Hazard Rate and Future Lifetime for the Generalized Normal Distribution

  • Thomas L. Toulias
  • Christos P. Kitsos
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


The target of this paper is to discuss a generalized form of the well-known Law of Frequency Error. This particular Law of Frequency of Errors is what is known as “Gaussian” or “Normal” distribution and appeared to have an aesthetic appeal to all the branches of Science. The Generalized Normal Distribution is presented as a basis to our study. We derive also the corresponding hazard function as well as the future lifetime of the Generalized Normal Distribution (GND), while new results are also presented. Moreover, due to some of the important distribution the GND family includes, specific results can also be extracted for some other distributions.


  1. 1.
    Coin, D.: A method to estimate power parameter in exponential power distribution via polynomial regression. J. Stat. Comput. Simul. 83(11), 1981–2001 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Daw, R.H., Pearson, E.S.: Studies in the history of probability and statistics, XXX: Abraham de Moivre’s 1733 derivation of the normal curve: a bibliographical note. Biometrika 59, 677–680 (1972)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Edgeworth, F.Y.: XLII. The law of error. Philos. Mag. Ser. 5 16(100), 300–309 (1883)Google Scholar
  4. 4.
    Edgeworth, F.Y.: IV. The philisophy of chance. Mind os-IX(34), 223–235 (1884)Google Scholar
  5. 5.
    Galton, F.: Natural Inheritance. McMilan, London (1889)Google Scholar
  6. 6.
    Gauss, C.F.: Bestimmung der Genauigkeit der Beobachtungen. Zeitschrift Astronomi 1, 185–197 (1816)Google Scholar
  7. 7.
    Gómez, E., Gómez-Villegas, M.A., Martin, J.M.: A multivariate generalization of the power exponential family of distributions. Commun. Stat. Theory Methods 27(3), 589–600 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kitsos, C.P., Tavoularis, N.K.: Logarithmic Sobolev inequalities for information measures. IEEE Trans. Inf. Theory 55(6), 2554–2561 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kitsos, C.P., Toulias, T.L.: New information measures for the generalized normal distribution. Information 1, 13–27 (2010)CrossRefGoogle Scholar
  10. 10.
    Kitsos, C.P., Toulias, T.L.: Inequalities for the Fisher’s information measures. In: Rassias, M.Th. (ed.) Handbook of Functional Equations: Functional Inequalities, pp. 281–313. Springer, Berlin (2014)zbMATHGoogle Scholar
  11. 11.
    Kitsos, C.P., Toulias, C.P., Trandafir, P.C.: On the multivariate γ–ordered normal distribution. Far East J. Theor. Stat. 38(1), 49–73 (2012)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kitsos, C.P., Vassiliadis, V.G., Toulias, T.L.: MLE for the γ-order generalized normal distribution. Discuss. Math. Probab. Stat. 34, 143–158 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nadarajah, S.: A generalized normal distribution. J. Appl. Stat. 32(7), 685–694 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Parham, F. Portier, C.: Benchmark Dose Approach. In: Edler, L., Kitsos, C. (eds.) Recent Advances Quantitative Methods in Cancer and Human Health Assessment. Wiley (2005)Google Scholar
  15. 15.
    Pólya, G.: Uber den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem. Mathematische Zeitschrift. Springer (1920)zbMATHGoogle Scholar
  16. 16.
    Toulias, T.L., Kitsos, C.P.: Generalizations of entropy and information measures. In: Darras, N.J., Rassias M.Th. (eds.) Computation, Cryptography and Network Security, pp. 495–526. Springer (2015)Google Scholar
  17. 17.
    Verdoolaege, G, Scheunders, P.: On the geometry of multivariate generalized Gaussian models. J. Math. Imaging Vision 43(3), 180–193 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yu, S., Zhang, A., Li, H.: A review of estimating the shape parameter of the generalized Gaussian distribution. J. Comput. Inf. Syst. 8(21), 9055–9064 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thomas L. Toulias
    • 1
  • Christos P. Kitsos
    • 1
  1. 1.Technological Educational Institute of AthensEgaleo, AthensGreece

Personalised recommendations