EJ et al (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827PubMedCrossRefGoogle Scholar
  12. Aubert T, Burel A, Esnault MA et al (2012) Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. J Hazard Mater 219:111–118PubMedCrossRefGoogle Scholar
  13. Bagheri S, Shameli K, Abd Hamid SB (2013) Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via Sol-Gel method. J Chem 848205Google Scholar
  14. Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  15. Bandyopadhyay S, Plascencia-Villa G, Mukherjee A et al (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515:60–69PubMedCrossRefGoogle Scholar
  16. Barrena R, Casals E, Colon J et al (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857PubMedCrossRefGoogle Scholar
  17. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefGoogle Scholar
  18. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297(5582):787–792PubMedCrossRefGoogle Scholar
  19. Burklew CE, Ashlock J, Winfrey WB et al (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7(5):e34783. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Campbell NA (1990) Biology, 2nd edn. The Benjamin/Cummings Publishing, Redwood CityGoogle Scholar
  21. Campbell NA, Reece JB, Urry LA et al (2008). Biology, 8th edn, p 118. ISBN: 978-0-8053-6844-4Google Scholar
  22. Cañas JE, Long M, Nations S et al (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931CrossRefPubMedGoogle Scholar
  23. Castiglione MR, Giorgetti L, Geri C et al (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13:2443–2449CrossRefGoogle Scholar
  24. Chalew TEA, Ajmani GS, Huang HO et al (2013) Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121:1161–1166PubMedCentralPubMedCrossRefGoogle Scholar
  25. Chekin F, Bagheri S, Abd Hamid SB (2012) Electrochemistry and electro catalysis of cobalt(II) immobilized onto gel assisted synthesized zinc oxide nanoparticle-multi wall carbon nanotube-polycaprolactone composite film: application to determination of glucose. Anal Methods 4:2423–2428CrossRefGoogle Scholar
  26. Chekin F, Bagheri S, Abd Hamid SB (2013) Synthesis of Pt doped TiO2 nanoparticles: characterization and application for electrocatalytic oxidation of l-methionine. Sens Actuators B 177:898–903CrossRefGoogle Scholar
  27. Corredor E, Testillano PS, Coronado M-J et al (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:1–11CrossRefGoogle Scholar
  28. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53CrossRefGoogle Scholar
  29. Dhoke SK, Mahajan P, Kamble R et al (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):e1CrossRefGoogle Scholar
  30. Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251PubMedCrossRefGoogle Scholar
  31. Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:11CrossRefGoogle Scholar
  32. Dimkpa CO, McLean JE, Latta DE et al (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15CrossRefGoogle Scholar
  33. Dimkpa CO, Latta DE, Mclean JE et al (2013) Fate of CuO and ZnO nano-and microparticles in the plant environment. Environ Sci Technol 47:4734–4742PubMedCrossRefGoogle Scholar
  34. Dimkpa CO, McLean JE, Britt DW et al (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24:119–129PubMedCrossRefGoogle Scholar
  35. Doshi R, Braida W, Christodoulatos C et al (2008) Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:296–303PubMedCrossRefGoogle Scholar
  36. Du WC, Sun YY, Ji R et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828PubMedCrossRefGoogle Scholar
  37. Du W, Tan W, Peralta-Videa JR et al (2016) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225PubMedCrossRefGoogle Scholar
  38. Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces-further evidence for a stomatal pathway. Physiol Plant 132:491–502PubMedCrossRefGoogle Scholar
  39. Eichert T, Kurtz SU et al (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160PubMedCrossRefGoogle Scholar
  40. Elena S, Gusev A, Zaytseva O et al (2012) Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng 6:132–138CrossRefGoogle Scholar
  41. Faisal M, Saquib Q, Alatar AA et al (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332PubMedPubMedCentralCrossRefGoogle Scholar
  42. Faisal M, Saquib Q, Alatar AA et al (2016) Cobalt oxide nanoparticles aggravate DNA damage and cell death in eggplant via mitochondrial swelling and NO signaling pathway. Biol Res 49:20PubMedPubMedCentralCrossRefGoogle Scholar
  43. Falcaro P, Ricco R, Yazdi A et al (2016) Application of metal and metal oxide nanoparticles@MOFs. Coord Chem Rev 307:237–254CrossRefGoogle Scholar
  44. Feizi H, Moghaddam PR, Shahtahmassebi N et al (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106PubMedCrossRefGoogle Scholar
  45. Franklin NM, Rogers NJ, Apte SC et al (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490CrossRefPubMedGoogle Scholar
  46. Frazier TP, Burklew CE, Zhang B (2014) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics 14(1):75–83PubMedCrossRefGoogle Scholar
  47. Galway ME (2006) Root hair cell walls: filling in the framework. Can J Bot 84:613–621CrossRefGoogle Scholar
  48. García A, Espinosa R, Delgado L et al (2011) Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269:136–141CrossRefGoogle Scholar
  49. García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16:341–356PubMedPubMedCentralCrossRefGoogle Scholar
  50. Geisler-Lee J, Wang Q, Yao Y et al (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323–337PubMedCrossRefGoogle Scholar
  51. Getnet Z, Husen A, Fetene M et al (2015) Growth, water status, physiological, biochemical and yield response of stay green sorghum (Sorghum bicolor (L.) Moench) varieties-a field trial under drought-prone area in Amhara Regional State, Ethiopia. J Agron 14:188–202CrossRefGoogle Scholar
  52. Ghafariyan MH, Malakouti MJ, Dadpour MR et al (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652PubMedGoogle Scholar
  53. Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955PubMedCrossRefGoogle Scholar
  54. Giraldo JP, Landry MP, Faltermeier SM et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13.
  55. Glenn JB, White SA, Klaine SJ (2012) Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. Environ Toxicol Chem 31:194–201PubMedCrossRefGoogle Scholar
  56. Global Nanotechnology Market Outlook 2022. Accessed 10 Apr 2017
  57. Gottschalk F, Sonderer T, Scholz RW et al (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefPubMedGoogle Scholar
  58. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology.
  59. Hawthorne J, Torre-Roche RD, Xing B et al (2014) Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain. Environ Sci Technol 48(22):13102–13109PubMedCrossRefGoogle Scholar
  60. Hayyan M, Hashim MA, Al-Nashef IM (2016) Superoxide ion: generation and chemical implications. Chem Rev 116:3029–3085PubMedCrossRefGoogle Scholar
  61. Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC et al (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7:1415–1423PubMedCrossRefGoogle Scholar
  62. Hirano T, Kiyota M, Aiga I (1995) Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ Pollut (Oxford, UK) 89:255–261CrossRefGoogle Scholar
  63. Hodge A, Paterson E, Grayston SJ et al (1998) Characterisation and microbial utilisation of exudate material from the rhizosphere of Lolium perenne grown under CO2 enrichment. Soil Biol Biochem 30:1033–1043CrossRefGoogle Scholar
  64. Hong F, Zhou J, Liu C et al (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279PubMedCrossRefGoogle Scholar
  65. Hong J, Peralta-Videa JR, Rico C et al (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376–4385CrossRefPubMedGoogle Scholar
  66. Hou W, Long D, Wu Y (2009) The homeostasis of phosphatidylcholine and lysophosphatidylcholine in nervous tissues of mice was not disrupted after administration of tri-o-cresyl phosphate. Toxicol Sci 109:276–285PubMedCrossRefGoogle Scholar
  67. Hu Y, Li J, Ma L et al (2010) High efficiency transport of quantum dots into plant roots with the aid of Silwet L-77. Plant Physiol Biochem 48:703–709PubMedCrossRefGoogle Scholar
  68. Huang J (1986) Ultrastructure of bacterial penetration in plants. Annu Rev Phytopathol 24:141–157CrossRefGoogle Scholar
  69. Huang X, Stein BD, Cheng H et al (2011). Magnetic virus-like nanoparticles in N. benthamiana plants: a new paradigm for environmental and agronomic biotechnological research. ACS Nano 5:4037–45PubMedPubMedCentralCrossRefGoogle Scholar
  70. Husen A (2010) Growth characteristics, physiological and metabolic responses of teak (Tectona grandis Linn.f.) clones differencing in rejuvenation capacity subjected to drought stress. Silvae Gene 59:124–136CrossRefGoogle Scholar
  71. Hussain HI, Yi ZF, Rookes JE et al (2013) Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res 15:1676CrossRefGoogle Scholar
  72. Iannone MF, Groppa MD, de Sousa ML et al (2016) Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Environ Exp Bot 131:77–88CrossRefGoogle Scholar
  73. Judy JD, Unrine JM, Rao W et al (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467–8474PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kah M, Beulke S, Tiede K et al (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16):1823–1867CrossRefGoogle Scholar
  75. Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70CrossRefGoogle Scholar
  76. Keller AA, McFerran S, Lazareva A et al (2013) Global lifecycle emissions of engineered nanomaterials. J Nanopart Res 1692.
  77. Keller AA, Vosti W, Wang H et al (2014) Release of engineered nanomaterials from personal care products throughout their life cycle. J Nanopart Res 16:2489CrossRefGoogle Scholar
  78. Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227PubMedPubMedCentralCrossRefGoogle Scholar
  79. Khodakovskaya MV, de Silva K, Biris AS et al (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135PubMedPubMedCentralCrossRefGoogle Scholar
  80. Khodakovskaya MV, Kim BS, Kim JN et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123CrossRefPubMedGoogle Scholar
  81. Kim S, Kim J, Lee I (2011) Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem Ecol 27:49–55CrossRefGoogle Scholar
  82. Kim J, Lee Y, Kim E et al (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477–3485PubMedCrossRefGoogle Scholar
  83. Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851PubMedCrossRefGoogle Scholar
  84. Kole C, Kole P, Randunu KM et al (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37PubMedPubMedCentralCrossRefGoogle Scholar
  85. Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed 50:1260–1278CrossRefGoogle Scholar
  86. Kumari A, Yadav SK (2014) Nanotechnology in agri-food sector. Cri Rev Food Sci Nutri 54:975–984CrossRefGoogle Scholar
  87. Kumari M, Khan SS, Pakrashi S et al (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kurepa J, Paunesku T, Vogt S et al (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lam C, James JT, McCluskey R et al (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134PubMedCrossRefGoogle Scholar
  90. Landa P, Vankova R, Andrlova J et al (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241–242:55–62PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lang X, Hirata A, Fujita T et al (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236PubMedCrossRefGoogle Scholar
  92. Larue C, Laurette J, Herlin-Boime N et al (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208PubMedCrossRefGoogle Scholar
  93. Larue C, Castillo-Michel H, Sobanska S et al (2014) Fate of pristine TiO2 nanoparticles and aged paint containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26PubMedCrossRefGoogle Scholar
  94. Lee W-M, An Y-J, Yoon H et al (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921PubMedCrossRefGoogle Scholar
  95. Lee CW, Mahendra S, Zodrow K et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675CrossRefPubMedGoogle Scholar
  96. Lei Z, Mingyu S, Xiao W et al (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79PubMedCrossRefGoogle Scholar
  97. Lei X, CeHui M, XiHong L et al (2011) Toxicity of copper oxide nanoparticles to the seed germination of Chinese cabbage. J Agro Environ Sci 30:1830–1835Google Scholar
  98. Levard C, Hotze EM, Lowry GV et al (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914PubMedCrossRefGoogle Scholar
  99. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250CrossRefPubMedGoogle Scholar
  100. Lin DH, Xing BS (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lin S, Reppert J, Hu Q et al (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132PubMedPubMedCentralCrossRefGoogle Scholar
  102. Liu C, Li F, Luo C et al (2009a) Foliar application of two silica sols reduced cadmium accumulation in rice grains. J Hazard Mater 161:1466–1472PubMedCrossRefGoogle Scholar
  103. Liu Q, Chen B, Wang Q et al (2009b) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ljubimova JY, Holler E (2012) Biocompatible nanopolymers: the next generation of breast cancer treatment? Nanomedicine 7:1467–1470PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA et al (2010) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693PubMedPubMedCentralCrossRefGoogle Scholar
  106. Lowry GV, Gregory KB, Apte SC et al (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899PubMedCrossRefGoogle Scholar
  107. Lu PT, Cao JP, He SG et al (2010) Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol Technol 57:196–202CrossRefGoogle Scholar
  108. Lucas WJ, Jung-Youn L (2004) Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5:712–726PubMedCrossRefGoogle Scholar
  109. Ma L, Liu C, Qu C et al (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178CrossRefGoogle Scholar
  110. Ma X, Geisler-Lee J, Deng Y et al (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061PubMedCrossRefGoogle Scholar
  111. Ma Y, He X, Zhang P et al (2011) Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5:743–753PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ma C, Chhikara S, Xing B et al (2013a) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–778CrossRefGoogle Scholar
  113. Ma X, Gurung A, Deng Y (2013b) Phytotoxicity and uptake of nanoscale zerovalent iron (nZVI) by two plant species. Sci Total Environ 443:844–849PubMedCrossRefGoogle Scholar
  114. Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants 3:25–32Google Scholar
  115. Majumdar S, Trujillo-Reyes J, Hernandez-Viezcas JA et al (2016) Cerium biomagnification in a terrestrial food chain: Influence of particle size and growth stage. Environ Sci Technol 50:6782–6792PubMedCrossRefGoogle Scholar
  116. Martínez-Fernández D, Vítková M, Bernal MP et al (2015) Effects of nano-maghemite on trace element accumulation and drought response of Helianthus annuus L. in a contaminated mine soil. Water Air Soil Pollut 226:1–4CrossRefGoogle Scholar
  117. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859PubMedCrossRefGoogle Scholar
  118. McCann MC, Wells B, Roberts K (1990) Direct visualization of crosslinks in the primary plant cell wall. J Cell Sci 96:323–334Google Scholar
  119. Mehrian SK, De Lima R (2016) Nanoparticles cyto and genotoxicity in plants: mechanisms and abnormalities. Environ Nanotechnol Monit Manage 6:184–193CrossRefGoogle Scholar
  120. Miller G, Suzuki N, Ciftci-Yilmaz S et al (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467PubMedCrossRefGoogle Scholar
  121. Miralles P, Church TL, Harris AT (2012a) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239CrossRefPubMedGoogle Scholar
  122. Miralles P, Johnson E, Church TL et al (2012b) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9:3514–3527PubMedPubMedCentralCrossRefGoogle Scholar
  123. Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefGoogle Scholar
  124. Mondal A, Basu R, Das S et al (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. Nanopart Res 13:4519–4528CrossRefGoogle Scholar
  125. Moreno-olivas F, Gant VU Jr, Jonhnson KL et al (2014) Random amplified polymorphic DNA reveals that TiO2 nanoparticles are genotoxic to Cucurbita pepo. J Zhejiang Univ-Sci A (Appl Phys & Eng) 15:618–623CrossRefGoogle Scholar
  126. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S et al (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138PubMedCrossRefGoogle Scholar
  127. Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27:510–517PubMedCrossRefGoogle Scholar
  128. Mushtaq YK (2011) Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. J Environ Sci Health 46:1732–1735CrossRefGoogle Scholar
  129. Nair PMG, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res 21:12709–12722CrossRefGoogle Scholar
  130. Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313PubMedCrossRefGoogle Scholar
  131. Nair R, Varghese SH, Nair BG et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  132. Nair PMG, Kim SH, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36:2947–2958CrossRefGoogle Scholar
  133. Navarro E, Baun A, Behra R et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386CrossRefPubMedGoogle Scholar
  134. Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211:427–435PubMedCrossRefGoogle Scholar
  135. Nekrasova GF, Ushakova OS, Ermakov AE et al (2011) Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa plant. Russ J Ecol 42:458–463CrossRefGoogle Scholar
  136. Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefPubMedGoogle Scholar
  137. Nelson DL, Lehninger AL, Cox MM (2008) Lehninger principles of biochemistry. Macmillan, LondonGoogle Scholar
  138. Nowack B, Ranville JF, Diamond S et al (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59PubMedCrossRefGoogle Scholar
  139. Onelli E, Prescianotto-Baschong C, Caccianiga M et al (2008) Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J Exp Bot 59:3051–3068PubMedPubMedCentralCrossRefGoogle Scholar
  140. Ozyigit II, Filiz E, Vatansever R et al (2016) Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci 7:301PubMedPubMedCentralCrossRefGoogle Scholar
  141. Parsons JG, Lopez ML, Gonzalez CM et al (2010) Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem 29:1146–1154PubMedGoogle Scholar
  142. Pearse BM (1976) Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci USA 73:1255–1259PubMedPubMedCentralCrossRefGoogle Scholar
  143. Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L et al (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135PubMedCrossRefGoogle Scholar
  144. Piccinno F, Gottschalk F, Seeger S et al (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109CrossRefGoogle Scholar
  145. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332PubMedCrossRefGoogle Scholar
  146. Priester JH, Gea Y, Mielkea RE et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 109:14734–14735Google Scholar
  147. Pryor W (1991) The antioxidant nutrients and disease prevention-what, do we know and what, do we need to find out? Am J Clin Nulr 53(1 Suppl):391S–393SCrossRefGoogle Scholar
  148. Qi H, Hegmann T (2008) Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J Mater Chem 18:3288–3294CrossRefGoogle Scholar
  149. Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328PubMedCrossRefGoogle Scholar
  150. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57CrossRefGoogle Scholar
  151. Raliya R, Tarafdar J, Singh S et al (2014) MgO nanoparticles biosynthesis and its effect on chlorophyll contents in the leaves of Clusterbean (Cyamopsis tetragonoloba L.). Adv Sci Eng Med 6:538–545CrossRefGoogle Scholar
  152. Raliya R, Nair R, Chavalmane S et al (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594PubMedCrossRefGoogle Scholar
  153. Raliya R, Franke C, Chavalmane S et al (2016a) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1288. CrossRefPubMedPubMedCentralGoogle Scholar
  154. Raliya R, Tarafdar JC, Biswas P (2016b) Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem 64:3111–3118PubMedCrossRefGoogle Scholar
  155. Rezaei F, Moaveni P, Mozafari H (2015) Effect of different concentrations and time of nano TiO2 spraying on quantitative and qualitative yield of soybean (Glycine max L.) at Shahr-e-Qods, Iran. Biol Forum 7:957–964Google Scholar
  156. Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498PubMedPubMedCentralCrossRefGoogle Scholar
  157. Rico CM, Morales MI, McCreary R et al (2013a) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118PubMedCrossRefGoogle Scholar
  158. Rico CM, Hong J, Morales MI et al (2013b) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642CrossRefPubMedGoogle Scholar
  159. Rico CM, Barrios AC, Tan W et al (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22:10551–10558CrossRefGoogle Scholar
  160. Riesen O, Feller U (2005) Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. J Plant Nutr 28:421–430CrossRefGoogle Scholar
  161. Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518PubMedCrossRefPubMedCentralGoogle Scholar
  162. Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124CrossRefGoogle Scholar
  163. Safari J, Zarnegar Z (2014) Advanced drug delivery systems: nanotechnology of health design. A review. J Saudi Chem Soc 18:85–99CrossRefGoogle Scholar
  164. Saharan V, Sharma G, Yadav M et al (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353PubMedCrossRefGoogle Scholar
  165. Samaj J (2012) Endocytosis in plants. Springer, Berlin.
  166. Samaj J, Baluska F, Voigt B et al (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161PubMedPubMedCentralCrossRefGoogle Scholar
  167. Sattelmacher B, Horst WJ (2007) The apoplast of higher plants: compartment of storage, transport and reactions-the significance of the apoplast for the mineral nutrition of higher plants. Springer, DordrechtGoogle Scholar
  168. Schaller J, Brackhage C, Paasch S et al (2013) Silica uptake from nanoparticles and silica condensation state in different tissues of Phragmites australis. Sci Total Environ 442:6–9PubMedCrossRefGoogle Scholar
  169. Schreiber L (2005) Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot (Oxford, UK) 95:1069–1073CrossRefGoogle Scholar
  170. Schwab F, Zhai G, Kern M et al (2015) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-critical review. Nanotoxicology 1–22.
  171. Schwabe F, Schulin R, Limbach LK et al (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91:512–520PubMedCrossRefGoogle Scholar
  172. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53PubMedPubMedCentralCrossRefGoogle Scholar
  173. Serag MF, Kaji N, Venturelli E et al (2011a) A functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5:9264–9270PubMedCrossRefGoogle Scholar
  174. Serag MF, Kaji N, Gaillard C et al (2011b) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499CrossRefPubMedGoogle Scholar
  175. Serag MF, Braeckmans K, Habuchi S et al (2012a) Spatiotemporal visualization of subcellular dynamics of carbon nanotubes. Nano Lett 12:6145–6151PubMedCrossRefGoogle Scholar
  176. Serag MF, Kaji N, Habuchi S et al (2012b) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3:4856–4862CrossRefGoogle Scholar
  177. Servin AD, Castillo-Michel H, Hernandez-Viezcas JA et al (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643PubMedCrossRefGoogle Scholar
  178. Servin AD, Morales MI, Castillo-Michel H et al (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598CrossRefPubMedGoogle Scholar
  179. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148CrossRefGoogle Scholar
  180. Shankramma K, Yallappa S, Shivanna MB et al (2016) Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6:983–990CrossRefGoogle Scholar
  181. Shen CX, Zhang QF, Li J et al (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609CrossRefPubMedGoogle Scholar
  182. Sheykhbaglou R, Sedghi M, Shishevan MT et al (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2:112–113CrossRefGoogle Scholar
  183. Shi JY, Abid AD, Kennedy IM et al (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut 159:1277–1282PubMedPubMedCentralCrossRefGoogle Scholar
  184. Siddiqi KS, Husen A (2016) Engineered gold nanoparticles and plant adaptation potential. Nano Res Lett 11:400CrossRefGoogle Scholar
  185. Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92PubMedPubMedCentralCrossRefGoogle Scholar
  186. Siddiqi KS, Rahman A, Tajuddin HA (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nano Res Lett 11:498CrossRefGoogle Scholar
  187. Singh P, Singh R, Borthakur A et al (2016) Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination. Energ Ecol Environ 1:131–140CrossRefGoogle Scholar
  188. Smirnova EA, Gusev AA, Zaitseva ON et al (2011) Multi-walled сarbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3:99–106Google Scholar
  189. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479CrossRefPubMedGoogle Scholar
  190. Su MY, Hong FS, Liu C et al (2007) Effects of nano-anatase TiO2 on absorption, distribution of light, and photoreduction activities of chloroplast membrane of spinach. Biol Trace Elem Res 131:101CrossRefGoogle Scholar
  191. Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multiwalled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487CrossRefGoogle Scholar
  192. Tarafdar J, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312CrossRefGoogle Scholar
  193. Taylor R, Walton DRM (1993) The chemistry of fullerenes. Nature 363:685–693CrossRefGoogle Scholar
  194. Taylor AF, Rylott EL, Anderson CWN et al (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9:e93793PubMedPubMedCentralCrossRefGoogle Scholar
  195. Tilney LG, Cooke TJ, Connelly PS et al (1991) The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol 112:739–747PubMedCrossRefGoogle Scholar
  196. Tiwari DK, Dasgupta-Schubert N, Villaseñor-Cendejas LM et al (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea Mays) and implications for nano-agriculture. Appl Nanosci 4:577–591CrossRefGoogle Scholar
  197. Torre-Roche RDL, Hawthorne J, Deng Y et al (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547CrossRefGoogle Scholar
  198. Trevisan M, Browne R, Ram M et al (2001) Correlates of markers of oxidative status in the general population. Am J Epidemiol 154:348–356PubMedCrossRefGoogle Scholar
  199. Vilela Neto OP (2014) Intelligent computational nanotechnology: the role of computational intelligence in the development of nanoscience and nanotechnology. J Comput Theor Nanosci 11:928–944CrossRefGoogle Scholar
  200. Vittori Antisari L, Carbone S, Gatti A et al (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res Int 22:1841–1853PubMedCrossRefGoogle Scholar
  201. Wahab R, Kaushik N, Khan F et al (2016) Self-styled ZnO nanostructures promotes the cancer cell damage and suppress the epithelial phenotype of glioblastoma. Sci Rep 6:19950PubMedPubMedCentralCrossRefGoogle Scholar
  202. Wang XM, Gao FQ, Ma LL et al (2008) Effects of nano-anatase on ribulose-1, 5-bisphosphate carboxylase/oxygenase mRNA expression in spinach. Biol Trace Elem Res 126:280–289CrossRefGoogle Scholar
  203. Wang H, Kou X, Pei Z et al (2011a) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42PubMedPubMedCentralCrossRefGoogle Scholar
  204. Wang SH, Kurepa J, Smalle JA (2011b) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34:811–820PubMedPubMedCentralCrossRefGoogle Scholar
  205. Wang Z, Li J, Zhao J et al (2011c) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040PubMedCrossRefGoogle Scholar
  206. Wang Z, Xie X, Zhao J et al (2012a) Xylem and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441PubMedCrossRefGoogle Scholar
  207. Wang Q, Xingmao M, Wen Z et al (2012b) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–1112PubMedCrossRefGoogle Scholar
  208. Wang WN, Tarafdar JC, Biswas P (2013a) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1417CrossRefGoogle Scholar
  209. Wang P, Menzies NW, Lombi E et al (2013b) Fate of ZnO nanoparticles in soils and Cowpea (Vigna unguiculata). Environ Sci Technol 47:13822–13830PubMedCrossRefGoogle Scholar
  210. Wang F, Liu X, Shi Z et al (2016) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants-a soil microcosm experiment. Chemosphere 147:88–97PubMedPubMedCentralCrossRefGoogle Scholar
  211. Warheit DB, Laurence BR, Reed KL et al (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125PubMedCrossRefGoogle Scholar
  212. Watanabe T, Misawa S, Hiradate S et al (2008) Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator. Plant Signal Behav 3:603–605PubMedPubMedCentralCrossRefGoogle Scholar
  213. Watson JL, Fang T, Dimkpa CO et al (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101–112PubMedCrossRefGoogle Scholar
  214. Weir A, Westerhoff P, Fabricius L et al (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250PubMedPubMedCentralCrossRefGoogle Scholar
  215. Wibowo D, Zhao CX, Peters BC et al (2014) Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J Agric Food Chem 62:12504–12511PubMedCrossRefGoogle Scholar
  216. Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294PubMedCrossRefGoogle Scholar
  217. Willats WG, McCartney L, Mackie W et al (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27PubMedCrossRefGoogle Scholar
  218. Wu Y, Hudson JS, Lu Q et al (2006) Coating single-walled carbon nanotubes with phospholipids. J Phys Chem B 110:2475–2478PubMedCrossRefGoogle Scholar
  219. Xi ZG, Chao FH, Yang DF et al (2004) The effects of DNA damage induced by acetaldehyde. Huan Jing Ke Xue 25:102–105PubMedGoogle Scholar
  220. Yan SH, Zhao L, Li H et al (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118PubMedCrossRefGoogle Scholar
  221. Yang K, Ma Y (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5:579–583PubMedCrossRefGoogle Scholar
  222. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132CrossRefPubMedPubMedCentralGoogle Scholar
  223. Yang F, Hong FS, You WJ et al (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190PubMedCrossRefGoogle Scholar
  224. Yang F, Liu C, Gao F et al (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88PubMedCrossRefGoogle Scholar
  225. Yang X, Gondikas AP, Marinakos SM et al (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–1127CrossRefPubMedGoogle Scholar
  226. Yin HC, Liu QJ, Lin Q et al (2005) Inhibitory effects of nano-TiO2 loaded Pd on cyanobacteria growth. Acta Bot Boreali-Occidentalia Sin 25:1884–1887Google Scholar
  227. Yoon SJ, Kwak JI, Lee WM et al (2014) Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf 100:131–137PubMedCrossRefGoogle Scholar
  228. Zafar H, Ali A, Ali JS et al (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535PubMedPubMedCentralCrossRefGoogle Scholar
  229. Zangi R, Filella M (2012) Transport routes of metalloids into and out of the cell: a review of the current knowledge. Chem Biol Interact 197:47–57PubMedCrossRefGoogle Scholar
  230. Zhai G, Walters KS, Peate DW et al (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1:146–151PubMedPubMedCentralCrossRefGoogle Scholar
  231. Zhang Y, Chen Y, Westerhoff P et al (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43:4249–4257PubMedCrossRefGoogle Scholar
  232. Zhang ZY, He X, Zhang HF et al (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–822PubMedPubMedCentralCrossRefGoogle Scholar
  233. Zhang P, Ma Y, Zhang Z et al (2012a) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6:9943–9950PubMedPubMedCentralCrossRefGoogle Scholar
  234. Zhang P, Ma Y, Zhang Z et al (2012b) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46:1834–1841PubMedPubMedCentralCrossRefGoogle Scholar
  235. Zhao L, Peng B, Hernandez-Viezcas JA et al (2012a) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6:9615–9622PubMedPubMedCentralCrossRefGoogle Scholar
  236. Zhao L, Peralta-Videa JR, Ren M et al (2012b) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8CrossRefGoogle Scholar
  237. Zhu HW, Xu CL, Wu DH et al (2002) Direct synthesis of long single-walled carbon nanotube strands. Science 296(5569):884–886PubMedCrossRefGoogle Scholar
  238. Zhu H, Han J, Xiao JQ et al (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717PubMedCrossRefGoogle Scholar
  239. Zuverza-Mena N, Martínez-Fernández D, Du W et al (2016) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses-a review. Plant Physiol Biochem 110:236–264PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bilal Ahmed
    • 1
  • Mohammad Saghir Khan
    • 1
  • Quaiser Saquib
    • 2
  • Majed Al-Shaeri
    • 3
  • Javed Musarrat
    • 1
    • 4
  1. 1.Faculty of Agricultural Sciences, Department of Agricultural MicrobiologyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Faculty of Science, Department of Biological SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Baba Ghulam Shah Badshah UniversityRajouriIndia

Personalised recommendations