Advertisement

Phytotoxic Assessment of Nickel Oxide (NiO) Nanoparticles in Radish

  • Eslam M. Abdel-Salam
  • Ahmad A. Qahtan
  • Mohammad Faisal
  • Quaiser Saquib
  • Abdulrahman A. Alatar
  • Abdulaziz A. Al-Khedhairy
Chapter

Abstract

Nanomaterials are rapidly being used in manufacturing products in our daily life such as biosensors, cosmetics, food packaging, medicines, etc., and these products are coming in the global market approximately at the rate of 3–4 per week. Despite manifold benefits of the power of nanomaterials, there are open questions about how the small-sized materials affect the environment and human health, while very few reports are available on the hazards of nanoparticles. In the present study, we examined the effect of NiO nanoparticles in inducing toxicity, lipid peroxidation and membrane damage, ROS generation, and antioxidant activities. It has been observed that the radish seeds treated with NiO nanoparticles (0.25, 0.5, 1.0, 1.5, and 2.0 mg mL−1) for 4 h had significant effect on seed germination and root growth. Uptake and translocation of NiO nanoparticles into the cytoplasm were confirmed by transmission electron microscopy (TEM), which showed mitochondrial fission, abundance of peroxisomes, and excessive vacuolization. Generation of ROS and membrane damage were qualitatively assessed by the DCF and Rh123 staining. Roots treated with NiO nanoparticles showed remarkable reduction in fluorescence in comparison to control. Concentration-dependent changes in activity of antioxidant enzymes, viz., glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and lipid peroxidation (LPO), were also observed. The data generated by the treatments of NiO nanoparticles in radish will provide a strong background to draw attention on environmental hazards of nanomaterials.

References

  1. Bandyopadhyay S, Plascencia-Villa G, Mukherjee A et al (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515–516:60–69.  https://doi.org/10.1016/j.scitotenv.2015.02.014 CrossRefPubMedGoogle Scholar
  2. Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272:19633–19636.  https://doi.org/10.1074/jbc.272.32.19633 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316.  https://doi.org/10.1074/jbc.272.33.20313 CrossRefPubMedGoogle Scholar
  4. Boonyanitipong P, Kositsup B, Kumar P et al (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinform 282–285.  https://doi.org/10.7763/ijbbb.2011.v1.53
  5. Burklew CE, Ashlock J, Winfrey WB et al (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7:e34783.  https://doi.org/10.1371/journal.pone.0034783 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83(3):463–468CrossRefGoogle Scholar
  7. Cañas JE, Long M, Nations S et al (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931.  https://doi.org/10.1897/08-117.1 CrossRefPubMedGoogle Scholar
  8. Cheng Y, Song C (2006) Hydrogen peroxide homeostasis and signaling in plant cells. Sci China C Life Sci 49:1–11PubMedGoogle Scholar
  9. Corredor E, Testillano PS, Coronado M-J et al (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45.  https://doi.org/10.1186/1471-2229-9-45 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Estrella-Gómez NE, Sauri-Duch E, Zapata-Pérez O et al (2012) Glutathione plays a role in protecting leaves of Salvinia minima from Pb2+ damage associated with changes in the expression of SmGS genes and increased activity of GS. Environ Exp Bot 75:188–194.  https://doi.org/10.1016/j.envexpbot.2011.09.001 CrossRefGoogle Scholar
  11. Faisal M, Saquib Q, Alatar AA et al (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332.  https://doi.org/10.1016/j.jhazmat.2013.01.063 CrossRefPubMedGoogle Scholar
  12. Faisal M, Saquib Q, Alatar AA et al (2016) Cobalt oxide nanoparticles aggravate DNA damage and cell death in eggplant via mitochondrial swelling and NO signaling pathway. Biol Res 49:20.  https://doi.org/10.1186/s40659-016-0080-9 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20.  https://doi.org/10.1083/jcb.200409170 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Geisler-Lee J, Brooks M, Gerfen JR et al (2014) Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials 4:301–318.  https://doi.org/10.3390/nano4020301 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262.  https://doi.org/10.1016/j.chemosphere.2010.09.022 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930.  https://doi.org/10.1016/j.plaphy.2010.08.016 CrossRefPubMedGoogle Scholar
  17. Girotti AW (1998) Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39:1529–1542PubMedGoogle Scholar
  18. Gui X, Deng Y, Rui Y et al (2015) Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environ Sci Pollut Res 22:17716–17723.  https://doi.org/10.1007/s11356-015-4976-7 CrossRefGoogle Scholar
  19. Hammond-Kosack KE, Jones JD (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P et al (2010) A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61:521–535.  https://doi.org/10.1093/jxb/erp321 CrossRefPubMedGoogle Scholar
  21. Indo HP, Davidson M, Yen H-C et al (2007) Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 7:106–118.  https://doi.org/10.1016/j.mito.2006.11.026 CrossRefPubMedGoogle Scholar
  22. Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227.  https://doi.org/10.1021/nn900887m CrossRefPubMedGoogle Scholar
  23. Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223:2799–2806.  https://doi.org/10.1007/s11270-011-1067-3 CrossRefGoogle Scholar
  24. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246.  https://doi.org/10.1016/j.scitotenv.2009.06.024 CrossRefPubMedGoogle Scholar
  25. Kwak JM, Mori IC, Pei ZM et al (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633.  https://doi.org/10.1093/emboj/cdg277 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Landa P, Vankova R, Andrlova J et al (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241–242:55–62.  https://doi.org/10.1016/j.jhazmat.2012.08.059 CrossRefPubMedGoogle Scholar
  27. Landa P, Cyrusova T, Jerabkova J et al (2016) Effect of metal oxides on plant germination: phytotoxicity of nanoparticles, bulk materials, and metal ions. Water Air Soil Pollut 227:448.  https://doi.org/10.1007/s11270-016-3156-9 CrossRefGoogle Scholar
  28. Lee S, Kim S, Kim S et al (2013) Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res 20:848–854.  https://doi.org/10.1007/s11356-012-1069-8 CrossRefGoogle Scholar
  29. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585.  https://doi.org/10.1021/es800422x CrossRefPubMedGoogle Scholar
  30. Lin S, Reppert J, Hu Q et al (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132.  https://doi.org/10.1002/smll.200801556 CrossRefPubMedGoogle Scholar
  31. Liu Q, Zhao Y, Wan Y et al (2010) Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 4:5743–5748.  https://doi.org/10.1021/nn101430g CrossRefPubMedGoogle Scholar
  32. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles – a review. Environ Pollut 172:76–85.  https://doi.org/10.1016/j.envpol.2012.08.011 CrossRefPubMedGoogle Scholar
  33. Majumdar S, Peralta-Videa JR, Bandyopadhyay S et al (2014) Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J Hazard Mater 278:279–287.  https://doi.org/10.1016/j.jhazmat.2014.06.009 CrossRefPubMedGoogle Scholar
  34. Manna I, Bandyopadhyay M (2017) Engineered nickel oxide nanoparticles affect genome stability in Allium cepa (L.). Plant Physiol Biochem 121:206–215.  https://doi.org/10.1016/j.plaphy.2017.11.003 CrossRefPubMedGoogle Scholar
  35. Mehrabi M, Wilson R (2007) Intercalating gold nanoparticles as universal labels for DNA detection. Small 3:1491–1495.  https://doi.org/10.1002/smll.200700230 CrossRefPubMedGoogle Scholar
  36. Montillet J-L, Chamnongpol S, Rustérucci C et al (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138:1516–1526.  https://doi.org/10.1104/pp.105.059907 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mousavi Kouhi SM, Lahouti M, Ganjeali A et al (2015) Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses. Environ Sci Pollut Res Int 22:10733–10743.  https://doi.org/10.1007/s11356-015-4306-0 CrossRefPubMedGoogle Scholar
  38. Nair PMG, Chung IM (2015) Changes in the growth, redox status and expression of oxidative stress related genes in chickpea (Cicer arietinum L.) in response to copper oxide nanoparticle exposure. J Plant Growth Regul 34:350–361.  https://doi.org/10.1007/s00344-014-9468-3 CrossRefGoogle Scholar
  39. Navarro E, Baun A, Behra R et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386.  https://doi.org/10.1007/s10646-008-0214-0 CrossRefPubMedGoogle Scholar
  40. Nhan le V, Ma C, Rui Y et al (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618.  https://doi.org/10.1038/srep11618 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ouédraogo G, Morlière P, Santus R et al (2000) Damage to mitochondria of cultured human skin fibroblasts photosensitized by fluoroquinolones. J Photochem Photobiol B 58:20–25.  https://doi.org/10.1016/S1011-1344(00)00101-9 CrossRefPubMedGoogle Scholar
  42. Qian H, Peng X, Han X et al (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1956.  https://doi.org/10.1016/S1001-0742(12)60301-5 CrossRefGoogle Scholar
  43. Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng 2:105–114.  https://doi.org/10.1016/j.jece.2013.11.029 CrossRefGoogle Scholar
  44. Rizwan M, Ali S, Qayyum MF et al (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16.  https://doi.org/10.1016/j.jhazmat.2016.05.061 CrossRefPubMedGoogle Scholar
  45. Saquib Q, Musarrat J, Siddiqui MA et al (2012) Cytotoxic and necrotic responses in human amniotic epithelial (WISH) cells exposed to organophosphate insecticide phorate. Mutat Res 744:125–134.  https://doi.org/10.1016/j.mrgentox.2012.01.001 CrossRefPubMedGoogle Scholar
  46. Servin AD, Morales MI, Castillo-Michel H et al (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598.  https://doi.org/10.1021/es403368j CrossRefPubMedGoogle Scholar
  47. Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870.  https://doi.org/10.1007/s10495-012-0705-6 CrossRefPubMedGoogle Scholar
  48. Singh N, Jenkins GJS, Nelson BC et al (2012) The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials 33:163–170.  https://doi.org/10.1016/j.biomaterials.2011.09.087 CrossRefPubMedGoogle Scholar
  49. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479.  https://doi.org/10.1021/es901695c CrossRefPubMedGoogle Scholar
  50. Tan X-m, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487.  https://doi.org/10.1016/j.carbon.2009.08.018 CrossRefGoogle Scholar
  51. Tuteja N, Singh MB, Misra MK et al (2001) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36:337–397.  https://doi.org/10.1080/20014091074219 CrossRefPubMedGoogle Scholar
  52. Wang H, Kou X, Pei Z et al (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42.  https://doi.org/10.3109/17435390.2010.489206 CrossRefPubMedGoogle Scholar
  53. Wang X, Yang X, Chen S et al (2016) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6.  https://doi.org/10.3389/fpls.2015.01243
  54. Wang D, Zhao L, Ma H et al (2017) Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: the role of superoxide radicals. Environ Sci Technol 51:10137–10145.  https://doi.org/10.1021/acs.est.7b00473 CrossRefPubMedGoogle Scholar
  55. Wu SG, Huang L, Head J et al (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol Environ Biotechnol.  https://doi.org/10.4172/2157-7463.1000126
  56. Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12:158–169.  https://doi.org/10.1080/17429145.2017.1310944 CrossRefGoogle Scholar
  57. Yao N, Eisfelder BJ, Marvin J et al (2004) The mitochondrion – an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610.  https://doi.org/10.1111/j.1365-313X.2004.02239.x CrossRefPubMedGoogle Scholar
  58. Zhang H, Jiang Y, He Z et al (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984.  https://doi.org/10.1016/j.jplph.2004.10.001 CrossRefPubMedGoogle Scholar
  59. Zhang D, Hua T, Xiao F et al (2015a) Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere 120:211–219.  https://doi.org/10.1016/j.chemosphere.2014.06.041 CrossRefPubMedGoogle Scholar
  60. Zhang R, Zhang H, Tu C et al (2015b) Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22:11109–11117.  https://doi.org/10.1007/s11356-015-4325-x CrossRefGoogle Scholar
  61. Zhang W, Ebbs SD, Musante C et al (2015c) Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.). J Agric Food Chem 63:382–390.  https://doi.org/10.1021/jf5052442 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eslam M. Abdel-Salam
    • 1
  • Ahmad A. Qahtan
    • 1
  • Mohammad Faisal
    • 1
  • Quaiser Saquib
    • 2
  • Abdulrahman A. Alatar
    • 1
  • Abdulaziz A. Al-Khedhairy
    • 2
  1. 1.Department of Botany and Microbiology, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Zoology Department, College of SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations