Advertisement

Nanoparticle Uptake by Plants: Beneficial or Detrimental?

  • Ivan Pacheco
  • Cristina Buzea
Chapter

Abstract

Plants have been shown to uptake nanoparticles of various composition and size. The uptake is plant specific and can result in negative, positive, or no effect on plants. Some nanoparticles modify the roots and leaves of plants and seed germination and induce genetic alterations. Nanoparticle physicochemical properties, such as size, crystalline structure, and surface charge, influence their translocation and bioaccumulation in plants. Nanoparticles are shown to be transmitted to second-generation plants. While some researchers try to justify the use of nanoparticles for some plant species, the overall negative effects due to accumulation of nanoparticles in soil and plants might overshadow the limited beneficial aspects on some plants. Depending mainly on their size, many nanoparticles can enter the food chain via roots or foliar uptake. Nanoparticles of many materials are already shown to be toxic to humans and animals; therefore nanoparticle uptake by plants may pose serious safety concerns.

References

  1. Ahlberg S, Antonopulos A, Diendorf J et al (2014) PVP-coated, negatively charged silver nanoparticles: a multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. Beilstein J Nanotechnol 5:1944–1965 (references therein).  https://doi.org/10.3762/bjnano.5.205 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alexandru SB, Mariya VK, Biris AS et al (2012) Method of using carbon nanotubes to affect seed germination and plant growth. US PatentGoogle Scholar
  3. Anderson DS, Patchin ES, Silva RM et al (2015) Influence of particle size on persistence and clearance of aerosolized silver nanoparticles in the rat lung. Toxicol Sci 144:366–381.  https://doi.org/10.1093/toxsci/kfv005 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andersson-Willman B, Gehrmann U, Cansu Z et al (2012) Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production. Toxicol Appl Pharmacol 264:94–103.  https://doi.org/10.1016/j.taap.2012.07.021 CrossRefPubMedGoogle Scholar
  5. Andujar P, Simon-Deckers A, Galateau-Salle F et al (2014) Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders. Part Fibre Toxicol 11:13.  https://doi.org/10.1186/1743-8977-11-23 CrossRefGoogle Scholar
  6. Anjum NA, Gill SS, Duarte AC et al (2013) Silver nanoparticles in soil-plant systems. J Nanopart Res 15:1896–1897 (Unsp 1896)Google Scholar
  7. Anjum NA, Adam V, Kizek R et al (2015) Nanoscale copper in the soil-plant system – toxicity and underlying potential mechanisms. Environ Res 138:306–325.  https://doi.org/10.1016/j.envres.2015.02.019 CrossRefPubMedGoogle Scholar
  8. Antisari LV, Carbone S, Gatti A et al (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22:1841–1853.  https://doi.org/10.1007/s11356-014-3509-0 CrossRefGoogle Scholar
  9. Aragay G, Pino F, Merkoci A (2012) Nanomaterials for sensing and destroying pesticides. Chem Rev 112:5317–5338.  https://doi.org/10.1021/cr300020c CrossRefPubMedGoogle Scholar
  10. Arruda SCC, Silva ALD, Galazzi RM et al (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705.  https://doi.org/10.1016/j.talanta.2014.08.050 CrossRefPubMedGoogle Scholar
  11. Aschberger K, Johnston HJ, Stone V et al (2010) Review of carbon nanotubes toxicity and exposure-appraisal of human health risk assessment based on open literature. Crit Rev Toxicol 40:759–790.  https://doi.org/10.3109/10408444.2010.506638 CrossRefPubMedGoogle Scholar
  12. Aslani F, Bagheri S, Julkapli NM et al (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J.  https://doi.org/10.1155/2014/641759
  13. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584.  https://doi.org/10.1111/j.1365-3040.2009.01952.x CrossRefPubMedPubMedCentralGoogle Scholar
  14. Asztemborska M, Steborowski R, Kowalska J et al (2015) Accumulation of aluminium by plants exposed to nano- and microsized particles of Al2O3. Int J Environ Res 9:109–116Google Scholar
  15. Atha DH, Wang HH, Petersen EJ et al (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827.  https://doi.org/10.1021/es202660k CrossRefPubMedGoogle Scholar
  16. Avalos A, Haza AI, Mateo D et al (2014) Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J Appl Toxicol 34:413–423.  https://doi.org/10.1002/jat.2957 CrossRefPubMedGoogle Scholar
  17. Avellan A, Schwab F, Masion A et al (2017) Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environ Sci Technol 51:8682–8691.  https://doi.org/10.1021/acs.est.7b01133 CrossRefPubMedGoogle Scholar
  18. Bakand S, Hayes A, Dechsakulthorn F (2012) Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol 24:125–135.  https://doi.org/10.3109/08958378.2010.642021 CrossRefPubMedGoogle Scholar
  19. Bakshi S, He ZLL, Harris WG (2015) Natural nanoparticles: Implications for environment and human health. Crit Rev Environ Sci Technol 45:861–904.  https://doi.org/10.1080/10643389.2014.921975 CrossRefGoogle Scholar
  20. Balasubramanian SK, Jittiwat J, Manikandan J et al (2010) Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31:2034–2042.  https://doi.org/10.1016/j.biomaterials.2009.11.079 CrossRefPubMedGoogle Scholar
  21. Ballestri M, Baraldi A, Gatti AM et al (2001) Liver and kidney foreign bodies granulomatosis in a patient with malocclusion, bruxism, and worn dental prostheses. Gastroenterology 121:1234–1238.  https://doi.org/10.1053/gast.2001.29333 CrossRefPubMedGoogle Scholar
  22. Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222.  https://doi.org/10.1016/j.jhazmat.2012.10.025 CrossRefPubMedGoogle Scholar
  23. Begum P, Ikhtiari R, Fugetsu B et al (2012) Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci 262:120–124.  https://doi.org/10.1016/j.apsusc.2012.03.028 CrossRefGoogle Scholar
  24. Begum P, Ikhtiari R, Fugetsu B (2014) Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials 4:203–221.  https://doi.org/10.3390/nano4020203 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bernhardt ES, Colman BP, Hochella MF et al (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1954–1965.  https://doi.org/10.2134/jeq2009.0479 CrossRefPubMedGoogle Scholar
  26. Bitounis D, Pourchez J, Forest V et al (2016) Detection and analysis of nanoparticles in patients: a critical review of the status quo of clinical nanotoxicology. Biomaterials 76:302–312.  https://doi.org/10.1016/j.biomaterials.2015.10.061 CrossRefPubMedGoogle Scholar
  27. Boonyanitipong P, Kositsup B, Kumar P et al (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinform 1(4):282–285Google Scholar
  28. Borm PJA, Schins RPF, Albrecht C (2004) Inhaled particles and lung cancer, part B: paradigms and risk assessment. Int J Cancer 110:3–14.  https://doi.org/10.1002/ijc.20064 CrossRefPubMedGoogle Scholar
  29. Brar SK, Verma M, Tyagi RD et al (2010) Engineered nanoparticles in wastewater and wastewater sludge – evidence and impacts. Waste Manage 30:504–520.  https://doi.org/10.1016/j.wasman.2009.10.012 CrossRefGoogle Scholar
  30. Bregoli L, Chiarini F, Gambarelli A et al (2009) Toxicity of antimony trioxide nanoparticles on human hematopoietic progenitor cells and comparison to cell lines. Toxicology 262:121–129.  https://doi.org/10.1016/j.tox.2009.05.017 CrossRefPubMedGoogle Scholar
  31. Brook RD (2008) Cardiovascular effects of air pollution. Clin Sci 115:175–187.  https://doi.org/10.1042/cs20070444 CrossRefPubMedGoogle Scholar
  32. Bruinink A, Wang J, Wick P (2015) Effect of particle agglomeration in nanotoxicology. Arch Toxicol 89:659–675.  https://doi.org/10.1007/s00204-015-1460-6 CrossRefPubMedGoogle Scholar
  33. Burklew CE, Ashlock J, Winfrey WB et al (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7.  https://doi.org/10.1371/journal.pone.0034783
  34. Buzea C, Pacheco I (2017) Nanomaterials and their classification. In: Shukla AK (ed) EMR/ESR/EPR spectroscopy for characterization of nanomaterials, Advanced structured materials, vol 62. Springer, New York, pp 3–45CrossRefGoogle Scholar
  35. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2:MR17–MR71.  https://doi.org/10.1116/1.2815690 CrossRefPubMedGoogle Scholar
  36. Calderon-Garciduenas L, Avila-Ramirez J, Calderon-Garciduenas A et al (2016a) Cerebrospinal fluid biomarkers in highly exposed PM2.5 urbanites: the risk of Alzheimer’s and Parkinson’s diseases in Young Mexico City residents. J Alzheimers Dis 54:597–613.  https://doi.org/10.3233/jad-160472 CrossRefPubMedGoogle Scholar
  37. Calderon-Garciduenas L, Reynoso-Robles R, Vargas-Martinez J et al (2016b) Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer’s disease. Environ Res 146:404–417.  https://doi.org/10.1016/j.envres.2015.12.031 CrossRefPubMedGoogle Scholar
  38. Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619.  https://doi.org/10.1021/jp712087m CrossRefPubMedGoogle Scholar
  39. Castiglione MR, Giorgetti L, Geri C et al (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13:2443–2449.  https://doi.org/10.1007/s11051-010-0135-8 CrossRefGoogle Scholar
  40. Chen YS, Hung YC, Liau I et al (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4:858–864.  https://doi.org/10.1007/s11671-009-9334-6 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Chen R, Ratnikova TA, Stone MB et al (2010) Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 6:612–617.  https://doi.org/10.1002/smll.200901911 CrossRefPubMedGoogle Scholar
  42. Chen RJ, Kan HD, Chen BH et al (2012) Association of particulate air pollution with daily mortality. Am J Epidemiol 175:1173–1181.  https://doi.org/10.1093/aje/kwr425 CrossRefPubMedGoogle Scholar
  43. Chen H, Kwong JC, Copes R et al (2017) Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based cohort study. Lancet 389:718–726.  https://doi.org/10.1016/s0140-6736(16)32399-6 CrossRefPubMedGoogle Scholar
  44. Cheng LC, Jiang X, Wang J et al (2013) Nano-bio effects: interaction of nanomaterials with cells. Nanoscale 5:3547–3569.  https://doi.org/10.1039/c3nr34276j CrossRefPubMedPubMedCentralGoogle Scholar
  45. Chichiricco G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5:851–873.  https://doi.org/10.3390/nano5020851 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9:124.  https://doi.org/10.3389/fncel.2015.00124 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668.  https://doi.org/10.1021/nl052396o CrossRefPubMedGoogle Scholar
  48. Cho WS, Cho MJ, Jeong J et al (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236:16–24.  https://doi.org/10.1016/j.taap.2008.12.023 CrossRefPubMedGoogle Scholar
  49. Christensen FM, Johnston HJ, Stone V et al (2010) Nano-silver – feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 4:284–295.  https://doi.org/10.3109/17435391003690549 CrossRefPubMedGoogle Scholar
  50. Chung M, Wang DD, Rizzo AM et al (2015) Association of PNC, BC, and PM2.5 measured at a central monitoring site with blood pressure in a predominantly near highway population. Int J Environ Res Public Health 12:2765–2780.  https://doi.org/10.3390/ijerph120302765 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Cifuentes Z, Custardoy L, de la Fuente JM et al (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol 8.  https://doi.org/10.1186/1477-3155-8-26
  52. Coccini T, Grandi S, Lonati D et al (2015) Comparative cellular toxicity of titanium dioxide nanoparticles on human astrocyte and neuronal cells after acute and prolonged exposure. Neurotoxicology 48:77–89.  https://doi.org/10.1016/j.neuro.2015.03.006 CrossRefPubMedGoogle Scholar
  53. Cohen AJ, Brauer M, Burnett R et al (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918.  https://doi.org/10.1016/s0140-6736(17)30505-6 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Cosselman KE, Navas-Acien A, Kaufman JD (2015) Environmental factors in cardiovascular disease. Nat Rev Cardiol 12:627–642.  https://doi.org/10.1038/nrcardio.2015.152 CrossRefPubMedGoogle Scholar
  55. Cox A, Venkatachalam P, Sahi S et al (2016) Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 107:147–163.  https://doi.org/10.1016/j.plaphy.2016.05.022 CrossRefPubMedGoogle Scholar
  56. Crespo P, de la Presa P, Marin P et al (2013) Magnetism in nanoparticles: tuning properties with coatings. J Phys-Condes Matter 25.  https://doi.org/10.1088/0953-8984/25/48/484006
  57. Cui HX, Zhang P, Gu W et al (2009) Application of anatase TiO(2) sol derived from peroxotitannic acid in crop diseases control and growth regulation. Nanotech Conference & Expo 2009, vol 2, Technical Proceedings. CRC Press-Taylor & Francis Group, Boca RatonGoogle Scholar
  58. Cupaioli FA, Zucca FA, Boraschi D et al (2014) Engineered nanoparticles. How brain friendly is this new guest? Prog Neurobiol 119:20–38.  https://doi.org/10.1016/j.pneurobio.2014.05.002 CrossRefPubMedGoogle Scholar
  59. Dan YB, Zhang WL, Xue RM et al (2015) Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis. Environ Sci Technol 49:3007–3014.  https://doi.org/10.1021/es506179e CrossRefPubMedGoogle Scholar
  60. Davidson RA, Anderson DS, Van Winkle LS et al (2015) Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy. J Phys Chem A 119:281–289.  https://doi.org/10.1021/jp510103m CrossRefPubMedGoogle Scholar
  61. Deng YQ, White JC, Xing BS (2014) Interactions between engineered nanomaterials and agricultural crops: implications for food safety. J Zhejiang Univ Sci A 15:552–572.  https://doi.org/10.1631/jzus.A1400165 CrossRefGoogle Scholar
  62. Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589.  https://doi.org/10.1016/j.tplants.2011.08.003 CrossRefPubMedGoogle Scholar
  63. Dimkpa CO, Latta DE, McLean JE et al (2013a) Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ Sci Technol 47:4734–4742.  https://doi.org/10.1021/es304736y CrossRefPubMedGoogle Scholar
  64. Dimkpa CO, McLean JE, Martineau N et al (2013b) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090.  https://doi.org/10.1021/es302973y CrossRefPubMedGoogle Scholar
  65. Dinesh R, Anandaraj M, Srinivasan V et al (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173:19–27.  https://doi.org/10.1016/j.geoderma.2011.12.018 CrossRefGoogle Scholar
  66. Docter D, Westmeier D, Markiewicz M et al (2015) The nanoparticle biomolecule corona: lessons learned – challenge accepted? Chem Soc Rev 44:6094–6121.  https://doi.org/10.1039/c5cs00217f CrossRefPubMedGoogle Scholar
  67. Donaldson K, Duffin R, Langrish JP et al (2013) Nanoparticles and the cardiovascular system: a critical review. Nanomedicine 8:403–423.  https://doi.org/10.2217/nnm.13.16 CrossRefPubMedGoogle Scholar
  68. Du WC, Sun YY, Ji R et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828.  https://doi.org/10.1039/c0em00611d CrossRefPubMedGoogle Scholar
  69. Du W, Tan W, Peralta-Videa JR et al (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225.  https://doi.org/10.1016/j.plaphy.2016.04.024 CrossRefPubMedGoogle Scholar
  70. Ema M, Hougaard KS, Kishimoto A et al (2016) Reproductive and developmental toxicity of carbon-based nanomaterials: a literature review. Nanotoxicology 10:391–412.  https://doi.org/10.3109/17435390.2015.1073811 CrossRefPubMedGoogle Scholar
  71. Ema M, Okuda H, Gamo M et al (2017) A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol 67:149–164.  https://doi.org/10.1016/j.reprotox.2017.01.005 CrossRefPubMedGoogle Scholar
  72. Faisal M, Saquib Q, Alatar AA et al (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250:318–332.  https://doi.org/10.1016/j.jhazmat.2013.01.063 CrossRefPubMedGoogle Scholar
  73. Feichtmeier NS, Walther P, Leopold K (2015) Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ Sci Pollut Res 22:8549–8558.  https://doi.org/10.1007/s11356-014-4015-0 CrossRefGoogle Scholar
  74. Feizi H, Kamali M, Jafari L et al (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91:506–511.  https://doi.org/10.1016/j.chemosphere.2012.12.012 CrossRefPubMedGoogle Scholar
  75. Fischer HC, Chan WCW (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571.  https://doi.org/10.1016/j.copbio.2007.11.008 CrossRefPubMedGoogle Scholar
  76. Foroozandeh P, Aziz AA (2015) Merging worlds of nanomaterials and biological environment: factors governing protein corona formation on nanoparticles and its biological consequences. Nanoscale Res Lett 10:221.  https://doi.org/10.1186/s11671-015-0922-3 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Franklin BA, Brook R, Pope CA (2015) Air pollution and cardiovascular disease. Curr Probl Cardiol 40:207–238.  https://doi.org/10.1016/j.cpcardiol.2015.01.003 CrossRefPubMedGoogle Scholar
  78. Fujitani T, Ohyama K, Hirose A et al (2012) Teratogenicity of multi-wall carbon nanotube (MWCNT) in ICR mice. J Toxicol Sci 37:81–89CrossRefPubMedGoogle Scholar
  79. Gagnon J, Fromm KM (2015) Toxicity and protective effects of cerium oxide nanoparticles (Nanoceria) depending on their preparation method, particle size, cell type, and exposure route. Eur J Inorg Chem:4510–4517.  https://doi.org/10.1002/ejic.201500643 CrossRefGoogle Scholar
  80. Gaillet S, Rouanet JM (2015) Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms—a review. Food Chem Toxicol 77:58–63.  https://doi.org/10.1016/j.fct.2014.12.019 CrossRefPubMedGoogle Scholar
  81. Gajbhiye M, Kesharwani J, Ingle A et al (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed-Nanotechnol Biol Med 5:382–386.  https://doi.org/10.1016/j.nano.2009.06.005 CrossRefGoogle Scholar
  82. Garcia-Ivars J, Iborra-Clar MI, Alcaina-Miranda MI et al (2015) Comparison between hydrophilic and hydrophobic metal nanoparticles on the phase separation phenomena during formation of asymmetric polyethersulphone membranes. J Membr Sci 493:709–722.  https://doi.org/10.1016/j.memsci.2015.07.009 CrossRefGoogle Scholar
  83. Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540.  https://doi.org/10.1021/es4050665 CrossRefPubMedGoogle Scholar
  84. Gatoo MA, Naseem S, Arfat MY et al (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int 2014:498420.  https://doi.org/10.1155/2014/498420 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Gatti AM (2004) Biocompatibility of micro- and nano-particles in the colon. Part II. Biomaterials 25:385–392.  https://doi.org/10.1016/s0142-9612(03)00537-4 CrossRefPubMedGoogle Scholar
  86. Gatti AM, Montanari S (2006) Retrieval analysis of clinical explanted vena cava filters. J Biomed Mater Res Part B 77B:307–314.  https://doi.org/10.1002/jbm.b.30361 CrossRefGoogle Scholar
  87. Gatti AM, Rivasi F (2002) Biocompatibility of micro- and nanoparticles. Part I: in liver and kidney. Biomaterials 23:2381–2387.  https://doi.org/10.1016/s0142-9612(01)00374-x CrossRefPubMedGoogle Scholar
  88. Gatti AM, Montanari S, Gambarelli A et al (2005) In-vivo short- and long-term evaluation of the interaction material-blood. J Mater Sci Mater Med 16:1213–1219.  https://doi.org/10.1007/s10856-005-4731-6 CrossRefPubMedGoogle Scholar
  89. Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7:2.  https://doi.org/10.1186/1743-8977-7-2 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Geisler-Lee J, Wang Q, Yao Y et al (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323–337.  https://doi.org/10.3109/17435390.2012.658094 CrossRefPubMedGoogle Scholar
  91. Gerber A, Bundschuh M, Klingelhofer D et al (2013) Gold nanoparticles: recent aspects for human toxicology. J Occup Med Toxicol 8:32.  https://doi.org/10.1186/1745-6673-8-32 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Ghafariyan MH, Malakouti MJ, Dadpour MR et al (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652.  https://doi.org/10.1021/es402249b CrossRefPubMedGoogle Scholar
  93. Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955.  https://doi.org/10.1016/j.jhazmat.2010.11.018 CrossRefPubMedGoogle Scholar
  94. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels plant and human lymphocytes. Chemosphere 81:1253–1262.  https://doi.org/10.1016/j.chemosphere.2010.09.022 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Ghosh M, Bhadra S, Adegoke A et al (2015) MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat Res 774:49–58.  https://doi.org/10.1016/j.mrfmmm.2015.03.004 CrossRefPubMedGoogle Scholar
  96. Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752.  https://doi.org/10.1039/c3ra42118j CrossRefGoogle Scholar
  97. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792.  https://doi.org/10.1021/jf302154y CrossRefPubMedGoogle Scholar
  98. Gonzalez-Maciel A, Reynoso-Robles R, Torres-Jardon R et al (2017) Combustion-derived nanoparticles in key brain target cells and organelles in young urbanites: culprit hidden in plain sight in Alzheimer’s disease development. J Alzheimers Dis 59:189–208.  https://doi.org/10.3233/jad-170012 CrossRefPubMedGoogle Scholar
  99. Goodman CM, McCusker CD, Yilmaz T et al (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900.  https://doi.org/10.1021/bc049951i CrossRefPubMedGoogle Scholar
  100. Gosens I, Mathijssen LE, Bokkers BG et al (2014) Comparative hazard identification of nano- and micro-sized cerium oxide particles based on 28-day inhalation studies in rats. Nanotoxicology 8:643–653.  https://doi.org/10.3109/17435390.2013.815814 CrossRefPubMedGoogle Scholar
  101. Gosens I, Kermanizadeh A, Jacobsen NR et al (2015) Comparative hazard identification by a single dose lung exposure of zinc oxide and silver nanomaterials in mice. PLoS One 10:e0126934.  https://doi.org/10.1371/journal.pone.0126934 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Greget R, Nealon GL, Vileno B et al (2012) Magnetic properties of gold nanoparticles: a room-temperature quantum effect. Chemphyschem 13:3092–3097.  https://doi.org/10.1002/cphc.201200394 CrossRefPubMedGoogle Scholar
  103. Grillo R, Rosa AH, Fraceto LF (2015) Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119:608–619.  https://doi.org/10.1016/j.chemosphere.2014.07.049 CrossRefPubMedGoogle Scholar
  104. Gui X, Zhang ZY, Liu ST et al (2015) Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment. PLoS One 10:e0134261.  https://doi.org/10.1371/journal.pone.0134261 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene – an overview. Environ Sci Pollut Res 20:2828–2843.  https://doi.org/10.1007/s11356-013-1524-1 CrossRefGoogle Scholar
  106. Gurr JR, Wang ASS, Chen CH et al (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73.  https://doi.org/10.1016/j.tox.2005.05.007 CrossRefPubMedGoogle Scholar
  107. Hackenberg S, Scherzed A, Kessler M et al (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33.  https://doi.org/10.1016/j.toxlet.2010.12.001 CrossRefPubMedGoogle Scholar
  108. Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review. Regul Toxicol Pharmacol 68:1–7.  https://doi.org/10.1016/j.yrtph.2013.11.002 CrossRefPubMedGoogle Scholar
  109. Hadrup N, Sharma AK, Poulsen M et al (2015) Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles – a review. Regul Toxicol Pharmacol 72:216–221.  https://doi.org/10.1016/j.yrtph.2015.04.017 CrossRefPubMedGoogle Scholar
  110. Hanley C, Thurber A, Hanna C et al (2009) The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4:1409–1420.  https://doi.org/10.1007/s11671-009-9413-8 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Hathaway QA, Nichols CE, Shepherd DL et al (2017) Maternal-engineered nanomaterial exposure disrupts progeny cardiac function and bioenergetics. Am J Physiol-Heart Circ Physiol 312:H446–H458.  https://doi.org/10.1152/ajpheart.00634.2016 CrossRefPubMedGoogle Scholar
  112. He LL, Liu Y, Mustapha A et al (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215.  https://doi.org/10.1016/j.micres.2010.03.003 CrossRefPubMedGoogle Scholar
  113. He D, Wu SW, Zhao HP et al (2017) Association between particulate matter 2.5 and diabetes mellitus: a meta-analysis of cohort studies. J Diabetes Investig 8:687–696.  https://doi.org/10.1111/jdi.12631 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Heusinkveld HJ, Wahle T, Campbell A et al (2016) Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology 56:94–106.  https://doi.org/10.1016/j.neuro.2016.07.007 CrossRefPubMedGoogle Scholar
  115. Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936.  https://doi.org/10.1002/jps.1143.abs CrossRefPubMedGoogle Scholar
  116. Hong J, Peralta-Videa JR, Rico C et al (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376–4385.  https://doi.org/10.1021/es404931g CrossRefPubMedGoogle Scholar
  117. Hori H, Teranishi T, Nakae Y et al (1999) Anomalous magnetic polarization effect of Pd and Au nano-particles. Phys Lett A 263:406–410.  https://doi.org/10.1016/s0375-9601(99)00742-2 CrossRefGoogle Scholar
  118. Hori H, Yamamoto Y, Iwamoto T et al (2004) Diameter dependence of ferromagnetic spin moment in Au nanocrystals. Phys Rev B 69:174411.  https://doi.org/10.1103/PhysRevB.69.174411 CrossRefGoogle Scholar
  119. Huk A, Izak-Nau E, el Yamani N et al (2015) Impact of nanosilver on various DNA lesions and HPRT gene mutations – effects of charge and surface coating. Part Fibre Toxicol 12:20.  https://doi.org/10.1186/s12989-015-0100-x CrossRefGoogle Scholar
  120. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16.  https://doi.org/10.1186/1477-3155-12-16 CrossRefGoogle Scholar
  121. Iannitti T, Capone S, Gatti A et al (2010) Intracellular heavy metal nanoparticle storage: progressive accumulation within lymph nodes with transformation from chronic inflammation to malignancy. Int J Nanomedicine 5:955–960.  https://doi.org/10.2147/ijn.s14363 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Iavicoli I, Leso V, Beezhold DH et al (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111.  https://doi.org/10.1016/j.taap.2017.05.025 CrossRefPubMedGoogle Scholar
  123. Ilinskaya AN, Dobrovolskaia MA (2013) Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine 8:969–981.  https://doi.org/10.2217/nnm.13.49 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Ilinskaya AN, Dobrovolskaia MA (2014) Immunosuppressive and anti-inflammatory properties of engineered nanomaterials. Br J Pharmacol 171:3988–4000.  https://doi.org/10.1111/bph.12722 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Jacob DL, Borchardt JD, Navaratnam L et al (2013) Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytoremediation 15:142–153.  https://doi.org/10.1080/15226514.2012.683209 CrossRefPubMedGoogle Scholar
  126. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043.  https://doi.org/10.1094/pdis-93-10-1037 CrossRefGoogle Scholar
  127. Johnston HJ, Hutchison G, Christensen FM et al (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346.  https://doi.org/10.3109/10408440903453074 CrossRefPubMedGoogle Scholar
  128. Josko I, Oleszczuk P (2013) Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere 92:91–99.  https://doi.org/10.1016/j.chemosphere.2013.02.048 CrossRefPubMedGoogle Scholar
  129. Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45:776–781.  https://doi.org/10.1021/es103031a CrossRefPubMedGoogle Scholar
  130. Judy JD, Unrine JM, Rao W et al (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467–8474.  https://doi.org/10.1021/e03019397 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235.  https://doi.org/10.1016/j.envint.2013.11.015 CrossRefPubMedGoogle Scholar
  132. Kanhed P, Birla S, Gaikwad S et al (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17.  https://doi.org/10.1016/j.matlet.2013.10.011 CrossRefGoogle Scholar
  133. Karlsson HL, Cronholm P, Gustafsson J et al (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732.  https://doi.org/10.1021/tx800064j CrossRefPubMedPubMedCentralGoogle Scholar
  134. Kaveh R, Li YS, Ranjbar S et al (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644.  https://doi.org/10.1021/es402209w CrossRefPubMedGoogle Scholar
  135. Kendall M, Holgate S (2012) Health impact and toxicological effects of nanomaterials in the lung. Respirology 17:743–758.  https://doi.org/10.1111/j.1440-1843.2012.02171.x CrossRefPubMedGoogle Scholar
  136. Kenzaoui BH, Bernasconi CC, Guney-Ayra S et al (2012) Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J 441:813–821.  https://doi.org/10.1042/bj20111252 CrossRefGoogle Scholar
  137. Kermanizadeh A, Gaiser BK, Johnston H et al (2014) Toxicological effect of engineered nanomaterials on the liver. Br J Pharmacol 171:3980–3987.  https://doi.org/10.1111/bph.12421 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Kettler K, Veltman K, van de Meent D et al (2014) Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem 33:481–492.  https://doi.org/10.1002/etc.2470 CrossRefPubMedGoogle Scholar
  139. Khan MN, Mobin M, Abbas ZK et al (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209.  https://doi.org/10.1016/j.plaphy.2016.05.038 CrossRefPubMedGoogle Scholar
  140. Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671.  https://doi.org/10.1039/c0cs00018c CrossRefPubMedGoogle Scholar
  141. Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth (retracted article. See vol. 6, pg. 7541, 2012). ACS Nano 3:3221–3227.  https://doi.org/10.1021/nn900887m CrossRefPubMedPubMedCentralGoogle Scholar
  142. Khodakovskaya MV, de Silva K, Nedosekin DA et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108:1028–1033.  https://doi.org/10.1073/pnas.1008856108 CrossRefPubMedGoogle Scholar
  143. Khodakovskaya MV, de Silva K, Biris AS et al (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135.  https://doi.org/10.1021/nn204643g CrossRefPubMedPubMedCentralGoogle Scholar
  144. Khodakovskaya MV, Kim BS, Kim JN et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123.  https://doi.org/10.1002/smll.201201225 CrossRefPubMedGoogle Scholar
  145. Khot LR, Sankaran S, Maja JM et al (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70.  https://doi.org/10.1016/j.cropro.2012.01.007 CrossRefGoogle Scholar
  146. Kim S, Ryu DY (2013) Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33:78–89.  https://doi.org/10.1002/jat.2792 CrossRefPubMedGoogle Scholar
  147. Kim YS, Kim JS, Cho HS et al (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20:575–583.  https://doi.org/10.1080/08958370701874663 CrossRefPubMedGoogle Scholar
  148. Koelmel J, Leland T, Wang HH et al (2013) Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut 174:222–228.  https://doi.org/10.1016/j.envpol.2012.11.026 CrossRefPubMedGoogle Scholar
  149. Kole C, Kole P, Randunu KM et al (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37.  https://doi.org/10.1186/1472-6750-13-37 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Kolosnjaj-Tabi J, Just J, Hartman KB et al (2015) Anthropogenic carbon nanotubes found in the airways of Parisian children. EBioMedicine 2:1697–1704.  https://doi.org/10.1016/j.ebiom.2015.10.012 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Kookana RS, Boxall ABA, Reeves PT et al (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62:4227–4240.  https://doi.org/10.1021/jf500232f CrossRefPubMedGoogle Scholar
  152. Kreyling WG, Fertsch-Gapp S, Schaffler M et al (2014) In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics. Beilstein J Nanotechnol 5:1699–1711.  https://doi.org/10.3762/bjnano.5.180 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Krishna KS, Tarakeshwar P, Mujica V et al (2014) Chemically induced magnetism in atomically precise gold clusters. Small 10:907–911.  https://doi.org/10.1002/smll.201302393 CrossRefPubMedGoogle Scholar
  154. Kulvietis V, Zalgeviciene V, Didziapetriene J et al (2011) Transport of nanoparticles through the placental barrier. Tohoku J Exp Med 225:225–234.  https://doi.org/10.1620/tjem.225.225 CrossRefPubMedGoogle Scholar
  155. Kumar A, Das S, Munusamy P et al (2014) Behavior of nanoceria in biologically-relevant environments. Environ-Sci Nano 1:516–532.  https://doi.org/10.1039/c4en00052h CrossRefGoogle Scholar
  156. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246.  https://doi.org/10.1016/j.scitotenv.2009.06.024 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Kumari M, Khan SS, Pakrashi S et al (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621.  https://doi.org/10.1016/j.jhazmat.2011.03.095 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Kurepa J, Paunesku T, Vogt S et al (2010) Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302.  https://doi.org/10.1021/nl903518f CrossRefPubMedPubMedCentralGoogle Scholar
  159. Lahiani MH, Dervishi E, Chen JH et al (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973.  https://doi.org/10.1021/am402052x CrossRefPubMedGoogle Scholar
  160. Lamsal K, Kim S-W, Jung JH et al (2011a) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32.  https://doi.org/10.4489/myco.2011.39.1.026 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Lamsal K, Kim SW, Jung JH et al (2011b) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39:194–199.  https://doi.org/10.5941/myco.2011.39.3.194 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Landa P, Vankova R, Andrlova J et al (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241:55–62.  https://doi.org/10.1016/j.jhazmat.2012.08.059 CrossRefPubMedGoogle Scholar
  163. Landsiedel R, Fabian E, Ma-Hock L et al (2012) Toxico-/biokinetics of nanomaterials. Arch Toxicol 86:1021–1060.  https://doi.org/10.1007/s00204-012-0858-7 CrossRefPubMedGoogle Scholar
  164. Lanone S, Rogerieux F, Geys J et al (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:12.  https://doi.org/10.1186/1743-8977-6-14 CrossRefGoogle Scholar
  165. Larue C, Laurette J, Herlin-Boime N et al (2012a) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208.  https://doi.org/10.1016/j.scitotenv.2012.04.073 CrossRefPubMedGoogle Scholar
  166. Larue C, Pinault M, Czarny B et al (2012b) Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227:155–163.  https://doi.org/10.1016/j.jhazmat.2012.05.033 CrossRefPubMedGoogle Scholar
  167. Larue C, Veronesi G, Flank AM et al (2012c) Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health Part A 75:722–734.  https://doi.org/10.1080/15287394.2012.689800 CrossRefPubMedGoogle Scholar
  168. Larue C, Castillo-Michel H, Sobanska S et al (2014a) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106.  https://doi.org/10.1016/j.jhazmat.2013.10.053 CrossRefPubMedGoogle Scholar
  169. Larue C, Castillo-Michel H, Sobanska S et al (2014b) Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26.  https://doi.org/10.1016/j.jhazmat.2014.03.014 CrossRefPubMedGoogle Scholar
  170. Layet C, Auffan M, Santaella C et al (2017) Evidence that soil properties and organic coating drive the phytoavailability of cerium oxide nanoparticles. Environ Sci Technol 51:9756–9764.  https://doi.org/10.1021/acs.est.7b02397 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499.  https://doi.org/10.1016/j.chemosphere.2011.10.013 CrossRefPubMedGoogle Scholar
  172. Lee S, Chung H, Kim S et al (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224(11).  https://doi.org/10.1007/s11270-013-1668-0
  173. Lei Z, Su MY, Xiao W et al (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79.  https://doi.org/10.1007/s12011-007-8028-0 CrossRefPubMedGoogle Scholar
  174. Li YF, Li JG, Yin JL et al (2010) Systematic influence induced by 3 nm titanium dioxide following intratracheal instillation of mice. J Nanosci Nanotechnol 10:8544–8549.  https://doi.org/10.1166/jnn.2010.2690 CrossRefPubMedGoogle Scholar
  175. Li JJ, Lo SL, Ng CT et al (2011) Genomic instability of gold nanoparticle treated human lung fibroblast cells. Biomaterials 32:5515–5523.  https://doi.org/10.1016/j.biomaterials.2011.04.023 CrossRefPubMedGoogle Scholar
  176. Li HQ, Hedmer M, Karedal M et al (2015a) A cross-sectional study of the cardiovascular effects of welding fumes. PLoS One 10:15.  https://doi.org/10.1371/journal.pone.0131648 CrossRefGoogle Scholar
  177. Li X, Liu W, Sun L et al (2015b) Effects of physicochemical properties of nanomaterials on their toxicity. J Biomed Mater Res A 103:2499–2507.  https://doi.org/10.1002/jbm.a.35384 CrossRefPubMedGoogle Scholar
  178. Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250.  https://doi.org/10.1016/j.envpol.2007.01.016 CrossRefPubMedGoogle Scholar
  179. Lin SJ, Reppert J, Hu Q et al (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132.  https://doi.org/10.1002/smll.200801556 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Lin ZM, Monteiro-Riviere NA, Riviere JE (2015) Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip Rev-Nanomed Nanobiotechnol 7:189–217.  https://doi.org/10.1002/wnan.1304 CrossRefPubMedGoogle Scholar
  181. Lin CX, Yang SY, Gu JL et al (2017) The acute toxic effects of silver nanoparticles on myocardial transmembrane potential, I-Na and I-K1 channels and heart rhythm in mice. Nanotoxicology 11:827–837.  https://doi.org/10.1080/17435390.2017.1367047 CrossRefPubMedGoogle Scholar
  182. Line C, Camille LA, Flahaut E (2017) Carbon nanotubes: impacts and behaviour in the terrestrial ecosystem – a review. Carbon 123:767–785.  https://doi.org/10.1016/j.carbon.2017.07.089 CrossRefGoogle Scholar
  183. Liu RQ, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139.  https://doi.org/10.1016/j.scitotenv.2015.01.104 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Liu QL, Zhao YY, Wan YL et al (2010) Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 4:5743–5748.  https://doi.org/10.1021/nn101430g CrossRefPubMedGoogle Scholar
  185. Liu F, Mahmood M, Xu Y et al (2015) Effects of silver nanoparticles on human and rat embryonic neural stem cells. Front Neurosci 9:115.  https://doi.org/10.3389/fnins.2015.00115 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA et al (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 Nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320.  https://doi.org/10.1021/es903891g CrossRefPubMedPubMedCentralGoogle Scholar
  187. Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA et al (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693.  https://doi.org/10.1021/jf904472e CrossRefPubMedPubMedCentralGoogle Scholar
  188. Lu Y, Gu Z (2017) Kidney physiology: a size bandpass filter. Nat Nanotechnol 12:1023–1025.  https://doi.org/10.1038/nnano.2017.200 CrossRefPubMedGoogle Scholar
  189. Lyu SH, Wei XY, Chen JJ et al (2017) Titanium as a beneficial element for crop production. Front Plant Sci 8:19.  https://doi.org/10.3389/fpls.2017.00597 CrossRefGoogle Scholar
  190. Ma YH, Kuang LL, He X et al (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279.  https://doi.org/10.1016/j.chemosphere.2009.10.050 CrossRefPubMedPubMedCentralGoogle Scholar
  191. Ma CX, White JC, Dhankher OP et al (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49:7109–7122.  https://doi.org/10.1021/acs.est.5b00685 CrossRefPubMedGoogle Scholar
  192. Magaye R, Zhao J, Bowman L et al (2012) Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp Ther Med 4:551–561.  https://doi.org/10.3892/etm.2012.656 CrossRefPubMedPubMedCentralGoogle Scholar
  193. Maher BA, Ahmed IAM, Karloukovski V et al (2016) Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci USA 113:10797–10801.  https://doi.org/10.1073/pnas.1605941113 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Maitra U, Das B, Kumar N et al (2011) Ferromagnetism exhibited by nanoparticles of noble metals. Chemphyschem 12:2322–2327.  https://doi.org/10.1002/cphc.201100121 CrossRefPubMedGoogle Scholar
  195. Mannucci PM, Harari S, Martinelli I et al (2015) Effects on health of air pollution: a narrative review. Intern Emerg Med 10:657–662.  https://doi.org/10.1007/s11739-015-1276-7 CrossRefPubMedGoogle Scholar
  196. Markides H, Rotherham M, El Haj AJ (2012) Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater 614094.  https://doi.org/10.1155/2012/614094
  197. Marx DE, Barillo DJ (2014) Silver in medicine: the basic science. Burns 40(Suppl 1):S9–S18.  https://doi.org/10.1016/j.burns.2014.09.010 CrossRefPubMedGoogle Scholar
  198. Melnik EA, Buzulukov YP, Demin VF et al (2013) Transfer of silver nanoparticles through the placenta and breast milk during in vivo experiments on rats. Acta Naturae 5:107–115PubMedPubMedCentralGoogle Scholar
  199. Miller MR, Raftis JB, Langrish JP et al (2017) Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11:4542–4552.  https://doi.org/10.1021/acsnano.6b08551 CrossRefPubMedPubMedCentralGoogle Scholar
  200. Miralles P, Church TL, Harris AT (2012a) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239.  https://doi.org/10.1021/es202995d CrossRefPubMedGoogle Scholar
  201. Miralles P, Johnson E, Church TL et al (2012b) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9:3514–3527.  https://doi.org/10.1098/rsif.2012.0535 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Mirzajani F, Askari H, Hamzelou S et al (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Safe 88:48–54.  https://doi.org/10.1016/j.ecoenv.2012.10.018 CrossRefGoogle Scholar
  203. Mittal S, Pandey AK (2014) Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. Biomed Res Int 891934.  https://doi.org/10.1155/2014/891934
  204. Moon EY, Yi GH, Kang JS et al (2011) An increase in mouse tumor growth by an in vivo immunomodulating effect of titanium dioxide nanoparticles. J Immunotoxicol 8:56–67.  https://doi.org/10.3109/1547691x.2010.543995 CrossRefPubMedGoogle Scholar
  205. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S et al (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138.  https://doi.org/10.1039/c3mt00064h CrossRefPubMedGoogle Scholar
  206. Muoth C, Aengenheister L, Kucki M et al (2016) Nanoparticle transport across the placental barrier: pushing the field forward! Nanomedicine 11:941–957.  https://doi.org/10.2217/nnm-2015-0012 CrossRefPubMedGoogle Scholar
  207. Murr LE, Soto KF (2004) TEM comparison of chrysotile (asbestos) nanotubes and carbon nanotubes. J Mater Sci 39:4941–4947.  https://doi.org/10.1023/b:jmsc.0000035342.99587.96 CrossRefGoogle Scholar
  208. Nair PMG, Chung IM (2014) Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana. Environ Sci Pollut Res 21:8858–8869.  https://doi.org/10.1007/s11356-014-2822-y CrossRefGoogle Scholar
  209. Nair R, Poulose AC, Nagaoka Y et al (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21:2057–2068.  https://doi.org/10.1007/s10895-011-0904-5 CrossRefPubMedGoogle Scholar
  210. Nakane H (2012) Translocation of particles deposited in the respiratory system: a systematic review and statistical analysis. Environ Health Prev Med 17:263–274.  https://doi.org/10.1007/s12199-011-0252-8 CrossRefPubMedGoogle Scholar
  211. Naqvi S, Samim M, Abdin M et al (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 5:983–989.  https://doi.org/10.2147/IJN.S13244 CrossRefPubMedPubMedCentralGoogle Scholar
  212. Navarro E, Baun A, Behra R et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386.  https://doi.org/10.1007/s10646-008-0214-0 CrossRefPubMedGoogle Scholar
  213. Nealon GL, Donnio B, Greget R et al (2012) Magnetism in gold nanoparticles. Nanoscale 4:5244–5258.  https://doi.org/10.1039/c2nr30640a CrossRefPubMedGoogle Scholar
  214. Nemmar A, Hoet PHM, Vanquickenborne B et al (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414.  https://doi.org/10.1161/hc0402.104118 CrossRefPubMedGoogle Scholar
  215. Nemmar A, Beegam S, Yuvaraju P et al (2016) Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Part Fibre Toxicol 13:22. doi: https://doi.org/10.1186/s12989-016-0132-x
  216. Niu JL, Wang KK, Kolattukudy PE (2011) Cerium oxide nanoparticles inhibits oxidative stress and nuclear factor-kappa B activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J Pharmacol Exp Ther 338:53–61.  https://doi.org/10.1124/jpet.111.179978 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Ojea-Jimenez I, Garcia-Fernandez L, Lorenzo J et al (2012) Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting. ACS Nano 6:7692–7702.  https://doi.org/10.1021/nn3012042 CrossRefPubMedGoogle Scholar
  218. Pacheco I, Buzea C (2018) Metal nanoparticles and their toxicity. In: Thota S, Crans DC (eds) Metal nanoparticles. Synthesis and applications in pharmaceutical sciences. Wiley, WeinheimGoogle Scholar
  219. Pakrashi S, Jain N, Dalai S et al (2014) In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS One 9:12.  https://doi.org/10.1371/journal.pone.0087789 CrossRefGoogle Scholar
  220. Patlolla AK, Berry A, May L et al (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health 9:1649–1662.  https://doi.org/10.3390/ijerph9051649 CrossRefPubMedPubMedCentralGoogle Scholar
  221. Peralta-Videa JR, Hernandez-Viezcas JA, Zhao LJ et al (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135.  https://doi.org/10.1016/j.plaphy.2014.03.028 CrossRefPubMedGoogle Scholar
  222. Petersen EJ, Henry TB, Zhao J et al (2014) Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ Sci Technol 48:4226–4246.  https://doi.org/10.1021/es4052999 CrossRefPubMedPubMedCentralGoogle Scholar
  223. Podila R, Brown JM (2013) Toxicity of engineered nanomaterials: a physicochemical perspective. J Biochem Mol Toxicol 27:50–55 (references therein).  https://doi.org/10.1002/jbt.21442 CrossRefPubMedPubMedCentralGoogle Scholar
  224. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332.  https://doi.org/10.1016/j.scitotenv.2013.02.059 CrossRefPubMedGoogle Scholar
  225. Priester JH, Ge Y, Mielke RE et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 109:E2451–E2456.  https://doi.org/10.1073/pnas.1205431109 CrossRefPubMedPubMedCentralGoogle Scholar
  226. Qiu Y, Liu Y, Wang LM et al (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619.  https://doi.org/10.1016/j.biomaterials.2010.06.051 CrossRefPubMedGoogle Scholar
  227. Rao JP, Gruenberg P, Geckeler KE (2015) Magnetic zero-valent metal polymer nanoparticles: current trends, scope, and perspectives. Prog Polym Sci 40:138–147.  https://doi.org/10.1016/j.progpolymsci.2014.07.002 CrossRefGoogle Scholar
  228. Reddy PVL, Hernandez-Viezcas JA, Peralta-Videa JR et al (2016) Lessons learned: are engineered nanomaterials toxic to terrestrial plants? Sci Total Environ 568:470–479.  https://doi.org/10.1016/j.scitotenv.2016.06.042 CrossRefPubMedGoogle Scholar
  229. Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498.  https://doi.org/10.1021/jf104517j CrossRefPubMedPubMedCentralGoogle Scholar
  230. Rico CM, Morales MI, Barrios AC et al (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278–11285.  https://doi.org/10.1021/jf404046v CrossRefPubMedGoogle Scholar
  231. Rico CM, Lee SC, Rubenecia R et al (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62:9669–9675.  https://doi.org/10.1021/jf503526r CrossRefPubMedGoogle Scholar
  232. Rico CM, Barrios AC, Tan WJ et al (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22:10551–10558.  https://doi.org/10.1007/s11356-015-4243-y CrossRefGoogle Scholar
  233. Rinaldo M, Andujar P, Lacourt A et al (2015) Perspectives in biological monitoring of inhaled nanosized particles. Ann Occup Hyg 59:669–680.  https://doi.org/10.1093/annhyg/mev015 CrossRefPubMedGoogle Scholar
  234. Rizwan M, Ali S, Qayyum MF et al (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16.  https://doi.org/10.1016/j.jhazmat.2016.05.061 CrossRefPubMedGoogle Scholar
  235. Roncati L, Gatti AM, Capitani F et al (2015a) Heavy metal bioaccumulation in an atypical primitive neuroectodermal tumor of the abdominal wall. Ultrastruct Pathol 39:286–292.  https://doi.org/10.3109/01913123.2015.1013655 CrossRefPubMedGoogle Scholar
  236. Roncati L, Gatti AM, Pusiol T et al (2015b) ESEM detection of foreign metallic particles inside ameloblastomatous cells. Ultrastruct Pathol 39:329–335.  https://doi.org/10.3109/01913123.2015.1042608 CrossRefPubMedGoogle Scholar
  237. Rosas-Hernandez H, Jimenez-Badillo S, Martinez-Cuevas PP et al (2009) Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett 191:305–313.  https://doi.org/10.1016/j.toxlet.2009.09.014 CrossRefPubMedGoogle Scholar
  238. Roy R, Das M, Dwivedi PD (2015) Toxicological mode of action of ZnO nanoparticles: impact on immune cells. Mol Immunol 63:184–192.  https://doi.org/10.1016/j.molimm.2014.08.001 CrossRefPubMedGoogle Scholar
  239. Rückerl R, Schneider A, Breitner S et al (2011) Health effects of particulate air pollution: a review of epidemiological evidence. Inhal Toxicol 23:555–592.  https://doi.org/10.3109/08958378.2011.593587 CrossRefPubMedGoogle Scholar
  240. Rui Y, Zhang P, Zhang Y et al (2015) Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environ Pollut 198:8–14.  https://doi.org/10.1016/j.envpol.2014.12.017 CrossRefPubMedGoogle Scholar
  241. Ruiz A, Mancebo A, Beola L et al (2016) Dose-response bioconversion and toxicity analysis of magnetite nanoparticles. IEEE Magn Lett 7:1502205.  https://doi.org/10.1109/lmag.2016.2535414 CrossRefGoogle Scholar
  242. Ruttkay-Nedecky B, Krystofova O, Nejdl L et al (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15:19.  https://doi.org/10.1186/s12951-017-0268-3 CrossRefGoogle Scholar
  243. Sabo-Attwood T, Unrine JM, Stone JW et al (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6:353–360.  https://doi.org/10.3109/17435390.2011.579631 CrossRefPubMedGoogle Scholar
  244. Saenen ND, Bove H, Steuwe C et al (2017) Children’s urinary environmental carbon load a novel marker reflecting residential ambient air pollution exposure? Am J Respir Crit Care Med 196:873–881.  https://doi.org/10.1164/rccm.201704-0797OC CrossRefPubMedGoogle Scholar
  245. Sakamoto Y, Oba Y, Maki H et al (2011) Ferromagnetism of Pt nanoparticles induced by surface chemisorption. Phys Rev B 83:104420.  https://doi.org/10.1103/PhysRevB.83.104420
  246. Salatin S, Dizaj SM, Khosroushahi AY (2015) Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int 39:881–890.  https://doi.org/10.1002/cbin.10459 CrossRefPubMedGoogle Scholar
  247. Saliani M, Jalal R, Kafshdare Goharshadi E (2015) Effects of pH and temperature on antibacterial activity of zinc oxide nanofluid against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur J Microbiol 8:e17115.  https://doi.org/10.5812/jjm.17115 CrossRefPubMedPubMedCentralGoogle Scholar
  248. Sargent LM, Porter DW, Staska LM et al (2014) Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 11:18.  https://doi.org/10.1186/1743-8977-11-3 CrossRefGoogle Scholar
  249. Sathuluri RR, Yoshikawa H, Shimizu E et al (2011) Gold nanoparticle-based surface-enhanced Raman scattering for noninvasive molecular probing of embryonic stem cell differentiation. PLoS One 6:13.  https://doi.org/10.1371/journal.pone.0022802 CrossRefGoogle Scholar
  250. Savi M, Rossi S, Bocchi L et al (2014) Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. Part Fibre Toxicol 11:63.  https://doi.org/10.1186/s12989-014-0063-3 CrossRefPubMedPubMedCentralGoogle Scholar
  251. Schlich K, Hund-Rinke K (2015) Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321–330.  https://doi.org/10.1016/j.envpol.2014.10.021 CrossRefPubMedGoogle Scholar
  252. Schlinkert P, Casals E, Boyles M et al (2015) The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J Nanobiotechnology 13(1).  https://doi.org/10.1186/s12951-014-0062-4 CrossRefPubMedPubMedCentralGoogle Scholar
  253. Schwab F, Zhai G, Kern M et al (2015) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – critical review. Nanotoxicology 1–22.  https://doi.org/10.3109/17435390.2015.1048326
  254. Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767–2781.  https://doi.org/10.2147/IJN.S24805 CrossRefPubMedPubMedCentralGoogle Scholar
  255. Semmler-Behnke M, Kreyling WG, Lipka J et al (2008) Biodistribution of 1.4-and 18-nm gold particles in rats. Small 4:2108–2111.  https://doi.org/10.1002/smll.200800922 CrossRefPubMedGoogle Scholar
  256. Semmler-Behnke M, Lipka J, Wenk A et al (2014) Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Part Fibre Toxicol 11:33.  https://doi.org/10.1186/s12989-014-0033-9 CrossRefPubMedPubMedCentralGoogle Scholar
  257. Servin AD, Castillo-Michel H, Hernandez-Viezcas JA et al (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643.  https://doi.org/10.1021/es300955b CrossRefPubMedGoogle Scholar
  258. Servin AD, Morales MI, Castillo-Michel H et al (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598.  https://doi.org/10.1021/es403368j CrossRefPubMedGoogle Scholar
  259. Servin A, Elmer W, Mukherjee A et al (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92.  https://doi.org/10.1007/s11051-015-2907-7
  260. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148.  https://doi.org/10.1007/s11270-008-9797-6 CrossRefGoogle Scholar
  261. Shah ASV, Lee KK, McAllister DA et al (2015) Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ 350:10.  https://doi.org/10.1136/bmj.h1295 CrossRefGoogle Scholar
  262. Sharma VK, Siskova KM, Zboril R et al (2014) Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci 204:15–34.  https://doi.org/10.1016/j.cis.2013.12.002 CrossRefPubMedGoogle Scholar
  263. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915.  https://doi.org/10.1016/j.chemosphere.2013.05.044 CrossRefPubMedGoogle Scholar
  264. Shaymurat T, Gu JX, Xu CS et al (2012) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): A morphological study. Nanotoxicology 6:241–248.  https://doi.org/10.3109/17435390.2011.570462 CrossRefPubMedGoogle Scholar
  265. Shen CX, Zhang QF, Li JA et al (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609.  https://doi.org/10.3732/ajb.1000073 CrossRefPubMedGoogle Scholar
  266. Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12.  https://doi.org/10.1186/s11671-017-1861-y
  267. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17.  https://doi.org/10.1016/j.sjbs.2013.04.005 CrossRefPubMedGoogle Scholar
  268. Sighinolfi GL, Artoni E, Gatti AM et al (2016) Carcinogenic potential of metal nanoparticles in BALB/3T3 cell transformation assay. Environ Toxicol 31:509–519.  https://doi.org/10.1002/tox.22063 CrossRefPubMedGoogle Scholar
  269. Silva T, Pokhrel LR, Dubey B et al (2014) Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468–469:968–976.  https://doi.org/10.1016/j.scitotenv.2013.09.006 CrossRefPubMedGoogle Scholar
  270. Silva RM, Anderson DS, Franzi LM et al (2015) Pulmonary effects of silver nanoparticle size, coating, and dose over time upon intratracheal instillation. Toxicol Sci 144:151–162.  https://doi.org/10.1093/toxsci/kfu265 CrossRefPubMedPubMedCentralGoogle Scholar
  271. Simonsen LO, Harbak H, Bennekou P (2012) Cobalt metabolism and toxicology—a brief update. Sci Total Environ 432:210–215.  https://doi.org/10.1016/j.scitotenv.2012.06.009 CrossRefPubMedGoogle Scholar
  272. Singh S, Kumar A, Karakoti A et al (2010) Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst 6:1813–1820.  https://doi.org/10.1039/c0mb00014k CrossRefPubMedPubMedCentralGoogle Scholar
  273. Singh A, Singh NB, Hussain I et al (2017a) Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. J Biotechnol 262:11–27.  https://doi.org/10.1016/j.jbiotec.2017.09.016 CrossRefPubMedGoogle Scholar
  274. Singh S, Tripathi DK, Singh S et al (2017b) Toxicity of aluminium on various levels of plant cells and organism: a review. Environ Exp Bot 137:177–193.  https://doi.org/10.1016/j.envexpbot.2017.01.005 CrossRefGoogle Scholar
  275. Snyder RW, Fennell TR, Wingard CJ et al (2015) Distribution and biomarker of carbon-14 labeled fullerene C-60 ( C-14(U) C-60) in pregnant and lactating rats and their offspring after maternal intravenous exposure. J Appl Toxicol 35:1438–1451.  https://doi.org/10.1002/jat.3177 CrossRefPubMedPubMedCentralGoogle Scholar
  276. Sohaebuddin SK, Thevenot PT, Baker D et al (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:17.  https://doi.org/10.1186/1743-8977-7-22 CrossRefGoogle Scholar
  277. Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloid Surf B-Biointerfaces 66:274–280.  https://doi.org/10.1016/j.colsurfb.2008.07.004 CrossRefGoogle Scholar
  278. Song B, Liu J, Feng X et al (2015) A review on potential neurotoxicity of titanium dioxide nanoparticles. Nanoscale Res Lett 10:1042.  https://doi.org/10.1186/s11671-015-1042-9 CrossRefPubMedGoogle Scholar
  279. Soto KF, Carrasco A, Powell TG et al (2005) Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J Nanopart Res 7:145–169.  https://doi.org/10.1007/s11051-005-3473-1 CrossRefGoogle Scholar
  280. Spielman-Sun E, Lombi E, Donner E et al (2017) Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environ Sci Technol 51:7361–7368.  https://doi.org/10.1021/acs.est.7b00813 CrossRefPubMedPubMedCentralGoogle Scholar
  281. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479.  https://doi.org/10.1021/es901695c CrossRefPubMedGoogle Scholar
  282. Staszek M, Siegel J, Rimpelova S et al (2015) Cytotoxicity of noble metal nanoparticles sputtered into glycerol. Mater Lett 158:351–354.  https://doi.org/10.1016/j.matlet.2015.06.021 CrossRefGoogle Scholar
  283. Stella GM (2011) Carbon nanotubes and pleural damage: perspectives of nanosafety in the light of asbestos experience. Biointerphases 6:P1–P17.  https://doi.org/10.1116/1.3582324 CrossRefPubMedGoogle Scholar
  284. Steuer H, Krastev R, Lembert N (2014) Metallic oxide nanoparticles stimulate blood coagulation independent of their surface charge. J Biomed Mater Res Part B 102:897–902.  https://doi.org/10.1002/jbm.b.33051 CrossRefGoogle Scholar
  285. Stoccoro A, Karlsson HL, Coppede F et al (2013) Epigenetic effects of nano-sized materials. Toxicology 313:3–14.  https://doi.org/10.1016/j.tox.2012.12.002 CrossRefPubMedGoogle Scholar
  286. Taylor AF, Rylott EL, Anderson CWN et al (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9:e93793.  https://doi.org/10.1371/journal.pone.0093793 CrossRefPubMedPubMedCentralGoogle Scholar
  287. Teske SS, Detweiler CS (2015) The biomechanisms of metal and metal-oxide nanoparticles’ interactions with cells. Int J Environ Res Public Health 12:1112–1134.  https://doi.org/10.3390/ijerph120201112 CrossRefPubMedPubMedCentralGoogle Scholar
  288. Theodorou IG, Ryan MP, Tetley TD et al (2014) Inhalation of silver nanomaterials—seeing the risks. Int J Mol Sci 15:23936–23974.  https://doi.org/10.3390/ijms151223936 CrossRefPubMedPubMedCentralGoogle Scholar
  289. Thuesombat P, Hannongbua S, Akasit S et al (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Safe 104:302–309.  https://doi.org/10.1016/j.ecoenv.2014.03.022 CrossRefGoogle Scholar
  290. Tortiglione C (2014) The heritable effects of nanotoxicity. Nanomedicine 9:2829–2841.  https://doi.org/10.2217/nnm.14.152 CrossRefPubMedGoogle Scholar
  291. Tripathi DK, Shweta SS et al (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12.  https://doi.org/10.1016/j.plaphy.2016.07.030 CrossRefPubMedGoogle Scholar
  292. Vandebriel RJ, De Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71.  https://doi.org/10.2147/NSA.S23932 CrossRefPubMedPubMedCentralGoogle Scholar
  293. Walkey CD, Olsen JB, Song FY et al (2014) Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8:2439–2455.  https://doi.org/10.1021/nn406018q CrossRefPubMedGoogle Scholar
  294. Wang HH, Kou XM, Pei ZG et al (2011a) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42.  https://doi.org/10.3109/17435390.2010.489206 CrossRefPubMedPubMedCentralGoogle Scholar
  295. Wang SH, Kurepa J, Smalle JA (2011b) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34:811–820.  https://doi.org/10.1111/j.1365-3040.2011.02284.x CrossRefPubMedPubMedCentralGoogle Scholar
  296. Wang B, He X, Zhang ZY et al (2013a) Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res 46:761–769.  https://doi.org/10.1021/ar2003336 CrossRefPubMedGoogle Scholar
  297. Wang Q, Ebbs SD, Chen YS et al (2013b) Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5:753–759.  https://doi.org/10.1039/c3mt00033h CrossRefPubMedGoogle Scholar
  298. Wang J, Yang Y, Zhu HG et al (2014) Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by populus deltoides x nigra cuttings. Environ Sci Technol 48:6754–6762.  https://doi.org/10.1021/es501425r CrossRefPubMedGoogle Scholar
  299. Wang P, Lombi E, Zhao FJ et al (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712.  https://doi.org/10.1016/j.tplants.2016.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  300. Wang Y, Xiong LL, Tang M (2017) Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J Appl Toxicol 37:644–667.  https://doi.org/10.1002/jat.3451 CrossRefPubMedGoogle Scholar
  301. Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J App Pharm Sci 2:40–44Google Scholar
  302. Wen H, Dan M, Yang Y et al (2017) Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS One 12:e0185554.  https://doi.org/10.1371/journal.pone.0185554 CrossRefPubMedPubMedCentralGoogle Scholar
  303. Wick P, Malek A, Manser P et al (2010) Barrier capacity of human placenta for nanosized materials. Environ Health Perspect 118:432–436.  https://doi.org/10.1289/ehp.0901200 CrossRefPubMedGoogle Scholar
  304. Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294.  https://doi.org/10.1021/es900065h CrossRefPubMedGoogle Scholar
  305. Xiang L, Zhao HM, Li YW et al (2015) Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ Sci Pollut Res 22:10452–10462.  https://doi.org/10.1007/s11356-015-4172-9 CrossRefGoogle Scholar
  306. Xu PA, Zeng GM, Huang DL et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10.  https://doi.org/10.1016/j.scitotenv.2012.02.023 CrossRefPubMedGoogle Scholar
  307. Xu YY, Li HQ, Hedmer M et al (2017) Occupational exposure to particles and mitochondrial DNA – relevance for blood pressure. Environ Health 16:10.  https://doi.org/10.1186/s12940-017-0234-4 CrossRefGoogle Scholar
  308. Yadav T, Mungray AA, Mungray AK (2014) Fabricated nanoparticles: current status and potential phytotoxic threats. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 230. Springer, ChamGoogle Scholar
  309. Yamamoto Y, Miura T, Suzuki M et al (2004) Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys Rev Lett 93:116801Google Scholar
  310. Yamashita K, Yoshioka Y, Higashisaka K et al (2011) Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6:321–328.  https://doi.org/10.1038/nnano.2011.41 CrossRefPubMedGoogle Scholar
  311. Yan SH, Zhao L, Li H et al (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118.  https://doi.org/10.1016/j.jhazmat.2012.12.013 CrossRefPubMedGoogle Scholar
  312. Yoon SJ, Kwak JI, Lee WM et al (2014) Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Safe 100:131–137.  https://doi.org/10.1016/j.ecoenv.2013.10.014 CrossRefGoogle Scholar
  313. Yu XH, Hong FS, Zhang YQ (2016) Bio-effect of nanoparticles in the cardiovascular system. J Biomed Mater Res Part A 104:2881–2897.  https://doi.org/10.1002/jbm.a.35804 CrossRefGoogle Scholar
  314. Yuan DG, Shan XQ, Huai Q et al (2001) Uptake and distribution of rare earth elements in rice seeds cultured in fertilizer solution of rare earth elements. Chemosphere 43:327–337.  https://doi.org/10.1016/s0045-6535(00)00142-9 CrossRefPubMedGoogle Scholar
  315. Zhang ZY, He X, Zhang HF et al (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–822.  https://doi.org/10.1039/c1mt00049g CrossRefPubMedPubMedCentralGoogle Scholar
  316. Zhang P, Ma YH, Zhang ZY et al (2015) Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology 9:1–8.  https://doi.org/10.3109/17435390.2013.855829 CrossRefPubMedPubMedCentralGoogle Scholar
  317. Zhao LJ, Peralta-Videa JR, Rico CM et al (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759.  https://doi.org/10.1021/jf405476u CrossRefPubMedGoogle Scholar
  318. Zhao LJ, Sun YP, Hernandez-Viezcas JA et al (2015) Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ mu-XRF mapping of nutrients in kernels. Environ Sci Technol 49:2921–2928.  https://doi.org/10.1021/es5060226 CrossRefPubMedGoogle Scholar
  319. Zheng L, Hong FS, Lu SP et al (2005) Effect of nano-TiO2 on strength of naturally and growth aged seeds of spinach. Biol Trace Elem Res 104:83–91.  https://doi.org/10.1385/bter:104:1:083 CrossRefPubMedGoogle Scholar
  320. Zhu H, Han J, Xiao JQ et al (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717.  https://doi.org/10.1039/b805998e CrossRefPubMedGoogle Scholar
  321. Zhu ZJ, Wang HH, Yan B et al (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391–12398.  https://doi.org/10.1021/es301977w CrossRefPubMedGoogle Scholar
  322. Zuverza-Mena N, Martínez-Fernández D, Du W et al (2017) Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses – a review. Plant Physiol Biochem 110:236–264.  https://doi.org/10.1016/j.plaphy.2016.05.037 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyGrey Bruce Health ServicesOwen SoundCanada
  2. 2.Department of Pathology and Laboratory Medicine, Schülich School of Medicine and DentistryWestern UniversityLondonCanada
  3. 3.IIPB Medicine CorporationOwen SoundCanada

Personalised recommendations