Advertisement

Nanoparticle-Associated Phytotoxicity and Abiotic Stress Under Agroecosystems

  • Nevien Elhawat
  • Tarek Alshaal
  • Eman Hamad
  • Eman El-Nahrawy
  • Alaa El-Dein Omara
  • Sahar El-Nahrawy
  • Tamer Elsakhawy
  • Azza Ghazi
  • Neama Abdalla
  • Éva Domokos-Szabolcsy
  • Hassan El-Ramady
Chapter

Abstract

The field of nanotechnology has gained a great progress regarding the agriculture and food industry. Thereby, an excessive use of engineered nanomaterials has led to spread huge amounts of nanoscale materials in the agroecosystems. Soil–plant system was and still one of the most environmental compartments regarding the fate and behavior of nanoparticles. This system, which has more than a treasure, also represents the rhizosphere area including dynamic and fate of different nutrients as well as the microbial activity in soils. These treasures include the significance of soil–plant system in plant nutrition, the biogeochemistry of nutrients, pedosphere and its interactions with nutrients, phyto- or bioremediation and biofortification, soil fertilization, and the sustainability of agroecosystem. No doubt that nanoparticles may exhibit both negative and beneficial effects on higher plants including the physiological, molecular, and biochemical parameters of various plant parts. So, there is a crucial need for understanding different biochemical and physical processes of plants associated with the exposure for nanoparticles and evaluating the role of these nanoparticles in either enhancing or retarding these plant features. Therefore, the tasks of nanoparticles in mitigating or ameliorating the plant stress and phytotoxicity should be investigated in more detail. Furthermore, more comprehensive studies are needed in order to perform the expanded knowledge on the alterations induced by different nanoparticles on different plant mechanisms including the biochemical, physiological, and molecular levels. Moreover, long-term investigations are also needed to be conducted to evaluate different roles of nanoparticles in regulating various plant physiological processes under stress. One great mission is also requested regarding the construction of a global database, which would be helpful for setting a global nano-agro-database accessible and useful worldwide.

Notes

Acknowledgement

Authors thank the outstanding contribution of STDF research teams (Science and Technology Development Fund, Egypt) and MBMF/DLR (the Federal Ministry of Education and Research of the Federal Republic of Germany), (Project ID 5310) for their help. Great support from this German-Egyptian Research Fund (GERF) is gratefully acknowledged.

References

  1. Abdel Latef AA, Abu Alhmad MF, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in Lupine (Lupinus termis) plants. J Plant Growth Regul 36:60–70.  https://doi.org/10.1007/s00344-016-9618-x CrossRefGoogle Scholar
  2. Abdel-Haliem MEF, Hegazy HS, Hassan NS et al (2017) Effect of silica ions and nano silica on rice plants under salinity stress. Ecol Eng 99:282–289CrossRefGoogle Scholar
  3. Abhilash PC, Dubey RK, Tripathi V et al (2013a) Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives. Environ Sci Pollut Res 20:5879–5885CrossRefGoogle Scholar
  4. Abhilash PC, Singh B, Srivastava P et al (2013b) Remediation of lindane by Jatropha Curcas L: utilization of multipurpose species for rhizoremediation. Biomass Bioenergy 51:189–193CrossRefGoogle Scholar
  5. Abhilash PC, Tripathi V, Edrisi SA et al (2016) Sustainability of crop production from polluted lands. Energy Ecol Environ 1(1):54–65.  https://doi.org/10.1007/s40974-016-0007-x CrossRefGoogle Scholar
  6. Abiri R, Shaharuddin NA, Maziah M et al (2017) Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environ Exp Bot 134:33–44CrossRefGoogle Scholar
  7. Aghdam MTB, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Braz J Bot 39(1):139–146.  https://doi.org/10.1007/s40415-015-0227-x CrossRefGoogle Scholar
  8. Alves ES, Moura BB, Pedroso ANV et al (2016) Cellular markers indicative of ozone stress on bioindicator plants growing in a tropical environment. Ecol Indic 67:417–424CrossRefGoogle Scholar
  9. Amini S, Maali-Amiri R, Mohammadi R et al (2017) cDNA-AFLP analysis of transcripts induced in chickpea plants by TiO2 nanoparticles during cold stress. Plant Physiol Biochem 111:39–49PubMedCrossRefPubMedCentralGoogle Scholar
  10. Amrhein C, Doner HE (2014) Biogeochemistry of trace elements: reactions in soils. In: Chang AC, Brawer Silva D (eds) Salinity and drainage in San Joaquin Valley, California: science, technology, and policy, global issues in water policy 5. Springer, Dordrecht.  https://doi.org/10.1007/978-94-007-6851-2_5 CrossRefGoogle Scholar
  11. Anawar HM, García-Sánchez A, Hossain MZ (2013) Biogeochemical cycling of arsenic in soil–plant continuum: perspectives for phytoremediation. In: Gupta DK et al (eds) Heavy metal stress in plants. Springer, Berlin.  https://doi.org/10.1007/978-3-642-38469-1_11 CrossRefGoogle Scholar
  12. Anjum NA, Gill SS, Duarte AC et al (2013) Silver nanoparticles in soil–plant systems. J Nanopart Res 15:1896.  https://doi.org/10.1007/s11051-013-1896-7 CrossRefGoogle Scholar
  13. Anjum NA, Adam V, Kizek R et al (2015) Nanoscale copper in the soil–plant system toxicity and underlying potential mechanisms. Environ Res 138:306–325CrossRefPubMedGoogle Scholar
  14. Anjum NA, Rodrigo MAM, Moulick A et al (2016) Transport phenomena of nanoparticles in plants and animals/humans. Environ Res 151:233–243CrossRefPubMedGoogle Scholar
  15. Antisari LV, Laudicina VA, Gatti A et al (2015a) Soil microbial biomass carbon and fatty acid composition of earthworm Lumbricus rubellus after exposure to engineered nanoparticles. Biol Fertil Soils 51:261–269.  https://doi.org/10.1007/s00374-014-0972-1 CrossRefGoogle Scholar
  16. Antisari LV, Carbone S, Gatti A et al (2015b) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22:1841–1853.  https://doi.org/10.1007/s11356-014-3509-0 CrossRefGoogle Scholar
  17. Arruda SCC, Silva ALD, Galazzi RM et al (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705CrossRefPubMedGoogle Scholar
  18. Aslam Z, Khattak JZK, Ahmed M (2017) Drought tolerance in cereal grain crops under changing climate. In: Ahmed M, Stockle CO (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer, Cham, pp 181–209.  https://doi.org/10.1007/978-3-319-32059-5_9 CrossRefGoogle Scholar
  19. Aslani F, Bagheri S, Julkapli NM et al (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 64:165–177Google Scholar
  20. Aziz N, Faraz M, Pandey R et al (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31(42):11605–11612PubMedCrossRefPubMedCentralGoogle Scholar
  21. Azizi S, Tabari M, Strike GG (2017) Growth, physiology, and leaf ion concentration responses to long-term flooding with fresh or saline water of Populus euphratica. S Afr J Bot 108:229–236CrossRefGoogle Scholar
  22. Baetz U (2016) Root exudates as integral part of belowground plant defence. In: Vos CMF, Kazan K (eds) Belowground defence strategies in plants, signaling and communication in plants. Springer, Cham.  https://doi.org/10.1007/978-3-319-42319-7_3 CrossRefGoogle Scholar
  23. Bahadur I, Maurya BR, Kumar A et al (2016) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS et al (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi.  https://doi.org/10.1007/978-81-322-2776-2_18 CrossRefGoogle Scholar
  24. Bai SH, Dempsey R, Reverchon F et al (2017) Effects of forest thinning on soil-plant carbon and nitrogen dynamics. Plant Soil 411:437–449.  https://doi.org/10.1007/s11104-016-3052-5 CrossRefGoogle Scholar
  25. Baiazidi-Aghdam MT, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well watered and drought stress conditions. Braz J Bot 39:139–146CrossRefGoogle Scholar
  26. Bakshi S, He ZLL, Harris WG (2015) Natural nanoparticles: implications for environment and human health. Crit Rev Environ Sci Technol 45:861–904CrossRefGoogle Scholar
  27. Banerjee J, Kole C (2016) Plant nanotechnology: an overview on concepts, strategies, and tools. In: Kole C et al (eds) Plant nanotechnology. Springer, Cham.  https://doi.org/10.1007/978-3-319-42154-4_1 CrossRefGoogle Scholar
  28. Bashan Y, de-Bashan LE, Prabhu SR et al (2014) Advances in plant growth-promoting bacterial inoculant technology: formulation and practical perspectives (1998–2013). Plant Soil 378:1–33CrossRefGoogle Scholar
  29. Baum J, Thiet R (2016) Using soil organisms to explore ecosystem functioning, services, and sustainability. In: Byrne LB (ed) Learner-centered teaching activities for environmental and sustainability studies. Springer, Cham.  https://doi.org/10.1007/978-3-319-28543-6_11 CrossRefGoogle Scholar
  30. Bech J (2014) Potentially harmful elements in soil–plant interactions. J Soil Sediment 14:651–654.  https://doi.org/10.1007/s11368-014-0877-5 CrossRefGoogle Scholar
  31. Belal E, El-Ramady H (2016) Nanoparticles in water, soils and agriculture. In: Ranjan S et al (eds) Nanoscience in food and agriculture 2, Sustainable agriculture reviews 21. Springer, Cham.  https://doi.org/10.1007/978-3-319-39306-3_10 CrossRefGoogle Scholar
  32. Bharti VS, Dotaniya ML, Shukla SP, Yadav VK (2017) Managing soil fertility through microbes: prospects, challenges and future strategies. In: Singh JS, Seneviratne G (eds) Agro-environ mental sustainability. Springer, Cham, pp 81–111.  https://doi.org/10.1007/978-3-319-49724-2_5 CrossRefGoogle Scholar
  33. Blume H-P, Brümmer GW, Fleige H et al (2016) Scheffer/Schachtschabel soil science. Springer, Berlin.  https://doi.org/10.1007/978-3-642-30942-7 CrossRefGoogle Scholar
  34. Boddupalli A, Tiwari R, Sharma A et al (2017). Elucidating the interactions and phytotoxicity of zinc oxide nanoparticles with agriculturally beneficial bacteria and selected crop plants. Folia Microbiol.  https://doi.org/10.1007/s12223-017-0495-x
  35. Bour A, Mouchet F, Silvestre J et al (2015) Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review. J Hazard Mater 283:764–777CrossRefPubMedGoogle Scholar
  36. Bradfield SJ, Kumar P, White JC et al (2017) Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intake from consumption. Plant Physiol Biochem 110:128–137.  https://doi.org/10.1016/j.plaphy.2016.04.008 CrossRefPubMedGoogle Scholar
  37. Buchner O, Roach T, Gertzen J et al (2017) Drought affects the heat-hardening capacity of alpine plants as indicated by changes in xanthophyll cycle pigments, singlet oxygen scavenging, α-tocopherol and planthormones. Environ Exp Bot 133:159–175CrossRefGoogle Scholar
  38. Cai F, Pang G, Miao Y et al (2017) The nutrient preference of plants influences their rhizosphere microbiome. Appl Soil Ecol 110:146–150CrossRefGoogle Scholar
  39. Calanca PP (2017) Effects of abiotic stress in crop production. In: Ahmed M, Stockle CO (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer, Cham, pp 165–180.  https://doi.org/10.1007/978-3-319-32059-5_8 CrossRefGoogle Scholar
  40. Callesen I, Harrison R, Stupak I et al (2016) Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres. Forest Ecol Manage 359:322–331CrossRefGoogle Scholar
  41. Carbone S, Hertel-Aas T, Joner EJ et al (2016) Bioavailability of CeO2 and SnO2 nanoparticles evaluated by dietary uptake in the earthworm Eisenia fetida and sequential extraction of soil and feed. Chemosphere 162:16–22PubMedCrossRefPubMedCentralGoogle Scholar
  42. Cecchin I, Reddy KR, Thomé A et al (2017) Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeter Biodegr 119:419–428CrossRefGoogle Scholar
  43. Chichiricco G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5:851–873PubMedCrossRefPubMedCentralGoogle Scholar
  44. Cong J, Yang Y, Liu X et al (2015) Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession. Sci Rep 5:10007PubMedCrossRefPubMedCentralGoogle Scholar
  45. Contreras-Cornejo HA, Macias-Rodriguez L, del-Val E et al (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92:fiw36CrossRefGoogle Scholar
  46. Cornelis G, Hund-Rinke K, Kuhlbusch T et al (2014) Fate and bioavailability of engineered nano particles in soils: a review. Crit Rev Environ Sci Technol 44:2720–2764CrossRefGoogle Scholar
  47. Cycoń M, Mrozik A, Piotrowska-Seget Z (2017) Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: a review. Chemosphere 172:52–71.  https://doi.org/10.1016/j.chemosphere.2016.12.129 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1):110–119.  https://doi.org/10.1007/s11099-015-0167-5 CrossRefGoogle Scholar
  49. Davaran Hagh E, Mirshekari B, Reza Ardakani M et al (2016) Optimizing phosphorus use in sustainable maize cropping via mycorrhizal inoculation. J Plant Nutr 39:1348–1356CrossRefGoogle Scholar
  50. de la Rosa G, García-Castañeda C, Vázquez-Núñez E et al (2017) Physiological and biochemical response of plants to engineered NMs: implications on future design. Plant Physiol Biochem 110:226–235PubMedCrossRefPubMedCentralGoogle Scholar
  51. de Souza R, Ambrosini A, Passaglia MP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419PubMedCrossRefPubMedCentralGoogle Scholar
  52. Deng YQ, White JC, Xing BS (2014) Interactions between engineered nanomaterials and agricultural crops: implications for food safety. J Zhejiang Univ Sci A 15:552–572CrossRefGoogle Scholar
  53. Dimkpa CO, Bindraban PS, Fugice J et al (2017) Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev 37:5.  https://doi.org/10.1007/s13593-016-0412-8 CrossRefGoogle Scholar
  54. Dinesh R, Anandaraj M, Srinivasan V et al (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27CrossRefGoogle Scholar
  55. Ding F, Wang M, Zhang S (2017) Overexpression of a Calvin cycle enzyme SBPase improves tolerance to chilling-induced oxidative stress in tomato plants. Sci Hortic 214:27–33CrossRefGoogle Scholar
  56. Ebbs SD, Bradfield SJ, Kumar P et al (2016a) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environ Sci Nano 3:114–126, 482Google Scholar
  57. Ebbs SD, Bradfield SJ, Kumar P et al (2016b) Projected dietary intake of zinc, copper, and cerium from consumption of carrot (Daucus carota) exposed to metal oxide nanoparticles or metal ions. Front Plant Sci 7:188.  https://doi.org/10.3389/fpls.2016.00188
  58. Edrisi SA, Abhilash PC (2016) Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario. Renew Sustain Energy Rev 54:1537–1551CrossRefGoogle Scholar
  59. Eichert T, Kurtz A, Steiner U et al (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160CrossRefPubMedGoogle Scholar
  60. El-Ramady HR, Alshaal TA, Shehata SA et al (2014) Plant nutrition: from liquid medium to micro-farm. In: Ozier-Lafontaine H, Lesueur-Jannoyer M (eds) Sustainable agriculture reviews, Agroecology and global change, sustainable agriculture reviews, vol 14. Springer, Cham, p 449.  https://doi.org/10.1007/978-3-319-06016-3_12 CrossRefGoogle Scholar
  61. El-Ramady HR, Domokos-Szabolcsy É, Shalaby TA et al (2015a) Selenium in agriculture: water, air, soil, plants, food, animals and nanoselenium. In: Lichtfouse E et al (eds) CO2 sequestration, biofuels and depollution, environmental chemistry for a sustainable world 5. Springer, Cham.  https://doi.org/10.1007/978-3-319-11906-9_5 CrossRefGoogle Scholar
  62. El-Ramady HR, Abdalla N, Alshaal T et al (2015b) Giant reed for selenium phytoremediation under changing climate. Environ Chem Lett 13:359–380.  https://doi.org/10.1007/s10311-015-0523-5 CrossRefGoogle Scholar
  63. El-Ramady H, Alshaal T, Abdalla N et al (2016a) Selenium and nano-selenium biofortified sprouts using micro-farm systems. In: Bañuelos GS, Lin Z-Q, Guilherme LR, dos Reis AR (eds) Proceedings of the 4th international conference on selenium in the environment and human health, Sao Paulo, Brazil, 18–21 October 2015, pp 189–190. CRC, Taylor & Francis Group, London.  https://doi.org/10.13140/RG2.1.1065.9925 CrossRefGoogle Scholar
  64. El-Ramady H, Abdalla N, Taha HS et al (2016b) Selenium and nano-selenium in plant nutrition. Environ Chem Lett 14:123–147.  https://doi.org/10.1007/s10311-015-0535-1 CrossRefGoogle Scholar
  65. Emadi M, Savasari M, Bahmanyar MA et al (2016) Application of stabilized zero valent iron nanoparticles for immobilization of lead in three contrasting spiked soils. Res Chem Intermed.  https://doi.org/10.1007/s11164-016-2494-y
  66. Espinosa AJF, Oliva SR (2006) The composition and relationships between trace element levels in inhalable atmospheric particles (PM10) and in leaves of Nerium oleander L and Lantana camara L. Chemosphere 62:1665–1672CrossRefGoogle Scholar
  67. Faizan M, Faraz A, Yusuf M et al (2017) Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 55 (in press)Google Scholar
  68. Fernandes JP, Almeida CMR, Andreotti F et al (2017) Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. Sci Total Environ 581–582:801–810.  https://doi.org/10.1016/j.scitotenv.2017.01.015 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Gajapathi P, Vadivel M, Thirunavukarsou A et al (2015) An overview on toxic nanoparticles and their interactions with microbial cells. In: Suresh AK (ed) Co-relating metallic nanoparticle characteristics and bacterial toxicity, Springer briefs in biometals. Springer, Cham.  https://doi.org/10.1007/978-3-319-16796-1_1 CrossRefGoogle Scholar
  70. Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540CrossRefPubMedGoogle Scholar
  71. Ghorbanpour M (2015) Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian J Plant Physiol 20:249–256CrossRefGoogle Scholar
  72. Ghorbanpour M, Hadian J (2015) Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon 94:749–759CrossRefGoogle Scholar
  73. Ghorbanpour M, Hadian J (2017) Engineered nanomaterials and their interactions with plant cells: injury indices and detoxification pathways. In: Ghorbanpour M et al (eds) Nanoscience and plant–soil systems, soil biology, vol 48. Springer, Cham.  https://doi.org/10.1007/978-3-319-46835-8_16 CrossRefGoogle Scholar
  74. Ghorbanpour M, Hatami H (2015) Changes in growth, antioxidant defense system and major essential oils constituents of Pelargonium graveolens plant exposed to nano-scale silver and thidiazuron. Indian J Plant Physiol 20:116–123CrossRefGoogle Scholar
  75. Ghorbanpour M, Hatami M, Hatami M (2015) Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamus niger L plants with nano-sized titanium dioxide and bulk application. Acta Agric Slov 105:23–32CrossRefGoogle Scholar
  76. Ghorbanpour M, Manika K, Varma A (2017) Nanoscience and plant–soil systems, Soil biology series, vol 48. Springer, Cham.  https://doi.org/10.1007/978-3-319-46835-8 CrossRefGoogle Scholar
  77. Gladkova MM, Terekhova VA (2013) Engineered nanomaterials in soil: sources of entry and migration pathways. Moscow Univ Soil Sci Bull 68:129–134.  https://doi.org/10.3103/S0147687413030046 CrossRefGoogle Scholar
  78. Gómez-Merino FC, Trejo-Tellez LI, Alarcon A (2015) Plant and microbe genomics and beyond: potential for developing a novel molecular plant nutrition approach. Acta Physiol Plant 37:208.  https://doi.org/10.1007/s11738-015-1952-2 CrossRefGoogle Scholar
  79. González V, Salinas J, García I et al (2017) Using marble sludge and phytoextraction to remediate metal(loid) polluted soils. J Geochem Explor 174:29–34CrossRefGoogle Scholar
  80. Goswami L, Kim K-H, Deep A et al (2017) Engineered nano particles: nature, behavior, and effect on the environment. J Environ Manage 196:297–315.  https://doi.org/10.1016/j.jenvman.2017.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Grandy AS, Wieder WR, Wickings K et al (2016) Beyond microbes: are fauna the next frontier in soil biogeochemical models? Soil Biol Biochem 102:40–44CrossRefGoogle Scholar
  82. Hasanpour H, Amiri RM, Zeinali H (2015) Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea. Russ J Plant Physiol 62(6):779–787.  https://doi.org/10.1134/S1021443715060096 CrossRefGoogle Scholar
  83. Hatami M, Kariman K, Ghorbanpour M (2016) Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Sci Total Environ 571:275–291PubMedCrossRefPubMedCentralGoogle Scholar
  84. Hegde K, Goswami R, Sarma SJ et al (2015a) Environmental hazards and risks of nanomaterials. In: Brar SK, Zhang TC, Verma M, Surampalli RY, Tyagi RD (eds) Nanomaterials in the environment, 1st edn. American Society of Civil Engineers, Reston, pp 357–382CrossRefGoogle Scholar
  85. Hegde K, Goswami R, Sarma SJ et al (2015b) Nano-ecotoxicology of natural and engineered nanomaterials for different ecosystems. In: Brar SK, Zhang TC, Verma M, Surampalli RY, Tyagi RD (eds) Nanomaterials in the environment, 1st edn. American Society of Civil Engineers, Reston, pp 487–511CrossRefGoogle Scholar
  86. Hegde K, Brar SK, Verma M et al (2016) Current understandings of toxicity, risks and regulations of engineered nanoparticles with respect to environmental microorganisms. Nanotechnol Environ Eng 1:5.  https://doi.org/10.1007/s41204-016-0005-4 CrossRefGoogle Scholar
  87. Hinsinger P, Marschner P (2006) Rhizosphere–perspectives and challenges–a tribute to Lorenz Hiltner 12–17 September 2004- Munich, Germany. Plant Soil 283:vii–viiiCrossRefGoogle Scholar
  88. Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16:26644–26653PubMedCrossRefPubMedCentralGoogle Scholar
  89. Huang M, Chen J, Cao F et al (2016) Rhizosphere processes associated with the poor nutrient uptake in no-tillage rice (Oryza sativa L) at tillering stage. Soil Tillage Res 163:10–13CrossRefGoogle Scholar
  90. Ibekwe AM, Ors S, Ferreira JFS et al (2017) Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought. Sci Total Environ 579:1485–1495CrossRefGoogle Scholar
  91. Idaszkin YL, Lancelotti JL, Pollicelli MP et al (2017) Comparison of phytoremediation potential capacity of Spartina densiflora and Sarcocornia perennis for metal polluted soils. Mar Pollut Bull.  https://doi.org/10.1016/j.marpolbul.2017.03.007
  92. Jacobs R, van der Voet H, ter Braak CJF (2015) Integrated probabilistic risk assessment for nanoparticles: the case of nanosilica in food. J Nanopart Res 17:251.  https://doi.org/10.1007/s11051-015-2911-y CrossRefPubMedPubMedCentralGoogle Scholar
  93. Jain N, Bhargava A, Pareek V et al (2017) Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles? Ecotoxicology 26:238–249.  https://doi.org/10.1007/s10646-017-1758-7 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Jha S, Pudake RN (2016) Molecular mechanism of plant–nanoparticle interactions. In: Kole C et al (eds) Plant nanotechnology. Springer, Cham.  https://doi.org/10.1007/978-3-319-42154-4_7 CrossRefGoogle Scholar
  95. Jha P, Panwar J, Jha PN (2015) Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. Int J Environ Sci Technol 12:789–802.  https://doi.org/10.1007/s13762-014-0515-1 CrossRefGoogle Scholar
  96. Jia Z, Deng J, Chen N et al (2017) Bioremediation of cadmium-dichlorophen co-contaminated soil by spent Lentinus edodes substrate and its effects on microbial activity and biochemical properties of soil. J Soil Sediment 17:315–325.  https://doi.org/10.1007/s11368-016-1562-7 CrossRefGoogle Scholar
  97. Jiang Y, Ding X, Zhang D et al (2017) Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants. Environ Exp Bot 133:70–77CrossRefGoogle Scholar
  98. Joo SH, Zhao D (2017) Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: a review. J Hazard Mater 322(Part A):29–47PubMedCrossRefPubMedCentralGoogle Scholar
  99. Jośko I, Magdalena S, Patryk O (2017a) Nanomaterials–plant–soil system: challanges and threats. In: Ghorbanpour M et al (eds) Nanoscience and plant–soil systems, soil biology, vol 48. Springer, Cham.  https://doi.org/10.1007/978-3-319-46835-8_20 CrossRefGoogle Scholar
  100. Jośko I, Patryk O, Ewa S (2017b) Toxicity of combined mixtures of nanoparticles to plants. J Hazard Mater 331:200–209.  https://doi.org/10.1016/j.jhazmat.2017.02.028 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Kamal AHM, Komatsu S (2016) Jasmonic acid induced protein response to biophoton emissions and flooding stress in soybean. J Proteomics 133:33–47PubMedCrossRefPubMedCentralGoogle Scholar
  102. Karimi E, Fard EM (2017) Nanomaterial effects on soil microorganisms. In: Ghorbanpour M et al (eds) Nanoscience and plant–soil systems, soil biology, vol 48. Springer, Cham.  https://doi.org/10.1007/978-3-319-46835-8_5 CrossRefGoogle Scholar
  103. Karthikeyan R, Kulakow PA (2003) Soil plant microbe interactions in phytoremediation. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 78. Springer, BerlinGoogle Scholar
  104. Kaushal M, Wani SP (2016) Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosyst Environ 231:68–78CrossRefGoogle Scholar
  105. Kayler Z, Keitel C, Jansen K et al (2017) Experimental evidence of two mechanisms coupling leaf-level C assimilation to rhizosphere CO2 release. Environ Exp Bot 135:21–26CrossRefGoogle Scholar
  106. Khan NS, Dixit AK, Mehta R (2016) Nanoparticle toxicity in water, soil, microbes, plant and animals. In: Ranjan S et al (eds) Nanoscience in food and agriculture 2, Sustainable agriculture reviews 21. Springer, Cham.  https://doi.org/10.1007/978-3-319-39306-3_9 CrossRefGoogle Scholar
  107. Khan MN, Mobin M, Abbas ZK et al (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209.  https://doi.org/10.1016/j.plaphy.2016.05.038 CrossRefPubMedGoogle Scholar
  108. Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci U S A 108:1028–1033PubMedCrossRefPubMedCentralGoogle Scholar
  109. Kirkby EA, Johnston AE (2008) Soil and fertilizer phosphorus in relation to crop nutrition. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, DordrechtGoogle Scholar
  110. Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851CrossRefPubMedGoogle Scholar
  111. Kumar V, Kumar M, Shrivastava N et al (2016) Interaction among rhizospheric microbes, soil, and plant roots: influence on micronutrient uptake and bioavailability. In: Hakeem KR, Akhtar MS (eds) Plant, soil and microbes. Springer, Cham.  https://doi.org/10.1007/978-3-319-29573-2_8 CrossRefGoogle Scholar
  112. Kwak J, An Y-J (2016) The current state of the art in research on engineered nanomaterials and terrestrial environments: different-scale approaches. Environ Res 151:368–382.  https://doi.org/10.1016/j.envres.2016.08.005 PubMedCrossRefPubMedCentralGoogle Scholar
  113. Łabanowska M, Kurdziel M, Filek M (2016) Changes of paramagnetic species in cereal grains upon short-term ozone action as a marker of oxidative stress tolerance. J Plant Physiol 190:54–66PubMedCrossRefPubMedCentralGoogle Scholar
  114. Lambers H, Bultynck L, Zhu Y-G (2007) Marschner reviews: a new initiative in delivering cutting-edge science in soil–plant interactions. Plant Soil 300:1–7.  https://doi.org/10.1007/s11104-007-9259-8 CrossRefGoogle Scholar
  115. Landa P, Cyrusova T, Jerabkova J et al (2016) Effect of metal oxides on plant germination: phytotoxicity of nanoparticles, bulk materials, and metal ions. Water Air Soil Pollut 227:448.  https://doi.org/10.1007/s11270-016-3156-9 CrossRefGoogle Scholar
  116. Larsen J, Jaramillo-López P, Nájera-Rincon MB et al (2015) Biotic interactions in the rhizosphere in relation to plant and soil nutrient dynamics. J Soil Sci Plant Nutr 15:449–463Google Scholar
  117. Larsen J, Pineda-Sánchez H, Delgado-Arellano I et al (2017) Interactions between microbial plant growth promoters and their effects on maize growth performance in different mineral and organic fertilization scenarios. Rhizosphere 3:75–81.  https://doi.org/10.1016/j.rhisph.2017.01.003 CrossRefGoogle Scholar
  118. Lemtiri A, Liénard A, Alabi T et al (2016) Earthworms Eisenia fetida affect the uptake of heavy metals by plants Vicia faba and Zea mays inmetal-contaminated soils. Appl Soil Ecol 104:67–78CrossRefGoogle Scholar
  119. Li Q, Yang Y, Bao X et al (2016a) Cultivar specific plant-soil feedback overrules soil legacy effects of elevated ozone in a rice-wheat rotation system. Agric Ecosyst Environ 232:85–92CrossRefGoogle Scholar
  120. Li Q, Chen X, Zhuang J et al (2016b) Decontaminating soil organic pollutants with manufactured nanoparticles. Environ Sci Pollut Res 23:11533–11548.  https://doi.org/10.1007/s11356-016-6255-7 CrossRefGoogle Scholar
  121. Li H, Yang S, Xu Z et al (2017) Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation. Soil Biol Biochem 104:18–29CrossRefGoogle Scholar
  122. Liang Y, Zhu Y-G, Smith FA et al (2010) Soil-plant interactions and sustainability of eco-agriculture in arid region: a crucially important topic to address. Plant Soil 326:1–2.  https://doi.org/10.1007/s11104-009-0208-6 CrossRefGoogle Scholar
  123. Liang Y, Nikolic M, Bélanger R et al (2015) Silicon biogeochemistry and bioavailability in soil. In: Liang Y et al (eds) Silicon in agriculture. Springer, Dordrecht.  https://doi.org/10.1007/978-94-017-9978-2_3 CrossRefGoogle Scholar
  124. Lin SJ, Reppert J, Hu Q et al (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132PubMedCrossRefPubMedCentralGoogle Scholar
  125. Loh SK, Cheong KY, Salimon J (2017) Surface-active physicochemical characteristics of spent bleaching earth on soil-plant interaction and water-nutrient uptake: a review. Appl Clay Sci 140:59–65CrossRefGoogle Scholar
  126. Loreti E, van Veen H, Perata P (2016) Plant responses to flooding stress. Curr Opin Plant Biol 33:64–71PubMedCrossRefPubMedCentralGoogle Scholar
  127. Lu H-D, Xue J-Q, Guo D-W (2017) Efficacy of planting date adjustment as a cultivation strategy to cope with drought stress and increase rainfed maize yield and water-use efficiency. Agric Water Manage 179:227–235CrossRefGoogle Scholar
  128. Luo P, Roca A, Tiede K et al (2018) Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems. J Environ Sci 64:62–71CrossRefGoogle Scholar
  129. Ma X, Gao C (2015) Uptake and accumulation of engineered nanomaterials and their phytotoxicity to agricultural crops. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer, Cham.  https://doi.org/10.1007/978-3-319-14024-7_14 CrossRefGoogle Scholar
  130. Machado J, Campos A, Vasconcelos V et al (2017) Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: a review of their relevance for agricultural plantquality and public health. Environ Res 153:191–204PubMedCrossRefPubMedCentralGoogle Scholar
  131. Mahmood A, Turgay OC, Farooq M et al (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92(fiw112)PubMedCrossRefPubMedCentralGoogle Scholar
  132. Mansouri T, Golchin A, Neyestani MR (2017) The effects of hematite nanoparticles on phytoavailability of arsenic and corn growth in contaminated soils. Int J Environ Sci Technol.  https://doi.org/10.1007/s13762-017-1324-0
  133. Martínez-Fernández D, Vítková M, Bernal MP et al (2015) Effects of nano-maghemite on trace element accumulation and drought response of Helianthus annuus L in a contaminated mine soil. Water Air Soil Pollut 226:101.  https://doi.org/10.1007/s11270-015-2365-y CrossRefGoogle Scholar
  134. Matychenkov IV, Khomyakov DM, Pakhnenko EP et al (2016) Mobile Si-rich compounds in the soil–plant system and methods for their determination. Mosc Univ Soil Sci Bull 71(3):120–128.  https://doi.org/10.3103/S0147687416030054 CrossRefGoogle Scholar
  135. Mehrian SK, Heidari R, Rahmani F (2015) Effect of silver nanoparticles on free amino acids content and antioxidant defense system of tomato plants. Indian J Plant Physiol 20(3):257–263.  https://doi.org/10.1007/s40502-015-0171-6 CrossRefGoogle Scholar
  136. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239CrossRefPubMedGoogle Scholar
  137. Mohammadi R, Maali-Amiri R, Abbasi A (2013) Effect of TiO2 nanoparticles on chickpea response to cold stress. Biol Trace Elem Res 152:403–410.  https://doi.org/10.1007/s12011-013-9631-x CrossRefPubMedPubMedCentralGoogle Scholar
  138. Mohammadi R, Maali-Amiri R, Mantri NL (2014) Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ J Plant Physiol 61(6):768–775.  https://doi.org/10.1134/S1021443714050124 CrossRefGoogle Scholar
  139. Monreal CM, DeRosa M, Mallubhotla SC et al (2016) Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils 52:423–437.  https://doi.org/10.1007/s00374-015-1073-5 CrossRefGoogle Scholar
  140. Mousavi Kouhi SM, Lahouti M, Ganjeali A et al (2015) Comparative effects of ZnO nanoparticles, ZnO bulk particles, and Zn2+ on Brassica napus after long-term exposure: changes in growth, biochemical compounds, antioxidant enzyme activities, and Zn bioaccumulation. Water Air Soil Pollut 226.  https://doi.org/10.1007/s11270-015-2628-7.590
  141. Mukherjee A, Majumdar S, Servin AD et al (2016a) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172.  https://doi.org/10.3389/fpls.2016.00172 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Mukherjee A, Sun Y, Morelius E et al (2016b) Differential toxicity of bare and hybrid ZnO nanoparticles in green pea (Pisum sativum L): a life cycle study. Front Plant Sci 6:1242.  https://doi.org/10.3389/fpls.2015.01242 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Mukhopadhyay SS, Kaur N (2016) Nanotechnology in soil-plant system. In: Kole C et al (eds) Plant nanotechnology. Springer, Cham.  https://doi.org/10.1007/978-3-319-42154-4_13 CrossRefGoogle Scholar
  144. Mustafa G, Sakata K, Komatsu S (2015) Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteomics 128:280–297PubMedCrossRefPubMedCentralGoogle Scholar
  145. Mustafa G, Sakata K, Komatsu S (2016) Proteomic analysis of soybean root exposed to varying sizes of silver nanoparticles under flooding stress. J Proteomics 148:113–125PubMedCrossRefPubMedCentralGoogle Scholar
  146. Nair R (2016) Effects of nanoparticles on plant growth and development. In: Kole C et al (eds) Plant nanotechnology. Springer, Cham.  https://doi.org/10.1007/978-3-319-42154-4_5 CrossRefGoogle Scholar
  147. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate mate rial delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  148. Nankishore A, Farrell AD (2016) The response of contrasting tomato genotypes to combined heat and drought stress. J Plant Physiol 202:75–82PubMedCrossRefPubMedCentralGoogle Scholar
  149. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22.  https://doi.org/10.1016/j.envpol.2007.06.006 CrossRefPubMedGoogle Scholar
  150. Nxele X, Klein A, Ndimba BK (2017) Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. S Afr J Bot 108:261–266CrossRefGoogle Scholar
  151. Ohama N, Sato H, Shinozaki K et al (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22(1):53–65.  https://doi.org/10.1016/j.tplants.2016.08.015 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Osman KT (2013) Soil as a part of the lithosphere. In: Osman KT (ed) Soils: principles, properties and management. Springer, Dordrecht.  https://doi.org/10.1007/978-94-007-5663-2_2 CrossRefGoogle Scholar
  153. Oukarroum A, Bras S, Perreault F et al (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85PubMedCrossRefPubMedCentralGoogle Scholar
  154. Oyelami AO, Semple KT (2015) Impact of carbon nanomaterials on microbial activity in soil. Soil Biol Biochem 86:172–180CrossRefGoogle Scholar
  155. Pacheco I, Buzea C (2017) Nanoparticle interaction with plants. In: Ghorbanpour M et al (eds) Nanoscience and plant-soil systems, Soil biology, vol 48. Springer, Cham.  https://doi.org/10.1007/978-3-319-46835-8_12 CrossRefGoogle Scholar
  156. Peijnenburg W, Praetorius A, Scott-Fordsmand J et al (2016) Fate assessment of engineered nano particles in solids dominated media – current insights and the way forward. Environ Pollut 218:1365–1369PubMedCrossRefPubMedCentralGoogle Scholar
  157. Pereg L, de-Bashan LE, Bashan Y (2016) Assessment of affinity and specificity of Azospirillum for plants. Plant Soil 399:389–414CrossRefGoogle Scholar
  158. Pérez G, Doldán S, Scavone P et al (2016) Osmotic stress alters UV-based oxidative damage tolerance in a heterocyst forming cyanobacterium. Plant Physiol Biochem 108:231–240PubMedCrossRefPubMedCentralGoogle Scholar
  159. Perlatti F, Ferreira TO, Sartor LR et al (2016) Copper biogeochemistry in response to rhizosphere soil processes under four native plant species growing spontaneously in an abandoned mine Site in NE Brazil. Water Air Soil Pollut 227:142.  https://doi.org/10.1007/s11270-016-2840-0 CrossRefGoogle Scholar
  160. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332CrossRefPubMedGoogle Scholar
  161. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 963961.  https://doi.org/10.1155/2014/963961
  162. Prasad R, Shivay YS (2016) Sulphur in soil, plant and human nutrition. Proc Natl Acad Sci India Sect B Biol Sci.  https://doi.org/10.1007/s40011-016-0769-0
  163. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis? Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(2):316–330PubMedCrossRefGoogle Scholar
  164. Prasad PV, Bheemanahalli R, Jagadish SVK (2017) Field crops and the fear of heat stress: opportunities, challenges and future directions. Field Crop Res 200:114–121CrossRefGoogle Scholar
  165. Pulimi M, Subramanian S (2016) Nanomaterials for soil fertilisation and contaminant removal. In: Ranjan S et al (eds) Nanoscience in food and agriculture 1, Sustainable agriculture reviews, vol 20. Springer, Cham, pp 229–246.  https://doi.org/10.1007/978-3-319-39303-2_8 CrossRefGoogle Scholar
  166. Rani PU, Yasur J, Loke KS et al (2016) Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. Acta Physiol Plant 38:58.  https://doi.org/10.1007/s11738-016-2074-1 CrossRefGoogle Scholar
  167. Rao S, Shekhawat GS (2016) Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea. 3 Biotech 6:244.  https://doi.org/10.1007/s13205-016-0550-3 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Reddy PVL, Hernandez-Viezcas JA, Peralta-Videa JR et al (2016) Lessons learned: are engineered nanomaterials toxic to terrestrial plants? Sci Total Environ 568:470–479CrossRefPubMedGoogle Scholar
  169. Ren Y, Geng J, Li F et al (2016) The oxidative stress in the liver of Carassius auratus exposed to acesulfame and its UV irradiance products. Sci Total Environ 571:755–762PubMedCrossRefPubMedCentralGoogle Scholar
  170. Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In: Siddiqui MH et al (eds) Nanotechnology and plant sciences. Springer, Cham.  https://doi.org/10.1007/978-3-319-14502-0_1 CrossRefGoogle Scholar
  171. Rinklebe J, Kumpiene J, Laing GD et al (2017) Biogeochemistry of trace elements in the environment – editorial to the special issue. J Environ Manage 186(Part 2):127–130PubMedCrossRefPubMedCentralGoogle Scholar
  172. Rodrigues SM, Trindade T, Duarte AC et al (2016) A framework to measure the availability of engineered nanoparticles in soils: trends in soil tests and analytical tools. Trends Anal Chem 75:129–140CrossRefGoogle Scholar
  173. Romero-Olivares AL, Allison SD, Treseder KK (2017) Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol Biochem 107:32–40CrossRefGoogle Scholar
  174. Rossini MA, Maddonni GA, Otegui ME (2016) Multiple abiotic stresses on maize grain yield determination: additive vs. multiplicative effects. Field Crop Res 198:280–289CrossRefGoogle Scholar
  175. Rugova A, Puschenreiter M, Koellensperger G et al (2017) Elucidating rhizosphere processes by mass spectrometry: a review. Anal Chim Acta.  https://doi.org/10.1016/j.aca.2016.12.044
  176. Saha JK, Selladurai R, Coumar MV et al (2017) Soil pollution: an emerging threat to agriculture. Environmental chemistry for a sustainable world, vol 10. Springer, Singapore.  https://doi.org/10.1007/978-981-10-4274-4 CrossRefGoogle Scholar
  177. Schaumann GE, Philippe A, Bundschuh M et al (2015a) Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19PubMedCrossRefPubMedCentralGoogle Scholar
  178. Schaumann GE, Baumann T, Lang F et al (2015b) Engineered nanoparticles in soils and waters. Sci Total Environ 535:1–2PubMedCrossRefPubMedCentralGoogle Scholar
  179. Schlich K, Hund-Rinke K (2015) Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321–330CrossRefPubMedGoogle Scholar
  180. Schnepf A, Leitner D, Klepsch S et al (2011) Modelling phosphorus dynamics in the soil–plant system. In: Beunemann EK et al (eds) Phosphorus in action, soil biology, vol 26. Springer, Berlin.  https://doi.org/10.1007/978-3-642-15271-9_5 CrossRefGoogle Scholar
  181. Schwab F, Zhai G, Kern M et al (2015) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – critical review. Nanotoxicology 10:257–278PubMedPubMedCentralGoogle Scholar
  182. Servin AD, White JC (2016) Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. Nano Impact 1:9–12Google Scholar
  183. Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC (2017a) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. In: de Voogt P (ed) Reviews of environmental contamination and toxicology, vol 241. Springer, Cham, pp 73–137.  https://doi.org/10.1007/398_2016_8 CrossRefGoogle Scholar
  184. Shahid M, Dumat C, Khalid S et al (2017b) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58PubMedCrossRefPubMedCentralGoogle Scholar
  185. Shalaby T, Bayoumi Y, Abdalla N, Taha H, Alshaal T, Shehata S, Amer M, Domokos-Szabolcsy E, El-Ramady H (2016) Nanoparticles, soils, plants and sustainable agriculture. In: Ranjan S et al (eds) Nanoscience in food and agriculture 1, Sustainable agriculture reviews, vol 20. Springer, Cham.  https://doi.org/10.1007/978-3-319-39303-2_10 CrossRefGoogle Scholar
  186. Shang Q, Ling N, Feng X et al (2014) Soil fertility and its significance to crop productivity and sustainability in typical agroecosystem: a summary of long-term fertilizer experiments in China. Plant Soil 381:13–23.  https://doi.org/10.1007/s11104-014-2089-6 CrossRefGoogle Scholar
  187. Shao H, Lu H, Xu G et al (2017) Integration into plant biology and soil science has provided insights into the total environment. Sci Total Environ 579:928–929PubMedCrossRefPubMedCentralGoogle Scholar
  188. Sharma VK, McDonald TJ, Sohn M et al (2015) Biogeochemistry of selenium: a review. Environ Chem Lett 13:49–58.  https://doi.org/10.1007/s10311-014-0487-x CrossRefGoogle Scholar
  189. Sheikh Mohammadi MH, Etemadi N, Mehdi Arab M et al (2017) Molecular and physiological responses of Iranian Perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress. Plant Physiol Biochem 111:129–143PubMedCrossRefPubMedCentralGoogle Scholar
  190. Shen Z, Wang Y, Chen Y et al (2017) Transfer of heavy metals from the polluted rhizosphere soil to Celosia argentea L in copper mine tailings. Hortic Environ Biotechnol 58(1):93–100.  https://doi.org/10.1007/s13580-017-0077-5 CrossRefGoogle Scholar
  191. Shukla PK, Misra P, Kole CH (2016) Uptake, translocation, accumulation, transformation, and generational transmission of nanoparticles in plants. In: Kole C et al (eds) Plant nanotechnology. Springer, Cham.  https://doi.org/10.1007/978-3-319-42154-4_8 CrossRefGoogle Scholar
  192. Siddiqi KS, Husen A (2016a) Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett 11:400PubMedCrossRefPubMedCentralGoogle Scholar
  193. Siddiqi KS, Husen A (2016b) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale Res Lett 11:363.  https://doi.org/10.1186/s11671-016-1580-9 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Siddiqi KS, Husen A (2017a) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23PubMedCrossRefPubMedCentralGoogle Scholar
  195. Siddiqi KS, Husen A (2017b) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92.  https://doi.org/10.1186/s11671-017-1861-y CrossRefPubMedPubMedCentralGoogle Scholar
  196. Siddiqui MH, Al-Whaibi MH, Faisal M et al (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437CrossRefPubMedGoogle Scholar
  197. Siddiqui MH, Al-Whaibi MH, Mohammad F (2015) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer, ChamCrossRefGoogle Scholar
  198. Singh RL (2017) Principles and applications of environmental biotechnology for a sustainable future, Applied environmental science and engineering for a sustainable future series. Springer, Singapore.  https://doi.org/10.1007/978-981-10-1866-4 CrossRefGoogle Scholar
  199. Singh N, Srivastava S, Rathaur S et al (2016) Assessing the bioremediation potential of arsenic tolerant bacterial strains in rice rhizosphere interface. J Environ Sci 48:112–119CrossRefGoogle Scholar
  200. Sinha R, Gupta A, Senthil-Kumar M (2016) Understanding the impact of drought on foliar and xylem invading bacterial pathogen stress in chickpea. Front Plant Sci 7:902.  https://doi.org/10.3389/fpls.2016.00902 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer, Cham.  https://doi.org/10.1007/978-3-319-14024-7_4 CrossRefGoogle Scholar
  202. Statwick J, Sher A (2017) Selenium in soils of western Colorado. J Arid Environ 137:1–6CrossRefGoogle Scholar
  203. Subramanian KS, Thirunavukkarasu M (2017) Nano-fertilizers and nutrient transformations in soil. In: Ghorbanpour M, Manika K, Varma A (eds) Nanoscience and plant-soil systems, Soil bio logy, vol 48. Springer, Cham, pp 305–319CrossRefGoogle Scholar
  204. Sun R-J, Chen J-H, Fan T-T et al (2016) Effect of nanoparticle hydroxyapatite on the immobilization of Cu and Zn in polluted soil. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-016-8063-5
  205. Sushkova S, Minkina T, Deryabkina I et al (2016) Features of accumulation, migration, and transformation of benzo[a]pyrene in soil-plant system in a model condition of soil contamination. J Soil Sediment.  https://doi.org/10.1007/s11368-016-1634-8
  206. Suzuki N, Rivero RM, Shulaev V et al (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43.  https://doi.org/10.1111/nph.12797 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Tarafdar JC, Xiang Y, Wang W-N et al (2012) Standardization of size, shape and concentration of nanoparticle for plant application. Appl Biol Res 14:138–144Google Scholar
  208. Taran N, Storozhenko V, Svietlova N et al (2017) Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res Lett 12:60.  https://doi.org/10.1186/s11671-017-1839-9 CrossRefPubMedPubMedCentralGoogle Scholar
  209. Tassi E, Giorgetti L, Morelli E, Peralta-Videa JR, Gardea-Torresdey JL, Barbafieri M (2017) Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: modulation of boron phytotoxicity. Plant Physiol Biochem 110:50–58CrossRefPubMedGoogle Scholar
  210. Terekhova VA, Gladkova M (2013) Engineered nanomaterials in soil: problems in assessing their effect on living organisms. Eurasian Soil Sci 46:1203–1210.  https://doi.org/10.1134/S1064229314010128 CrossRefGoogle Scholar
  211. Terekhova V, Gladkova M, Milanovskiy E, Kydralieva K (2017) Engineered nanomaterials’ effects on soil properties: problems and advances in investigation. In: Ghorbanpour M et al (eds) Nanoscience and plant–soil systems, Soil biology, vol 48. Springer, Cham.  https://doi.org/10.1007/978-3-319-46835-8_4 CrossRefGoogle Scholar
  212. Thiruvengadam M, Gurunathan S, Chung I-M (2015) Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L). Protoplasma 252:1031–1046.  https://doi.org/10.1007/s00709-014-0738-5 CrossRefPubMedPubMedCentralGoogle Scholar
  213. Thit A, Banta GT, Selck H (2015) Bioaccumulation, subcellular distribution and toxicity of sediment-associated copper in the ragworm Nereis diversicolor: the relative importance of aqueous copper, copper oxide nanoparticles and microparticles. Environ Pollut 202:50–57PubMedCrossRefPubMedCentralGoogle Scholar
  214. Thul ST, Sarangi BK (2015) Implications of nanotechnology on plant productivity and its rhizospheric environment. In: Siddiqui MH et al (eds) Nanotechnology and plant sciences. Springer, Cham.  https://doi.org/10.1007/978-3-319-14502-0_3 CrossRefGoogle Scholar
  215. Tiede K, Hassell M, Breitbarth E et al (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr 1216:503–509CrossRefGoogle Scholar
  216. Tolaymat T, Genaidy A, Abdelraheem W et al (2017) The effects of metallic engineered nanoparticles upon plant systems: an analytic examination of scientific evidence. Sci Total Environ 579:93–106PubMedCrossRefPubMedCentralGoogle Scholar
  217. Tripathi V, Dubey RK, Edrisi SA et al (2014a) Towards the ecological profiling of a pesticide contaminated soil site for remediation and management. Ecol Eng 71:318–325CrossRefGoogle Scholar
  218. Tripathi V, Dubey RK, Singh N et al (2014b) Is Vigna radiata is suitable for cropping in lindane contaminated soil? Ecol Eng 73:219–223CrossRefGoogle Scholar
  219. Tripathi V, Fraceto LF, Abhilash PC (2015a) Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant–microbe–pollutant and climate nexus. Ecol Eng 82:330–335CrossRefGoogle Scholar
  220. Tripathi V, Abhilash PC, Singh HB et al (2015b) Effect of temperature variation on lindane dissipation and microbial activity in soils. Ecol Eng 79:54–59CrossRefGoogle Scholar
  221. Tripathi DK, Singh VP, Swati S et al (2016a) Effect of silicon and silicon nanoparticle (SiNp) on seedlings of maize cultivar and hybrid differing in arsenate tolerance. Front Environ Sci 4:46.  https://doi.org/10.3389/fenvs.2016.00046 CrossRefGoogle Scholar
  222. Tripathi DK, Singh S, Shweta S et al (2016b) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177.  https://doi.org/10.1016/j.plaphy.2016.06.015 CrossRefPubMedPubMedCentralGoogle Scholar
  223. Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2016c) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticuma estivum) seedlings. Plant Physiol Biochem 110:70–81.  https://doi.org/10.1016/j.plaphy.2016.06.026 CrossRefPubMedPubMedCentralGoogle Scholar
  224. Tripathi DK, Shweta SS, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12CrossRefPubMedGoogle Scholar
  225. Tripathi DK, Shweta S, Singh S et al (2017a) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12CrossRefPubMedGoogle Scholar
  226. Tripathi DK, Singh S, Singh VP et al (2017b) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81CrossRefGoogle Scholar
  227. Van Koetsem F, Verstraete S, Wallaert E et al (2017) Use of filtration techniques to study environmental fate of engineered metallic nanoparticles: factors affecting filter performance. J Hazard Mater 322(Part A):105–117PubMedCrossRefPubMedCentralGoogle Scholar
  228. Venkatachalam P, Priyanka N, Manikandan K et al (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L). Plant Physiol Biochem 110:118–127.  https://doi.org/10.1016/j.plaphy.2016.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  229. Verdaguer D, Jansen MAK, Llorens L et al (2017) UV-A radiation effects on higher plants: exploring the known unknown. Plant Sci 255:72–81PubMedCrossRefPubMedCentralGoogle Scholar
  230. Verma SK, Trivedi P, Gupta AK et al (2017) Aromatic plant–microbe associations: a sustainable approach for remediation of polluted soils. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability. Springer, Cham.  https://doi.org/10.1007/978-3-319-49727-3_5 CrossRefGoogle Scholar
  231. Vimal SR, Singh JS, Arora NK et al (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27(2):177–192CrossRefGoogle Scholar
  232. Wang M, Gao B, Tang D (2016) Review of key factors controlling engineered nanoparticle transport in porous media. J Hazard Mater 318:233–246PubMedCrossRefPubMedCentralGoogle Scholar
  233. Wani SH, Kumar V, Shriram V et al (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4(3):162–176CrossRefGoogle Scholar
  234. Watson J-L, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101–112.  https://doi.org/10.1007/s10534-014-9806-8 CrossRefPubMedGoogle Scholar
  235. White Philip J, Hammond JP (2008) Phosphorus nutrition of terrestrial plants. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, DordrechtCrossRefGoogle Scholar
  236. Xie Y, Dong H, Zeng G et al (2017) The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: a review. J Hazard Mater 321:390–407PubMedCrossRefPubMedCentralGoogle Scholar
  237. Xu J, Zhang M, Liu G et al (2016) Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings. Plant Physiol Biochem 109:561–570PubMedCrossRefPubMedCentralGoogle Scholar
  238. Xu Y, Liang X, Xu Y et al (2017) Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere 27(2):193–204CrossRefGoogle Scholar
  239. Xuan Y, Zhou ZS, Li HB et al (2016) Identification of a group of XTHs genes responding to heavy metal mercury, salinity and drought stresses in Medicago truncatula. Ecotoxicol Environ Saf 132:153–163PubMedCrossRefPubMedCentralGoogle Scholar
  240. Yadav S (2017) Potentiality of earthworms as bioremediating agent for nanoparticles. In: Ghorbanpour M et al (eds) Nanoscience and plant–soil systems, soil biology, vol 48. Springer, Cham.  https://doi.org/10.1007/978-3-319-46835-8_8 CrossRefGoogle Scholar
  241. Yadav RS, Meena SC, Patel SI et al (2012) Bioavailability of soil P for plant nutrition. In: Lichtfouse E (ed) Farming for food and water security, sustainable 177 Agriculture reviews 10. Springer, Dordrecht.  https://doi.org/10.1007/978-94-007-4500-1_8 CrossRefGoogle Scholar
  242. Yadav T, Mungray AA, Mungray AK (2014) Fabricated nanoparticles: current status and potential phytotoxic threats. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer, ChamGoogle Scholar
  243. Yang X-E, Chen W-R, Feng Y (2007) Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. Environ Geochem Health 29:413–428.  https://doi.org/10.1007/s10653-007-9086-0 CrossRefPubMedPubMedCentralGoogle Scholar
  244. Ye-Tao TA, Teng-Hao-Bo DE, Qi-Hang WU (2012) Designing cropping systems for metal-contaminated sites: a review. Pedosphere 22:470–488CrossRefGoogle Scholar
  245. Yu R, Wu J, Liu M et al (2016) Physiological and transcriptional responses of Nitrosomonas euro paea to TiO2 and ZnO nanoparticles and their mixtures. Environ Sci Pollut Res 23:13023–13034.  https://doi.org/10.1007/s11356-016-6469-8 CrossRefGoogle Scholar
  246. Zech W (2016) Geology and soils. In: Pancel L, Koehl M (eds) Tropical forestry handbook. Springer, Berlin.  https://doi.org/10.1007/978-3-642-54601-3_96 CrossRefGoogle Scholar
  247. Zhang P, Ma Y, Zhang Z (2015) Interactions between engineered nanomaterials and plants: phytotoxicity, uptake, translocation, and biotransformation. In: Siddiqui MH et al (eds) Nanotechnology and plant sciences. Springer, Cham.  https://doi.org/10.1007/978-3-319-14502-0_5 CrossRefGoogle Scholar
  248. Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380PubMedCrossRefPubMedCentralGoogle Scholar
  249. Zhao LJ, Peralta-Videa JR, Rico CM et al (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759.  https://doi.org/10.1021/Jf405476u CrossRefPubMedGoogle Scholar
  250. Zhu YG, Duan GL, Chen BD et al (2014) Mineral weathering and element cycling in soil-microorganism-plant system. Sci China Earth Sci 57:888–896.  https://doi.org/10.1007/s11430-014-4861-0 CrossRefGoogle Scholar
  251. Zuverza-Mena N, Martínez-Fernández D, Du W et al (2017) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses – a review. Plant Physiol Biochem 110:236–264CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nevien Elhawat
    • 1
  • Tarek Alshaal
    • 2
  • Eman Hamad
    • 3
  • Eman El-Nahrawy
    • 3
  • Alaa El-Dein Omara
    • 3
  • Sahar El-Nahrawy
    • 3
  • Tamer Elsakhawy
    • 3
  • Azza Ghazi
    • 3
  • Neama Abdalla
    • 4
  • Éva Domokos-Szabolcsy
    • 5
  • Hassan El-Ramady
    • 1
  1. 1.Faculty of Home Economics, Biological and Environmental Science DepartmentAl-Azhar UniversityCairoEgypt
  2. 2.Faculty of Agriculture, Soil and Water DepartmentKafrelsheikh UniversityKafr el-SheikhEgypt
  3. 3.Agricultural Microbiology Department, Soil, Water and Environment Research Institute (SWERI)Sakha Agricultural Research Station, Agriculture Research Center (ARC)GizaEgypt
  4. 4.Plant Biotechnology Department, Genetic Engineering DivisionNational Research CenterGizaEgypt
  5. 5.Agricultural Botany, Plant Physiology and Biotechnology DepartmentDebrecen UniversityDebrecenHungary

Personalised recommendations