Plant Response Strategies to Engineered Metal Oxide Nanoparticles: A Review

  • Remya NairEmail author


Plants provide a potential pathway for the transport of nanoparticles, and hence the study on effects of nanoparticles in plants is crucial. Metal oxide nanoparticles exhibit unique physical and chemical properties, and their interaction with plant system influences the growth and development of plants. Several changes have been observed in morphological and physiological parameters of plants such as seed germination, shoot and root growth, and biomass production. Interaction of metal oxide nanoparticles with plants could also alter the photosynthetic and biochemical activities. Significant changes have been observed in antioxidant enzyme activities to prevent oxidative damage and enhance the plant defense mechanism against metal oxide nanoparticles. The effects of nanoparticles on the nutritional quality of plants and plant products were also reviewed in this chapter.


  1. Adams J, Wright M, Wagner H et al (2017) Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Biochem 110:108–117CrossRefPubMedGoogle Scholar
  2. Adhikari T, Kundu S, Biswas AK et al (2012) Effect of copper oxide nanoparticles on seed germination of selected crops. J Agric Sci Technol A2:815–823Google Scholar
  3. Antisari LV, Carbone S, Gatti A et al (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22:1841–1853CrossRefGoogle Scholar
  4. Auffan M, Achouak W, Rose J et al (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735CrossRefPubMedGoogle Scholar
  5. Barrios AC, Medina-Velo IA, Zuverza-Mena N et al (2017) Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid. Plant Physiol Biochem 110:100–107CrossRefPubMedGoogle Scholar
  6. Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862CrossRefPubMedGoogle Scholar
  7. Burklew CE, Ashlock J, Winfrey WB et al (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7:e34783CrossRefPubMedPubMedCentralGoogle Scholar
  8. Conway JR, Beaulieu AL, Beaulieu NL et al (2015) Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. ACS Nano 9:11737–11749CrossRefPubMedGoogle Scholar
  9. Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119CrossRefGoogle Scholar
  10. Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589CrossRefPubMedGoogle Scholar
  11. Du W, Gardea-Torresdey JL, Ji R et al (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49:11884–11893CrossRefPubMedGoogle Scholar
  12. Du W, Tan W, Peralta-Videa JR et al (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225CrossRefPubMedGoogle Scholar
  13. Duran NM, Savassa SM, Lima RG et al (2017) X-ray spectroscopy uncovering the effects of Cu based nanoparticle concentration and structure on Phaseolus vulgaris germination and seedling development. J Agric Food Chem 65:7874–7884CrossRefPubMedGoogle Scholar
  14. Feizi H, Moghaddam PR, Shahtahmassebi N et al (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106CrossRefPubMedGoogle Scholar
  15. Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838CrossRefPubMedPubMedCentralGoogle Scholar
  16. Foley S, Crowley C, Smaihi M et al (2002) Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294:116–119CrossRefPubMedGoogle Scholar
  17. Gechev TS, Breusegem FV, Stone JM et al (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101CrossRefPubMedGoogle Scholar
  18. Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955CrossRefPubMedGoogle Scholar
  19. Gottschalk F, Lassen C, Kjoelholt J et al (2015) Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int J Environ Res Public Health 12:5581–5602CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gunjan B, Zaidi MGH, Sandeep A (2014) Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea. J Plant Biochem Physiol 2:133–139Google Scholar
  21. Hazeem LJ, Waheed FA, Rashdan S et al (2015) Effect of magnetic iron oxide (Fe3O4) nanoparticles on the growth and photosynthetic pigment content of Picochlorum sp. Environ Sci Pollut Res 22:11728–11739CrossRefGoogle Scholar
  22. Hong J, Wang L, Sun Y et al (2016) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ 563:904–911CrossRefPubMedGoogle Scholar
  23. Hu J, Guo H, Li J et al (2017) Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environ Pollut 221:199–208CrossRefPubMedGoogle Scholar
  24. Hussain I, Singh NB, Singh A et al (2017) Exogenous application of photosynthesized nanoceria to alleviate ferulic acid stress in Solanum lycopersicum. Sci Hortic 214:158–164CrossRefGoogle Scholar
  25. Javed R, Usman M, Yücesan B et al (2017) Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol Biochem 110:94–99CrossRefPubMedGoogle Scholar
  26. Jeyasubramanian K, Thoppey UU, Hikku GS et al (2016) Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Adv 6:15451–15459CrossRefGoogle Scholar
  27. Ji Y, Zhou Y, Ma C et al (2017) Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93CrossRefPubMedGoogle Scholar
  28. Jiang HS, Yin LY, Ren NN et al (2017) Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology 11:157–167CrossRefPubMedGoogle Scholar
  29. Kamat JP, Devasagayam TP, Priyadarsini KI et al (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 155:55–61CrossRefPubMedGoogle Scholar
  30. Koul K, Nagpal R, Raina S (2000) Seed coat microsculpturing in Brassica and allied genera (subtribes Brassicinae, Raphaninae, Moricandiinae). Ann Bot 86:385–397CrossRefGoogle Scholar
  31. Larue C, Veronesi G, Flank AM et al (2012) Comparative uptake and impact of TiO2nanoparticles in wheat and rapeseed. J Toxicol Environ Health A 75:722–734CrossRefPubMedGoogle Scholar
  32. Lee CW, Mahendra S, Zodrow K et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675CrossRefPubMedGoogle Scholar
  33. Li J, Hu J, Ma C et al (2016) Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334CrossRefPubMedGoogle Scholar
  34. Liu F, Laurent S, Roch A et al (2013) Size-controlled synthesis of CoFe2O4 nanoparticles potential contrast agent for MRI and investigation on their size-dependent magnetic properties. J Nanomater:127Google Scholar
  35. Liu H, Ma C, Chen G et al (2017) Titanium dioxide nanoparticles alleviate tetracycline toxicity to Arabidopsis thaliana L. ACS Sustain Chem Eng 5:3204–3213CrossRefGoogle Scholar
  36. López-Moreno ML, Avilés LL, Pérez NG et al (2016) Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Total Environ 550:45–52CrossRefPubMedGoogle Scholar
  37. Lu C, Zhang C, Wen J et al (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–171Google Scholar
  38. Ma X, Wang Q, Lorenzo Rossi L et al (2016) Cerium oxide nanoparticles and bulk cerium oxide leading to different physiological and biochemical changes in Brassica napa. Environ Sci Technol 50:6793–6802CrossRefPubMedGoogle Scholar
  39. Marchiol L, Mattiello A, Pošćić F et al (2016) Changes in physiological and agronomical parameters of Barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. Int J Environ Res Public Health 13:332–350CrossRefPubMedCentralGoogle Scholar
  40. Mattiello A, Filippi A, Pošćić F et al (2015) Evidence of Phytotoxicity and Genotoxicity in Hordeum vulgare L. Exposed to CeO2 and TiO2 Nanoparticles. Front Plant Sci 6:1043CrossRefPubMedPubMedCentralGoogle Scholar
  41. Moon YS, Park ES, Kim TO et al (2014) SELDI-TOF-MS based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Environ Toxicol Phar 38:922–931CrossRefGoogle Scholar
  42. Morales MI, Rico CM, Hernandez-Viezcas JA et al (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61(26):6224–6230CrossRefPubMedGoogle Scholar
  43. Morales-Díaz AB, Ortega-Ortíz H, Juárez-Maldonado A et al (2017) Application of nano elements in plant nutrition and its impact in ecosystem. Adv Nat Sci Nanosci Nanotechnol 8:013001–0130014CrossRefGoogle Scholar
  44. Mustafa G, Komatsu S (2016) Insights into the response of soybean mitochondrial proteins to various sizes of aluminum oxide nanoparticles under flooding stress. J Proteome Res 15:4464–4475CrossRefPubMedGoogle Scholar
  45. Mustafa G, Sakata K, Hossain Z et al (2015) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteome 122:100–118CrossRefGoogle Scholar
  46. Mustafa G, Sakata K, Komatsu S (2016) Proteomic analysis of soybean root exposed to varying sizes of silver nanoparticles under flooding stress. J Proteome 148:113–125CrossRefGoogle Scholar
  47. Nair R (2016) Effects of nanoparticles on plant growth and development. In: Kole C, Kumar DS, Khodakovskaya MV (eds) Plant Nanotechnology Principles and Practices. Springer International Publishing, SwitzerlandGoogle Scholar
  48. Nair PMG, Chung IM (2014) Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 112:105–113CrossRefPubMedGoogle Scholar
  49. Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Safe 113:302–313CrossRefGoogle Scholar
  50. Nair R, Varghese SH, Nair BG et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  51. Nair R, Poulose AC, Nagaoka Y et al (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21:2057CrossRefPubMedGoogle Scholar
  52. Nair R, Mohamed MS, Gao W et al (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12:2212–2220CrossRefPubMedGoogle Scholar
  53. Navarro E, Baun A, Behra R et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386CrossRefPubMedGoogle Scholar
  54. Ndeh NT, Maensiri S, Maensiri D (2017) The effect of green synthesized gold nanoparticles on rice germination and roots. Adv Nat Sci Nanosci Nanotechnol 8:035008–035018CrossRefGoogle Scholar
  55. Nel A, Xia T, Mädler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefPubMedGoogle Scholar
  56. Nhan LV, Ma C, Rui Y et al (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pariona N, Martinez AI, Hdz-García HM et al (2017) Effects of hematite and ferrihydrite nanoparticles on germination and growth of maize seedlings. Saudi J Biol Sci 24:1547–1554CrossRefGoogle Scholar
  58. Park BJ, Choi KH, Nam KC et al (2015) Photodynamic anticancer activities of multifunctional cobalt ferrite nanoparticles in various cancer cells. J Biomed Nanotechnol 11:226–235CrossRefPubMedGoogle Scholar
  59. Parsons JG, Lopez ML, Gonzalez CM et al (2010) Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem 29:1146–1154PubMedGoogle Scholar
  60. Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L et al (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135CrossRefPubMedGoogle Scholar
  61. Priester JH, Ge Y, Mielke RE et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 109:E2451–E2456CrossRefPubMedGoogle Scholar
  62. Priester JH, Moritz SC, Espinosa K et al (2017) Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Sci Total Environ 579:1756–1768CrossRefPubMedGoogle Scholar
  63. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57CrossRefGoogle Scholar
  64. Raliya R, Franke C, Chavalmane S et al (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1288CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rastogi A, Zivcak M, Sytar O et al (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78CrossRefPubMedPubMedCentralGoogle Scholar
  66. Riahi-Madvar A, Rezaee F, Jalali V (2012) Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iran J Plant Physiol 3:595–603Google Scholar
  67. Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rico CM, Hong J, Morales MI (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642CrossRefPubMedGoogle Scholar
  69. Rico CM, Lee SC, Rubenecia R et al (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62:9669–9675CrossRefPubMedGoogle Scholar
  70. Rico CM, Barrios AC, Tan W et al (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res Int 22:10551–10558CrossRefPubMedGoogle Scholar
  71. Rossi L, Zhang W, Lombardini L et al (2016) Impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ Pollut 219:28–36CrossRefPubMedGoogle Scholar
  72. Rui M, Ma C, Tang X et al (2017) Phytotoxicity of silver nanoparticles to peanuts (Arachis hypogaea L.): physiological responses and food safety. ACS Sustain Chem Eng 5:6557–6567CrossRefGoogle Scholar
  73. Santos AR, Miguel AS, Tomaz L et al (2010) The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture. J Nanobiotechnol 8:24CrossRefGoogle Scholar
  74. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915CrossRefPubMedGoogle Scholar
  75. Siddiqui MH, Al-Whaibi MH, Faisal M et al (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437CrossRefPubMedGoogle Scholar
  76. Song U, Jun H, Waldman B et al (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67CrossRefPubMedGoogle Scholar
  77. Tarafdar JC, Xiang Y, Wang WN et al (2012) Standardization of size, shape and concentration of nanoparticle for plant application. Appl Biol Res 14:138–144Google Scholar
  78. Tassi E, Giorgetti L, Morelli E et al (2017) Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: modulation of boron phytotoxicity. Plant Physiol Biochem 110:50–58CrossRefPubMedGoogle Scholar
  79. Thuesombat P, Hannongbua S, Akasit S et al (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309CrossRefPubMedGoogle Scholar
  80. Tripathi DK, Singh S, Singh S et al (2017a) Nitric oxide alleviates silver nanoparticles (AgNPs)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177CrossRefPubMedGoogle Scholar
  81. Tripathi DK, Singh S, Singh VP et al (2017b) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81CrossRefGoogle Scholar
  82. Van NL, Ma C, Shang J et al (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670CrossRefPubMedGoogle Scholar
  83. Venkatachalam P, Jayaraj M, Manikandan R et al (2017) Zinc oxide nanoparticles (ZnO NPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69CrossRefPubMedGoogle Scholar
  84. Vishwakarma K, Upadhyay N, Singh J et al (2017) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wang Q, Ma X, Zhang W et al (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–1112CrossRefPubMedGoogle Scholar
  86. Wang S, Lui H, Zhang Y et al (2015) The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Environ Toxicol Chem 34:554–561CrossRefPubMedGoogle Scholar
  87. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yang Z, Chen J, Dou RZ et al (2015) Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa). Int J Environ Res Public Health 12:15100–15109CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12:158–169CrossRefGoogle Scholar
  90. Yanık F, Vardar F (2015) Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut 226:296CrossRefGoogle Scholar
  91. Yin L, Colman BP, McGill BM et al (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7:e47674CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zhang W, Ebbs SD, Musante C et al (2015) Uptake and accumulation of bulk and nanosized cerium oxide nanoparticles and ionic cerium by radish (Raphanus sativus L.). J Agric Food Chem 63:382–390CrossRefPubMedGoogle Scholar
  93. Zhao L, Peng B, Hernandez-Viezcas JA et al (2012a) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6:9615–9622CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zhao L, Peng B, Hernandez-Viezcas JA et al (2012b) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano (11):9615–9622Google Scholar
  95. Zhao L, Peralta-Videa JR, Rico CM et al (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759CrossRefPubMedGoogle Scholar
  96. Zhao L, Sun Y, Hernandez-Viezcas JA et al (2015) Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. Environ Sci Technol 49:2921–2928CrossRefPubMedGoogle Scholar
  97. Zhao L, Hu Q, Huang Y et al (2017) Response at Genetic, Metabolic, and Physiological Levels of Maize (Zea mays) Exposed to a Cu(OH)2 Nanopesticide. ACS Sustain Chem Eng 5:8294–8301CrossRefGoogle Scholar
  98. Zuverza-Mena N, Armendariz R, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Front Plant Sci 7:90CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nano Research FacilityWashington University in St. LouisSt. LouisUSA

Personalised recommendations