Advertisement

NIR Emission Properties of RE3+ Ions in Multicomponent Tellurite Glasses

  • M. S. Sajna
  • V. P. Prakashan
  • M. S. Sanu
  • Gejo George
  • Cyriac Joseph
  • P. R. Biju
  • N. V. Unnikrishnan
Chapter

Abstract

The unique physical and optical properties of tellurium-based glasses such as low melting point, low phonon energy, higher linear and nonlinear refractive index, and wide transparency in the visible to IR region make them excellent candidates for telecommunication applications. This chapter reviews trivalent rare-earth (RE3+)-doped tellurium-based glasses developed over a wide range of compositions formed from the viscous melts of more than two glass formers. This chapter includes some important tellurium-based glasses as potential host materials for RE3+ ions having near-infrared (NIR) emissions. The influences of the composition on the spectral as well as laser parameters of certain rare-earth transitions investigated by several researchers are also detailed so as to apply them in a wide variety of practical applications. It also covers some basic theories necessary to explain the spectroscopic features of interest, the required experimental evidences, and the representative data related to the topic from the previous reports. The recent developments in the intensification in NIR luminescence of lanthanide-embedded tellurite-based hosts due to the co-doping of the metal nanoparticles are also addressed.

Keywords

Tellurite glass NIR emission Rare earth Metal nanoparticle Surface plasmon resonance 

References

  1. 1.
    M.R. Sahar, K. Sulhad, J. Non-Cryst. Solids 354, 1179 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    S. Wang, E.M. Vogel, E. Snitzer, Opt. Mater. 3, 187 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    M.R. Sahar, A.K. Jehbu, M.M. Karim, J. Non-Cryst. Solids 213-214, 164 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    M. J. Weber, P. Mazzoldi (eds.), From Galilers ‘Occhialino’ to Optoelectronics (World Scientific, Singapore, 1993), p. 332Google Scholar
  5. 5.
    L.A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, R.R. Alfano, J. Biomed. Opt. 19(5), 056004 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    G.D. Khattak, M.A. Salim, J. Electron Spectrosc. Relat. Phenon 123, 47 (2002)CrossRefGoogle Scholar
  7. 7.
    M.S. Sajna, S. Gopi, V.P. Prakashan, M.S. Sanu, C.C. Joseph, P.R. Biju, N.V. Unnikrishnan, Opt. Mater. 70, 31 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    S. Hocde, S. Jiang, X. Peng, N. Peyghambarian, T. Luo, M. Morrell, Opt. Mater. 25, 149 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    S. Marjanovic, J. Toulouse, H. Jain, C. Sandmann, V. Dierolf, A.R. Kortan, N. Kopylov, R.G. Ahrens, J. Non-Cryst. Solids 322, 311 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, T. Cardinal, J. Non-Cryst. Solids 325, 85 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    M.M. El-Desoky, M.M. Abo-Nafs.M, J. Mater. Sci. Mater. Electron. 15, 425 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Kirkpatrick, L. Shaw, S. Bowman, S. Searles, B. Feldman, J. Ganem, Opt. Express 1(4), 76 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Zheng, B. Chen, H. Zhong, J. Sun, L. Cheng, X. Li, J. Zhang, Y. Tian, W. Lu, J. Wan, T. Yu, L. Huang, H. Yu, H. Lin, J. Am. Ceram. Soc. 94(6), 1766 (2011)CrossRefGoogle Scholar
  14. 14.
    V. Dorofeev, A.N. Moiseev, M.F. Churbanov, G.E. Snopatin, A.V. Chilyasov, I.A. Kraev, A.S. Lobanov, T.V. Kotereva, L.A. Ketkova, A.A. Pushkin, V.V. Gerasimenko, V.G. Plotnichenko, A.F. Kosolapov, E.M. Dianov, Opt. Mater. 33, 1911 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    G. Senthil Murugan, A. Suzuki, Y. Ohishi, Appl. Phys. Lett. 86, 221109 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1736 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    P. Hagenmuller (ed.), Inorganic Solid Fluorides, Chemistry and Physics (Academic Press, New York, 1985)Google Scholar
  18. 18.
    L. Le Neindre, S. Jiang, B. Hwang, T. Luo, J. Watson, N. Peyghambarian, J. Non-Cryst. Solids 255, 97 (1999)CrossRefGoogle Scholar
  19. 19.
    K. Hirao, S.K. Kishimomo, K. Tanaka, S. Tanaka, N. Saga, J. NonCryst. Solids 151, 1390 (1992)Google Scholar
  20. 20.
    R. Reisfeld, J. Hormadaly, J. Chem. Phys. 64, 3207 (1976)ADSCrossRefGoogle Scholar
  21. 21.
    A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, Electron. Lett. 34, 887 (1998)CrossRefGoogle Scholar
  22. 22.
    T. Toney Fernandez, S.M. Eaton, G. Jose, R. Osellame, P. Laporta, J. Solis, Laser writing in tellurite glasses, in Technological Advances in Tellurite Glasses, Springer Series in Materials Science, ed. by V. Rivera, D. Manzani, vol. 254, (Springer, Cham, 2017)CrossRefGoogle Scholar
  23. 23.
    V.V. Ravi Kanth Kumar, A.K. Bhatnagar, R. Jagannathan, J. Phys. D. Appl. Phys. 34, 1563 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    C.A. Click, R.K. Brow, P.R. Ehrmann, J.H. Campbell, J. Non-Cryst. Solids 319(1-2), 95 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    X. Feng, J. Shi, M. Segura, N.M. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, W.H. Loh, Fibers 1, 70 (2013)CrossRefGoogle Scholar
  26. 26.
    A. Lin, A. Ryasnyanskiy, J. Toulouse, Opt. Lett. 36(5), 740 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, K. Richardson, J. Am. Ceram. Soc 94(1), 130 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Song, J. Heo, Appl. Phys. 93, 9441 (2003)CrossRefGoogle Scholar
  29. 29.
    W.L. Barnes, R.I. Raming, E.J. Tarbox, P.R. Morkel, IEEE J. Quantum Electron. 27, 1004 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    D.E. McCumber, Phys. Rev. 136(4A), A954 (1964)ADSCrossRefGoogle Scholar
  31. 31.
    H. Chen, Y.H. Liu, Y.F. Zhou, Z.H. Jiang, J. Alloys Compd. 397, 286 (2005)CrossRefGoogle Scholar
  32. 32.
    W.J. Miniscalco, R.S. Quimby, Opt. Lett. 16, 258 (1991)ADSCrossRefGoogle Scholar
  33. 33.
    E. Desurvire, Erbium Doped Fiber Amplifiers: Principles and Applications (John Wiley, NewYork, 1994)Google Scholar
  34. 34.
    S.X. Shen, A. Jha, Opt. Mater. 25, 321 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    J. Coelho, J. Azevedo, G. Hungerford, N.S. Hussain, Opt. Mater. 33, 1167 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    A. Sennaroglu, I. Kabalci, A. Kurt, U. Demirbas, G. Ozen, J. Lumin. 116, 79 (2006)CrossRefGoogle Scholar
  37. 37.
    S. Shen, M. Naftaly, A. Jha, in 11th International Symposium on Non-Oxide Glasses, Sheffield, 6–10 Sept 1998Google Scholar
  38. 38.
    R. Balda, L.M. Lacha, J. Fernández, J.M. Fernández-Navarro, Opt. Mater. 27, 1771 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, IEEE Photon. Technol. Lett. 10, 1244 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    M. Naftaly, S. Shen, A. Jha, Appl. Opt. 39, 4979 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    J. Makovsky, W. Low, S. Yatsiv, Phys. Lett. 2, 186 (1962)ADSCrossRefGoogle Scholar
  42. 42.
    W.T. Carnall, P.R. Fields, R. Sarup, J. Chem. Phys. 51, 2587 (1969)ADSCrossRefGoogle Scholar
  43. 43.
    E. Loh, Phys. Rev. A 140, 1463 (1965)ADSCrossRefGoogle Scholar
  44. 44.
    A. Bjarklev, Optical Fiber Amplijiers: Design and System Applications (Artech House, New York, 1993), p. 235Google Scholar
  45. 45.
    Y.G. Choi, J. Heo, J Non-Cryst. Solids 217, 199 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    L. Feng, J. Wang, Q. Tang, L.F. Liang, H.B. Liang, Q. Su, J. Lumin. 124, 187 (2007)CrossRefGoogle Scholar
  47. 47.
    C.H. Qi, X.R. Zhang, H.F. Hu, Acta Opt. Sinica 14, 583 (1994)Google Scholar
  48. 48.
    D. Lande, S.S. Orloy, A. Akella, K. Inoue, Opt. Lett. 22, 1722 (1997)ADSCrossRefGoogle Scholar
  49. 49.
    C.J. He, X.B. Chen, Y.G. Sun, L. Chen, Chinese J. Quant. Electron. 19(2), 109 (2002)Google Scholar
  50. 50.
    A. Erbit, H.P. Jenssen, Appl. Opt. 19, 1729 (1980)ADSCrossRefGoogle Scholar
  51. 51.
    S.D. Jackson, Laser Photonics Rev. 3, 466 (2009)CrossRefGoogle Scholar
  52. 52.
    J-b Chen, S-Q Man, N Zhang, in Proceedings of the International Conference on Chemical, Material and Food Engineering, Advances in Engineering Research, vol. 346 (2015)Google Scholar
  53. 53.
    E. Rukmini, C.K. Jayasanker, Opt. Mater. 4, 529 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    M. Seshadri, L.C. Barbosa, M. Radha, J. Non-Cryst. Solids 406, 62 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    J. He, H. Zhan, Z. Zhou, A. Zhang, A. Lin, Opt. Commun. 320, 68 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    B. Zhou, D. Yang, H. Lin, E.Y.B. Pun, J. Non-Cryst. Solids 357, 2468 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    B. Peng, T. Izumitani, J. Opt. Mater. 4, 797 (1995)CrossRefGoogle Scholar
  58. 58.
    B.J. Chen, L.F. Shen, E.Y.B. Pun, H. Lin, Opt. Commun. 284, 5705 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    G. Gao, G. Wanga, C. Yu, J. Zhang, L. Hu, J. Lumin. 129, 1042 (2009)CrossRefGoogle Scholar
  60. 60.
    R. Reisfeld, Y. Kalisky, Chem. Phys. Lett. 75(3), 443 (1980)ADSCrossRefGoogle Scholar
  61. 61.
    E. Sintzer, Phys. Rev. Lett. 7, 444 (1961)ADSCrossRefGoogle Scholar
  62. 62.
    J.S. Wang, D.P. Machewirch, F. Wu, E.M. Vogel, E. Snitzer, Opt. Lett. 19, 1448 (1994)ADSCrossRefGoogle Scholar
  63. 63.
    J. Wan, L. Cheng, J. Sun, H. Zhong, X. Li, W. Lu, Y. Tian, B. Wang, B. Chen, Physica B 405, 1958 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    M. Venkateswarlu, S.K. Mahamuda, K. Swapna, M.V.V.K.S. Prasad, A. Srinivasa Rao, A. Mohan Babu, S. Shakya, G. Vijaya Prakash, Opt. Mater. 39, 8 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    T.J. Whitley, C.A. Millar, R. Wyatt, M.C. Brierley, D. Szebesta, Electron. Lett. 27, 1785 (1991)ADSCrossRefGoogle Scholar
  66. 66.
    D.L. Veasey, D.S. Funk, N.A. Sanford, J.S. Hayden, Appl. Phys. Lett. 74, 789 (1999)ADSCrossRefGoogle Scholar
  67. 67.
    A. Mori, Y. Ohishi, S. Sudo, Electron. Lett. 33, 863 (1997)CrossRefGoogle Scholar
  68. 68.
    M.J.F. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993)Google Scholar
  69. 69.
    S. Sudo, Optical Fiber Amplifiers––Materials, Devices, and Applications (Artech House, Boston, 1997)Google Scholar
  70. 70.
    H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, E. Yue-Bun Pun, J. Appl. Phys. 93, 186 (2003)ADSCrossRefGoogle Scholar
  71. 71.
    M.S. Sajna, S. Thomas, C. Jayakrishnan, C. Joseph, P.R. Biju, N.V. Unnikrishnan, Spectrochim. Acta A 161, 130 (2016)ADSCrossRefGoogle Scholar
  72. 72.
    B. Zhou, L. Tao, C.Y.Y. Chan, Y.H. Tsang, W. Jin, E.Y. Pun, Spectrochim. Acta Part A 111, 49 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    Y. Ding, S. Jiang, B. Hwang, T. Luo, N. Peyghambarian, Y. Miura, Proc. SPIE 3942, 166 (2000)ADSCrossRefGoogle Scholar
  74. 74.
    J.G. Edwards, Nature 212, 752 (1966)ADSCrossRefGoogle Scholar
  75. 75.
    R. Rolli, M. Montagna, S. Chaussedent, A. Monteil, V.K. Tikhomirov, M. Ferrari, Opt. Mater. 21, 743 (2003)ADSCrossRefGoogle Scholar
  76. 76.
    M. Dejneca, B. Samson, MRS Bull. 24(9), 39 (1999)CrossRefGoogle Scholar
  77. 77.
    M.S. Sajna, S. Thomas, K.A. Ann Mary, C. Joseph, P.R. Biju, N.V. Unnikrishnan, J. Lumin. 159, 55 (2015)CrossRefGoogle Scholar
  78. 78.
    S. Dai, J. Wu, J. Zhang, G. Wang, Z. Jiang, Spectrochim. Acta Part A 62, 431 (2005)ADSCrossRefGoogle Scholar
  79. 79.
    W.A. Pisarski, J. Pisarska, M. Maczka, W. Ryba-Romanowski, J. Mol. Struct. 207, 792–793 (2006)Google Scholar
  80. 80.
    S. Da, C. Yu, G. Zhou, J. Zhang, G. Wang, L. Hu, J. Lumin. 117, 39 (2006)CrossRefGoogle Scholar
  81. 81.
    H. Zheng, D. Gao, Z. Fu, E. Wang, Y. Lei, Y. Tuan, J. Lumin. 131, 423 (2011)CrossRefGoogle Scholar
  82. 82.
    B. van Saders, L. Al-Baroudi, M.C. Tan, R.E. Riman, Opt. Mater. Express 3, 567 (2013)Google Scholar
  83. 83.
    S. Tanabe, T. Kouda, T. Hanada, J. Non-Cryst. Solids 274, 55 (2000)ADSCrossRefGoogle Scholar
  84. 84.
    G. Lakshminarayana, R. Vidya Sagar, S. Buddhudu, J. Lumin. 128, 690 (2008)CrossRefGoogle Scholar
  85. 85.
    M. Eichelbaum, K. Rademann, Adv. Funct. Mater. 19, 2045 (2009)CrossRefGoogle Scholar
  86. 86.
    P.P. Pompa, L. Martiradonna, A.D. Torre, F.D. Sala, L. Manna, M.D. Vittorio, F. Calabi, R. Cingolani, R. Rinaldi, Nat. Nanotechnol. 1, 126 (2006)ADSCrossRefGoogle Scholar
  87. 87.
    A. Lin, S. Boo, D.S. Moon, H.J. Jeong, Y. Chung, W.T. Han, Opt. Express 15, 8603 (2007)ADSCrossRefGoogle Scholar
  88. 88.
    M.R. Dousti, R.J. Amjad, Z.A.S. Mahraz, J. Mol. Struct. 1079, 347 (2015)ADSCrossRefGoogle Scholar
  89. 89.
    H. Higuchi, M. Takahashi, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, N. Kitamura, J. Appl. Phys. 83, 19 (1998)ADSCrossRefGoogle Scholar
  90. 90.
    M. Shojiya, M. Takahashi, R. Kanno, Y. Kawamoto, K. Kadono, Appl. Phys. Lett. 67, 245 (1995)CrossRefGoogle Scholar
  91. 91.
    A. Gharavi, G.L. McPherson, Appl. Phys. Lett. 61, 2635 (1992)ADSCrossRefGoogle Scholar
  92. 92.
    D.F. de Sousa, L.F.C. Zonetti, M.J.V. Bell, R. Ledullenger, A.C. Hernandes, L.A.O. Nunesl, J. Appl. Phys. 85, 2502 (1999)ADSCrossRefGoogle Scholar
  93. 93.
    A.S. Oliveira, M.T. de Araujo, A.S. Gouveia-Neto, J.A. Medeiros Neto, A.S.B. Sombra, Y. Messaddeq, Appl. Phys. Lett. 72, 753 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • M. S. Sajna
    • 1
  • V. P. Prakashan
    • 1
  • M. S. Sanu
    • 1
  • Gejo George
    • 1
  • Cyriac Joseph
    • 1
  • P. R. Biju
    • 1
  • N. V. Unnikrishnan
    • 1
  1. 1.School of Pure & Applied Physics, Mahatma Gandhi UniversityKottayamIndia

Personalised recommendations