Advertisement

Lantana aculeata L.-Mediated Zinc Oxide Nanoparticle-Induced DNA Damage in Sesamum indicum and Their Cytotoxic Activity Against SiHa Cell Line

  • Narendhran Sadasivam
  • Rajiv Periakaruppan
  • Rajeshwari Sivaraj
Chapter

Abstract

Zinc oxide nanoparticles were synthesized by biological method using aqueous extract of Lantana aculeata leaf and characterized by UV-visible spectroscopy, XRD, FTIR, FESEM, HRTEM and EDX analysis. The synthesized particles were highly stable and spherical, and particle size was in the range of 12–25 nm. The cytotoxicity activity of Lantana aculeata-mediated zinc oxide nanoparticles was evaluated by MTT assay against SiHa cervical cancer cell lines and confirmed that zinc oxide nanoparticles have cytotoxicity activity. The genotoxicity of ZnO nanoparticles was evaluated using comet assay and DNA laddering technique. ZnO nanoparticles in Sesamum indicum is yet to be confirmed in the comet assay and DNA laddering experiments. We detected increased level of DNA damage in concentration at 2000 mg L−1 treatment dose of ZnO nanoparticles in Sesamum indicum. The study thus confirms the toxicity potential of ZnO nanoparticles in both plant and human cancer cell line.

Keywords

Comet assay Lantana aculeata Sesamum indicum SiHa cell line Zinc oxide nanoparticles 

Notes

Acknowledgement

I thank the management of Sri Krishna Arts and Science College for providing necessary facilities to carry out the research work and management of Karpagam Academy of Higher Education.

References

  1. Ankamwar B, Damle C, Ahmad A et al (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5(10):1665–1671CrossRefPubMedGoogle Scholar
  2. Atha DH, Wang H, Petersen EJ et al (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827CrossRefPubMedGoogle Scholar
  3. Babu KS, Narayanan V (2013) Hydrothermal synthesis of hydrated zinc oxide nanoparticles and its characterization. Chem Sci Trans 1:S33–S36Google Scholar
  4. Chakraborty R, Mukherjee AK, Mukherjee A (2009) Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test. Environ Monit Assess 153:351–357CrossRefPubMedGoogle Scholar
  5. Chandran SP, Chaudhary M, Pasricha R et al (2006) Synthesis of gold nano triangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583CrossRefPubMedPubMedCentralGoogle Scholar
  6. Choudhury S, Panda SK (2004) Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr) broth under lead (Pb) and arsenic (As) phytotoxicity. Curr Sci 87:342–348Google Scholar
  7. Dakhlaoui A, Jendoubi M, Smiri LS et al (2009) Synthesis, characterization and optical properties of ZnO nanoparticles with controlled size and morphology. J Cryst Growth 311(16):3989–3996CrossRefGoogle Scholar
  8. Day MD, Wiley CJ, Playford J et al (2003) Lantana: current management, status and future prospects. Aust Centre Int Agric Res 5:1–20Google Scholar
  9. Dobhal PK, Kohli RK, Batish DR (2011) Impact of Lantana camara L. invasion on riparian vegetation of Nayar region in Garhwal Himalayas (Uttarakhand, India). J Ecol Nat Environ 3(1):11–22Google Scholar
  10. Elumalai EK, Prasad TNVKV, Venkata K et al (2010) Green synthesis of silver nanoparticles using Euphorbia hirta L. and their antifungal activities. Arch Appl Sci Res 2(6):76–81Google Scholar
  11. Elzey S, Grassian VH (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environmental. J Nanopart Res 12:1945–1958CrossRefGoogle Scholar
  12. Gardea-Torresdey JL, Parsons JG, Gomez E et al (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401CrossRefGoogle Scholar
  13. Harter R, Naidu R (2001) An Assessment of environment and solution parameter impact on trace metal sorption by soil. Soil Sci Soc Am J 3:597–612CrossRefGoogle Scholar
  14. Hiremath J, Sundaram B (2005) The fire-Lantana cycle hypothesis in Indian forests. Conserv Soc 3:26–42Google Scholar
  15. Huang MH, Mao S, Feick H et al (2001) Room temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899CrossRefPubMedGoogle Scholar
  16. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRefGoogle Scholar
  17. Ismail S (2012) Phytoremediation: a green technology. Iran J Plant Physiol 3(1):567–576Google Scholar
  18. Ismail NHHAB, Bakar MA (2004) Synthesis and characterization of silver nanoparticles in nature rubber. Mater Chem Phys 104:276–283Google Scholar
  19. Isobe H, Tanaka T, Maeda R et al (2006) Preparation, purification, characterization and cytotoxicity assessment of water soluble, transition metal free carbon nanotube aggregates. Angew Chem Int Ed 45(40):6676–6680CrossRefGoogle Scholar
  20. Jiang XF, Zhu ZH, Zhou J (1998) Application of comet assay in plant protoplast apoptosis detection. Acta Bot Sinica 40:928–932Google Scholar
  21. Kahru A, Dubourguier H (2010) From ecotoxicology to nano ecotoxicology. Toxicology 296:105–119CrossRefGoogle Scholar
  22. Kasemets K, Ivask A, Dubourguier HC et al (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23:1116–1122CrossRefPubMedGoogle Scholar
  23. Khan S, Qureshi MI, Alam T et al (2007) Protocol for isolation of genomic DNA from dry and fresh roots of medicinal plants suitable for RAPD and restriction digestion. Afr J Biotechnol 6(3):175–178Google Scholar
  24. Krishnan D, Pradeep T (2009) Precursor-controlled synthesis of hierarchical ZnO nanostructures, using oligoaniline coated Au nanoparticle seed. J Cryst Growth 311(15):3889–3897CrossRefGoogle Scholar
  25. Kumarasamyraja D, Jaganathan NS (2013) Antimicrobial activity of silver nanoparticles prepared from the leaf extract of Lantana camara. Int Res J Pharm 4(5):203–207CrossRefGoogle Scholar
  26. Kumarasamyraja D, Jeganathan NS, Manavalan R (2012) Pharmacological Review of Lantana camara L. Int J Pharm Ind Res 2(1):1–5Google Scholar
  27. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246CrossRefPubMedGoogle Scholar
  28. Larson DL, Anderson PJ, Newton W (2001) Alien plant invasion in mixed grass prairie: effects of vegetation type and anthropogenic disturbance. Ecol Appl 11:128–141CrossRefGoogle Scholar
  29. Masciangioli T, Zhang WX (2003) Environmental technologies at the nanoscale. Environ Sci Technol 37:102–108CrossRefGoogle Scholar
  30. Mohanpuria PR, Yadav SK (2009) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517CrossRefGoogle Scholar
  31. Monalisa M, Patra HK (2013) An in vivo study on toxicology alternation in Sesamum indicum L. under hexavalent chromium stress. Int J Sci Res 4(5):2319–7064Google Scholar
  32. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S et al (2014) Physiological effects of nanoparticle ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6(1):132–138CrossRefPubMedGoogle Scholar
  33. Nagarajan S, Kuppusamy A (2013) Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J Nanobiotechnol 11:39CrossRefGoogle Scholar
  34. Narendhran S, Rajiv P, Sivaraj R (2016) Toxicity of ZnO nanoparticles on germinating Sesamum indicum (Co-1) and their antibacterial activity. Bull Mater Sci 39(2):415–421CrossRefGoogle Scholar
  35. Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefPubMedGoogle Scholar
  36. Papis E, Gornati R, Prati M et al (2007) Gene expression in nanotoxicology research: analysis by differential display in BALB3T3 fibroblast exposed to cobalt particles and ions. Toxicol Lett 170(3):185–192CrossRefPubMedGoogle Scholar
  37. Powell M, Griffin M, Tai S (2008) Bottom-up risk regulation? How nanotechnology risk knowledge gaps challenge federal and state environmental agencies. Environ Mgmt 42(3):426–443CrossRefGoogle Scholar
  38. Purakayastha TJ, Bhatnagar RK (1997) Vermicompost: a promising source of plant nutrients. Indian Farming 46:35–37Google Scholar
  39. Raghubanshi AS, Tripathi A (2009) Effect of disturbance, habitat fragmentation and alien invasive plants on floral diversity in dry tropical forests of Vindhyan highland: a review. Trop Ecol 50(1):57–69Google Scholar
  40. Rahman M, Tan, PJ, Faruq G et al (2013) Use of Amaranth (Amaranthus paniculatus) and Indian Mustard (Brassica juncea) for Phytoextraction of lead and copper from contaminated soil. Int J Agric Biol 15:903–908Google Scholar
  41. Reeves JF, Davies SJ, Dodd NJ et al (2007) Hydroxyl radicals (_OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res 640(1):113–122PubMedGoogle Scholar
  42. Roco MC (2003) Broader societal issues of nanotechnology. J Nanopart Res 5:181–189CrossRefGoogle Scholar
  43. Roco MC, Williams S, Alivisatos P (1999) Nanotechnology research directions: IWGN workshop report. Int Tech Res Inst, World Tech. (WTEC) Division RGoogle Scholar
  44. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46(12):2560–2566CrossRefGoogle Scholar
  45. Sankar R, Karthik A, Prabu A et al (2013) Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf B Biointerfaces 108:80–84CrossRefPubMedGoogle Scholar
  46. SCENIHR (2006) The appropriateness of existing methodologies to assess the potential risk associated with engineering and adventitious product of nanotechnologies, EuropeGoogle Scholar
  47. Selvi DA, Gunaseeli R (2004) Turning waste into wealth using vermicomposting. National seminar on “Rural Biotechnology for Sustainable Development”. The Gandhigram Rural Institute, Gandhigram, 19th and 20th February, 23–24Google Scholar
  48. Shankar SS, Ahmad A, Pasricjaa R et al (2003) Bioreduction of chloroaurate ion by geranium leaves and its endophytic fungus yield gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  49. Shankar S, Rai A, Ahmad A et al (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502CrossRefPubMedGoogle Scholar
  50. Sharma GP, Raghubanshi AS (2010) How Lantana invades dry deciduous forest: a case study from Vindhyan highlands, India. Trop Ecol 51(2S):305–316Google Scholar
  51. Sharma OP, Sharma S, Pattabhi V et al (2007) A review of the hepatotoxic plant Lantana camara. J Sci Ind Res 37:313–352Google Scholar
  52. Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout: respiratory toxicity, organ pathologies and other physiological effects. Aquat Toxicol 82(2):94–109CrossRefPubMedGoogle Scholar
  53. Song JYJ, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44(10):1133–1138CrossRefGoogle Scholar
  54. Srivastava SK (2007) Green supply chain management: a state-of-the-art literature review. Int J Manage Rev 9(1):53–80CrossRefGoogle Scholar
  55. Thirumurugan A, Tomy NA, Kumar HP et al (2011) Biological synthesis of silver nanoparticles by Lantana camara leaf extracts. Int J Nanomater Bios 1(2):22–24Google Scholar
  56. Vanaja M, Gnanajobitha G, Paulkumar K et al (2013) Phytosynthesis of silver nanoparticles by ‘Cissus quadrangularis’, influence of physiochemical factors. J Nanostruct Chem 3(1):17–24CrossRefGoogle Scholar
  57. Vanathi P, Rajiv P, Narendhran S, Rajeshwari S et al (2014) Biosynthesis and characterization of phyto mediated zinc oxide nanoparticles: a green chemistry approach. Mater Lett 134:13–15CrossRefGoogle Scholar
  58. Vidhya KM, Saranya TR, Sreelakshmy KR et al (2013) Pharmaceutical solid dispersion technology: a promising tool to enhance oral bioavailability. Int Res J Pharm App Sci 3(5):214–218Google Scholar
  59. Warheit DB (2008) How meaningful are the result of nanotoxicity studies in the absence of adequate material characterization. Toxicol Sci 101(2):183–185CrossRefPubMedGoogle Scholar
  60. Yadav A, Prasad V, Kathe AA et al (2006) Functional finishing in cotton fabric using zinc oxide nanoparticles. Bull Mater Sci 29(6):641–645CrossRefGoogle Scholar
  61. Yang SJ, Park CR (2008) Facile preparation of monodisperse ZnO quantum dots with high quantity photoluminescence characteristics. Nanotechnology 19(3):609–613Google Scholar
  62. Zhang M, Liu X, O'Neill M (2002) Spectral discrimination of Phytophthora infestans infection on tomatoes based on principal component and cluster analyses. Int J Remote Sens 23(6):1095–1107CrossRefGoogle Scholar
  63. Zhang H, Jiang Y, He Z et al (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162(9):977–984CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Narendhran Sadasivam
    • 1
  • Rajiv Periakaruppan
    • 2
  • Rajeshwari Sivaraj
    • 3
  1. 1.Department of BiotechnologySri Krishna Arts and Science CollegeCoimbatoreIndia
  2. 2.Department of BiotechnologySchool of Life Sciences, Karpagam Academy of Higher EducationCoimbatoreIndia
  3. 3.Department of ChemistryGovernment Arts CollegeUdumalpetIndia

Personalised recommendations