Advertisement

Uptake and Distribution of 14C-Labeled Multi-walled Carbon Nanotubes by Wheat (Triticum aestivum L.)

  • Changwei Hu
  • Liwen Zhang
  • Qingguo Huang
Chapter

Abstract

Uptake of 14C-labeled multi-walled carbon nanotubes (MWCNTs) to wheat seedlings (Triticum aestivum L.) was evaluated. After exposing the plants to MWCNT suspensions for 5 days, the quantity and distribution of MWCNTs accumulated by the seedlings were measured. The total uptake percentage was more than 0.12% in all dosage levels, and a good correlation was found between the MWCNT contents in the root and the initial MWCNT concentration. This shows that MWCNTs can enter the wheat plant and be accumulated in root and shoot, which might in turn further transfer in the terrestrial food chain.

References

  1. Ahlgren P, Jarneving B, Rousseau R (2003) Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. J Am Soc Inform Sci Technol 54:550–560.  https://doi.org/10.1002/asi.10242 CrossRefGoogle Scholar
  2. Cañas JE, Long MQ, Nations S et al (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931CrossRefPubMedGoogle Scholar
  3. Ferguson PL, Chandler GT, Templeton RC et al (2008) Influence of sediment-amendment with single-walled carbon nanotubes and diesel soot on bioaccumulation of hydrophobic organic contaminants by benthic invertebrates. Environ Sci Technol 42:3879–3885CrossRefPubMedGoogle Scholar
  4. Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35:1339–1342.  https://doi.org/10.1021/es001834k CrossRefPubMedGoogle Scholar
  5. Gottschalk F, Sonderer T, Scholz RW et al (2009) Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222.  https://doi.org/10.1021/Es9015553 CrossRefGoogle Scholar
  6. Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227.  https://doi.org/10.1021/nn900887m CrossRefPubMedPubMedCentralGoogle Scholar
  7. Khodakovskaya MV, de Silva K, Nedosekin DA et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108:1028–1033.  https://doi.org/10.1073/pnas.1008856108 CrossRefPubMedGoogle Scholar
  8. Liu QL, Chen B, Wang QL et al (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010.  https://doi.org/10.1021/nl803083u CrossRefPubMedPubMedCentralGoogle Scholar
  9. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859.  https://doi.org/10.1021/es8006904 CrossRefPubMedGoogle Scholar
  10. Nair R, Varghese SH, Nair BG et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163.  https://doi.org/10.1016/j.plantsci.2010.04.012 CrossRefGoogle Scholar
  11. OECD (2006) OECD Guidline for the testing of chemicals: terrestrial plant test: vegetative vigour testGoogle Scholar
  12. Petersen EJ, Henry TB (2012) Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: review. Environ Toxicol Chem 31:60–72.  https://doi.org/10.1002/etc.710 CrossRefPubMedGoogle Scholar
  13. Petersen EJ, Huang QG, Weber WJ Jr (2008a) Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environ Sci Technol 42:3090–3095CrossRefPubMedGoogle Scholar
  14. Petersen EJ, Huang QG, Weber WJ Jr (2008b) Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ Health Perspect 116:496–500PubMedPubMedCentralCrossRefGoogle Scholar
  15. Petersen EJ, Pinto RA, Landrum PF et al (2009) Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms. Environ Sci Technol 43:4181–4187CrossRefPubMedGoogle Scholar
  16. Petersen EJ, Huang QG, Weber WJ Jr (2010) Relevance of octanol-water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes. Environ Toxicol Chem 29:1106–1112.  https://doi.org/10.1002/etc.149 CrossRefPubMedGoogle Scholar
  17. Petersen EJ, Pinto RA, Mai DJ et al (2011a) Influence of polyethyleneimine graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna. Environ Sci Technol 45:1133–1138CrossRefPubMedGoogle Scholar
  18. Petersen EJ, Pinto RA, Zhang LW et al (2011b) Effects of polyethyleneimine-mediated functionalization of multi-walled carbon nanotubes on earthworm bioaccumulation and sorption by soils. Environ Sci Technol 45:3718–3724.  https://doi.org/10.1021/es103004r CrossRefPubMedGoogle Scholar
  19. Petersen EJ, Zhang LW, Mattison NT et al (2011c) Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45:9837–9856.  https://doi.org/10.1021/es201579y CrossRefPubMedGoogle Scholar
  20. Shen MW, Wang SH, Shi XY et al (2009) Polyethyleneimine-mediated functionalization of multiwalled carbon nanotubes: synthesis, characterization, and in vitro toxicity assay. J Phys Chem C 113:3150–3156CrossRefGoogle Scholar
  21. Shi XY, Wang SH, Shen MW et al (2009) Multifunctional dendrimer-modified multiwalled carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging. Biomacromolecules 10:1744–1750CrossRefPubMedGoogle Scholar
  22. Towell MG, Browne LA, Paton GI et al (2011) Impact of carbon nanomaterials on the behaviour of C-14-phenanthrene and C-14-benzo-a pyrene in soil. Environ Pollut 159:706–715.  https://doi.org/10.1016/j.envpol.2010.11.040 CrossRefPubMedGoogle Scholar
  23. Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294.  https://doi.org/10.1021/es900065h CrossRefPubMedGoogle Scholar
  24. Zhang L, Petersen EJ, Huang Q (2011) Phase distribution of 14C-labeled multiwalled carbon nanotubes in aqueous systems containing model solids: peat. Environ Sci Technol 45:1356–1362.  https://doi.org/10.1021/es1026097 CrossRefPubMedGoogle Scholar
  25. Zhang LW, Petersen EJ, Zhang W et al (2012) Interactions of C-14-labeled multi-walled carbon nanotubes with soil minerals in water. Environ Pollut 166:75–81.  https://doi.org/10.1016/j.envpol.2012.03.008 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Biological Chemical Science and EngineeringJiaxing UniversityJiaxingPR China
  2. 2.Department of Crop and Soil SciencesUniversity of GeorgiaGriffinUSA

Personalised recommendations