Optothermal Properties of Vanadate-Tellurite Oxide Glasses and Some Suggested Applications

  • Dariush SouriEmail author


Transition metal oxide-containing glasses (TMOGs) have special and unique optothermal properties. One can verify how the optical, thermal, and thermoelectric properties vary with composition. This work tries to give more insight into the subject of the thermal stability and its effect on the optothermal properties of some vanadate-tellurite oxide glasses. In other words, optical and thermal characterization of such glassy systems can be investigated versus the composition with the aim of finding the more potential candidates in optical applications. Moreover, besides thermal stability, different parameters such as elastic moduli, optical bandgap, molar volume (Vm), oxygen molar volume (\( {V}_{\mathrm{O}}^{\ast } \)), oxygen packing density (OPD), molar refraction (Rm), metallization criterion (M), and the concentration of non-bridging oxygen ions (NBOs) can be evaluated and discussed as the most important factors on the properties and applications of a material. In brief, optical applications (such as active material in optical fibers) of oxide glasses need the high thermal stable glasses with narrower bandgap. It should be noted that any suggestion for optical applications needs precise determination of optical properties such as energy bandgap, which affect the evaluation of other related optical parameters and so in optical device manufacturing and applications; in the case of bandgap determination, derivative absorption spectrum fitting method (abbreviated as DASF) has been recently proposed; this method is briefly introduced in this work. Also, such thermal stable glasses with good thermoelectric properties are promising materials which can be used in solar cells and photovoltaic (PV) panels as heat pumps to elevate the PV efficiency. An attempt has been made to discuss these subjects, giving more light in the field of optothermal aspects.



The author gratefully acknowledges Dr. Hidetsugu Mori for his support on titration.


  1. 1.
    R. El-Mallawany, Introduction to Tellurite glasses. Springer Series Mater. Sci. 254, 1–13 (2017)CrossRefGoogle Scholar
  2. 2.
    S.H. Elazoumi, H.A.A. Sidek, Y.S. Rammah, R. El-Mallawany, M.K. Halimah, K.A. Matori, M.H.M. Zaid, Effect of PbO on optical properties of tellurite glass. Res. Phys. 8, 16–25 (2018)Google Scholar
  3. 3.
    H.M.M. Moawad, H. Jain, R. El-Mallawany, T. Ramadan, M. El-Sharbiny, Electrical conductivity of silver vanadium tellurite glasses. J. Am. Ceram. Soc. 320(11), 2655 (2002)Google Scholar
  4. 4.
    R. El-Mallawany, N. El-Khoshkhany, H. Afifi, Ultrasonic studies of (TeO2)50–(V2O5)50−x(TiO2)x glasses. Mater. Chem. Phys. 95, 321 (2006)CrossRefGoogle Scholar
  5. 5.
    R. El-Mallawany, A. Abousehly, E. Yousef, Elastic moduli of tricomponent tellurite glasses TeO2-V2O5-Ag2O. J. Mater. Sci. Lett. 19, 409 (2000)CrossRefGoogle Scholar
  6. 6.
    R. El-Mallawany, Specific heat capacity of semiconducting glasses: binary vanadium tellurite. Phys. Status Solidi A 177, 439 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    D. Souri, Z. Torkashvand, Thermomechanical properties of Sb2O3-TeO2-V2O5 glassy systems: Thermal stability, glass-forming tendency and Vickers hardness. J. Electron. Mater. 4(2017), 46 (2158)Google Scholar
  8. 8.
    D. Souri, The study of glass transition temperature in Sb–V2O5–TeO2 glasses at different heating rates. Indian J. Phys. 12(2015), 89 (1277)Google Scholar
  9. 9.
    R. El-Mallawany, M. Sidkey, A. Khafagy, H. Afifi, Ultrasonic attenuation of tellurite glasses. Mater. Chem. Phys. 37(2), 197 (1994)CrossRefGoogle Scholar
  10. 10.
    I.Z. Hager, R. El-Mallawany, A. Bulou, Luminescence spectra and optical properties of TeO2–WO3–Li2O glasses doped with Nd, Sm and Er rare earth ions. Phys. B Condens. Matter 406(4), 972 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A.A. Ali, Y.S. Rammah, R. El-Mallawany, D. Souri, FTIR and UV spectra of pentaternary borate glasses. Measurement 105, 72 (2017)CrossRefGoogle Scholar
  12. 12.
    D. Souri, The study of crystallization kinetics and determination of Avrami index in TeO2-V2O5-NiO amorphous samples by calorimetric analysis. Iranian J. Cer. Sci. Eng. 5(3), 73 (2016)Google Scholar
  13. 13.
    D. Souri, Y. Shahmoradi, Calorimetric analysis of non-crystalline TeO2- V2O5-Sb2O3: Determination of crystallization activation energy, Avrami index and stability parameter. J. Therm. Anal. Calorim. 129, 601 (2017)CrossRefGoogle Scholar
  14. 14.
    A. El-Adawy, R. El-Mallawany, Elastic modulus of tellurite glasses. J. Mater. Sci. Lett. 15, 2065 (1996)Google Scholar
  15. 15.
    I.Z. Hager, R. El-Mallawany, Preparation and structural studies in the (70− x) TeO2–20WO3–10Li2O–xLn2O3 glasses. J. Mater. Sci. 45(4), 897 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    M.M. El-Zaidia, A.A. Ammar, R.A. El-Mallwany, Infra-red spectra, electron spin resonance spectra, and density of (TeO2) 100− x–(WO3) x and (TeO2) 100− x–(ZnCl2) x glasses. Phys. Status Solidi A 91(2), 637 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    R.A. Montani, M.A. Frechero, The conductive behavior of silver vanadium molybdenum tellurite glasses: Part II. Solid State Ionics 158, 327 (2003)CrossRefGoogle Scholar
  18. 18.
    N.S. Hussain, G. Hungerford, R. El-Mallawany, M.J.M. Gomes, M.A. Lopes, N. Ali, J.D. Santos, S. Buddhudu, Absorption and emission analysis of RE3+ (Sm3+ and Dy3+): Lithium Boro Tellurite glasses. J. Nanosci. Nanotechnol. 9(6), 3672 (2009)CrossRefGoogle Scholar
  19. 19.
    R. El-Mallawany, A. Abd El-Moneim, Comparison between the elastic moduli of tellurite and phosphate glasses. Phys. Status Solidi A 166(2), 829 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    M.A. Sidkey, R. El-Mallawany, A. Abousehly, Y.B. Saddeek, Elastic properties of tellurite glasses. Glass Sci. Technol.: Glastechnische Berichte 75, 87 (2002)Google Scholar
  21. 21.
    M.M. Elkholy, R.A. El-Mallawany, Ac conductivity of tellurite glasses. Mater. Chem. Phys. 40(3), 163 (1995)CrossRefGoogle Scholar
  22. 22.
    D. Souri, R. Ghasemi, M. Shiravand, The study of high-dc electric field effect on the conduction of V2O5–Sb–TeO2 glasses and the applicability of an electrothermal model. J. Mater. Sci. 50(6), 2554 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    D. Souri, Glass transition and fragility of telluro-vanadate glasses containing antimony oxide. J. Mater. Sci. 47, 625 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    D. Souri, Study of the heating rate effect on the glass transition properties of (60 -x)V2O5- x Sb2O3-40TeO2 oxide glasses using differential scanning calorimetry (DSC). Measurement 44, 2049 (2011)CrossRefGoogle Scholar
  25. 25.
    S.A. Salehizadeh, D. Souri, The glassy state of the amorphous V2O5-NiO-TeO2 samples. J. Phys. Chem. Solids 72, 1381 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    D. Souri, H. Zaliani, E. Mirdawoodi, M. Zendehzaban, Thermal stability of Sb-V2O5-TeO2 semiconducting oxide glasses using thermal analysis. Measurement 82, 19 (2016)CrossRefGoogle Scholar
  27. 27.
    D. Souri, F. Honarvar, Z.E. Tahan, Characterization of semiconducting mixed electronic-ionic TeO2-V2O5-Ag2O glasses by employing ultrasonic measurements and Vicker’s microhardness. J. Alloys Compd. 699, 601 (2017)CrossRefGoogle Scholar
  28. 28.
    P.Y. Shih, S.W. Yung, C.Y. Chen, H.S. Liu, T.S. Chiu, The effect of SnO and PbCl2 on properties of Stanous Chlorophosphate glasses. Mater. Chem. Phys. 50, 63 (1997)CrossRefGoogle Scholar
  29. 29.
    K. Pradeesh, J.C. Oton, V.K. Agotiya, M. Raghavendra, G.V. Prakash, Optical properties of Er3+ doped alkali chlorophosphate glasses for optical amplifiers. Opt. Mater. 31, 155 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    R.K. Brow, Review: The structure of simple phosphate glasses. J. Non-Cryst. Solids 263/264, 1 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    S.S. Das, B.P. Baranwal, C.P. Gupta, P. Singh, Characteristics of solid-state batteries with zinc/cadmium halide-doped silver phosphate glasses as electrolytes. J. Power Sources 114, 346 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    M. Shapaan, Effect of heat treatment on the hyperfine structure and the dielectric properties of 40P2O5–40V2O5–20Fe2O3 oxide glass. J. Non-Cryst. Solids 356, 314 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    M. Altaf, M.A. Chaudhry, Physical properties of lithium containing cadmium phosphate glasses. J. Mod. Phys. 1, 201 (2010)CrossRefGoogle Scholar
  34. 34.
    A. Abdel-Kader, R. El-Mallawany, M.M. Elkholy, Network structure of tellurite phosphate glasses: Optical absorption and infrared spectra. J. Appl. Phys. 73(1), 71 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    M.S. Dahiya, S. Khasa, A. Agarwal, Thermal characterization of novel magnesium oxyhalide bismo-borate glass doped with VO2+ ions. J. Therm. Anal. Calorim. 123(1), 457 (2016)CrossRefGoogle Scholar
  36. 36.
    M.S. Dahiya, S. Khasa, A. Agarwal, Optical absorption and heating rate dependent glass transition in vanadyl doped calcium oxy-chloride borate glasses. J. Mol. Struct. 1086, 172 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Y.B. Saddeek, A. Aly, S.A. Bashier, Optical study of lead borosilicate glasses. Phys. B Condens. Matter 405, 2407 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    X.X. Pi, X.-H. Cao, Z.-X. Fu, L. Zhang, P.D. Han, L.X. Wang, Q.T. Zhang, Application of Te-based glass in silicon solar cells. Acta Metall. Sin. (Engl. Lett.) 28(2), 223 (2015)CrossRefGoogle Scholar
  39. 39.
    D. Souri, Suggestion for using the thermal stable thermoelectric glasses as a strategy for improvement of photovoltaic system efficiency: Seebeck coefficients of tellurite-vanadate glasses containing antimony oxide. Sol. Energy 139, 19 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    J. Koen, M. Res, R. Heckroodt, V. Hasson, Investigation of the photochromic effect in erbium-doped tellurite glasses. J. Phys. D. Appl. Phys. 9, 13 (1976)ADSCrossRefGoogle Scholar
  41. 41.
    R. Braunstein, Photochromic and electrochromic properties of tungstate glasses. J Solid State Commun 28, 839 (1978)ADSCrossRefGoogle Scholar
  42. 42.
    I. Morozova, A. Yakhind, Sov. J. Glas. Phys. Chem. 6, 83 (1980)Google Scholar
  43. 43.
    D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B Lasers Opt. 119(2), 273 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    R. El-Mallawany, Y.S. Rammah, A. El Adawy, Z. Wassel, Optical and thermal properties of some tellurite glasses. Am. J. Optics Photon. 5(2), 11 (2017)CrossRefGoogle Scholar
  45. 45.
    M.H. Ehsani, R. Zarei Moghadam, H.R. Gholipour Dizaji, P. Kameli, Surface modification of ZnS films by applying an external magnetic field in vacuum chamber. Mater Res Expr 4(9), 096408 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    D. Souri, A.R. Khezripour, M. Molaei, M. Karimipour, ZnSe and copper-doped ZnSe nanocrystals (NCs): Optical transmittance and precise determination of energy band gap beside their exact optical transition type and Urbach energy. Curr. Appl. Phys. 17, 41 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    A. Kirsch, M.M. Murshed, M. Schowalter, A. Rosenauer, T.M. Gesing, Nanoparticle precursor into polycrystalline Bi2Fe4O9: An evolutionary investigation of structural, morphological, optical, and vibrational properties. J. Phy. Chem. C 120(33), 18831 (2016)CrossRefGoogle Scholar
  48. 48.
    T. Katsuhisa, Y. Toshinobu, Y. Hiroyoki, K. Kanichi, Structure and ionic conductivity of LiCl-Li2O-TeO2 glasses. J. Non-Cryst. Solids 103, 250 (1988)CrossRefGoogle Scholar
  49. 49.
    D. Souri, M. Mohammadi, H. Zaliani, Effect of antimony on the optical and physical properties of Sb-V2O5-TeO2 glasses. Electron. Mater. Lett. 10(6), 1103 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    H.S. Farhan, Study of some physical and optical properties of Bi2O3-TeO2-V2O5 glasses. Aust. J. Basic Appl. Sci. 11(9), 171 (2017)Google Scholar
  51. 51.
    H. Mori, H. Sakata, Seebeck coefficient of V2O5-R2O3-TeO2 (R=Sb or Bi) glasses. J. Mater. Sci. 31, 1621 (1996)ADSCrossRefGoogle Scholar
  52. 52.
    J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569 (1972)ADSCrossRefGoogle Scholar
  53. 53.
    D. Souri, S.A. Salehizadeh, Effect of NiO content on the optical band gap, refractive index and density of TeO2-V2O5-NiO glasses. J. Mater. Sci. 44, 5800 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    D. Souri, K. Shomalian, Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60-x) V2O5–40TeO2–xSb2O3 glasses. J. Non-Cryst. Solids 355, 1597 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    D. Souri, Physical and thermal characterization and glass stability criteria of amorphous silver-vanadate-tellurate system at different heating rates: Inducing critical Ag2O/V2O5 ratio. J. Non-Cryst. Solids 475, 136 (2017)ADSCrossRefGoogle Scholar
  56. 56.
    J.A. Duffy, M.D. Ingram, Optical basicity—IV: Influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses. J. Inorg. Nucl. Chem. 37, 1203 (1975)CrossRefGoogle Scholar
  57. 57.
    D. Souri, Crystallization kinetic of Sb–V2O5–TeO2 glasses investigated by DSC and their elastic moduli and Poisson’s ratio. Phys. B Condens. Matter 456, 185 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides.1. J. Appl. Phys. 79, 1736 (1996)ADSCrossRefGoogle Scholar
  59. 59.
    H. Fritzsche, Optical and electrical energy gap in amorphous semiconductors. J. Non-Cryst. Solids 6, 49 (1971)ADSCrossRefGoogle Scholar
  60. 60.
    J.T. Edmond, Measurement of electrical conductivity and optical absorption in chalcogenide glasses. J. Non-Cryst. Solids 1, 39 (1968)ADSCrossRefGoogle Scholar
  61. 61.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979)Google Scholar
  62. 62.
    M. Molaei, A.R. Khezripour, M. Karimipour, Synthesis of ZnSe nanocrystals (NCs) using a rapid microwave irradiation method and investigation of the effect of copper (Cu) doping on the optical properties. Appl. Surf. Sci. 317, 236 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    L.E. Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rudil, E. V. Santiago; an alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films. Appl. Surf. Sci. 254, 412–415 (2007)ADSCrossRefGoogle Scholar
  64. 64.
    S.D. Hart, G.R. Maskaly, B. Temelkuran, External reflection from omnidirectional dielectric mirror fibers. Science 296, 510 (2002)ADSCrossRefGoogle Scholar
  65. 65.
    J.S. Lou, J.M. Olson, Y. Zhang, A. Mascarenhas, Near-band-gap reflectance anisotropy in ordered Ga0.5In0.5P. Phys. Rev. B 55, 16385 (1997)ADSCrossRefGoogle Scholar
  66. 66.
    C. Kittel, Introduction to Solid State Physics, 7th edn. (Singapore, Wiley (ASIA) Pte. Ltd., 1996)zbMATHGoogle Scholar
  67. 67.
    L. Changshi, L. Feng, Natural path for more precise determination of band gap by optical spectra. Opt. Commun. 285, 2868 (2012)ADSCrossRefGoogle Scholar
  68. 68.
    D. Souri, M. Elahi, The DC electrical conductivity of TeO2-V2O5-MoO3 amorphous bulk samples. Phys. Scr. 75(2), 219 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    D. Souri, Fragility, DSC and elastic moduli studies on tellurite-vanadate glasses containing molubdenum. Measurement 44, 1904 (2011)CrossRefGoogle Scholar
  70. 70.
    D. Souri, S.A. Salehizadeh, Glass transition, fragility, and structural features of amorphous nickel–tellurate–vanadate samples. J. Therm. Anal. Calorim. 112(2), 689 (2013)CrossRefGoogle Scholar
  71. 71.
    D. Souri, DSC and elastic moduli studies on tellurite-vanadate glasses containing antimony oxide. Eur. Phys. J. B 84, 47 (2011)ADSCrossRefGoogle Scholar
  72. 72.
    M. Elahi, D. Souri, Study of optical absorption and optical band gap determination of thin amorphous TeO2-V2O5-MoO3 blown films. Indian J. Pure Appl. Phys. 44, 468 (2006)Google Scholar
  73. 73.
    D. Souri, Effect of molybdenum tri-oxide molar ratio on the optical and some physical properties of tellurite-vanadate-molybdate glasses. Measurement 44, 717 (2011)CrossRefGoogle Scholar
  74. 74.
    D. Souri, Ultrasonic velocities, elastic modulus and hardness of ternary Sb-V2O5-TeO2 glasses. J. Non-Cryst. Solids 470, 112 (2017)ADSCrossRefGoogle Scholar
  75. 75.
    D. Souri, Z.E. Tahan, S.A. Salehizadeh, DC electrical conductivity of Ag2O -TeO2-V2O5 glassy systems. Indian J. Phys. 90(4), 407 (2016)ADSCrossRefGoogle Scholar
  76. 76.
    R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instr. 16, 1214 (1983)ADSCrossRefGoogle Scholar
  77. 77.
    J.C. Manifacier, J. Gasiot, J.P. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E: Sci. Instr. 9, 1002 (1976)ADSCrossRefGoogle Scholar
  78. 78.
    D. Souri, Investigation of glass transition temperature in (60-x)V2O5-40TeO2-xNiO glasses at different heating rates. J. Mater. Sci. 46, 6998 (2011)ADSCrossRefGoogle Scholar
  79. 79.
    K. Aida, T. Komatsu, V. Dimitrov, Thermal stability, electronic polarizability and optical basicity of ternary tellurite glasses. Phys. Chem. Solids 42(2), 103 (2001)Google Scholar
  80. 80.
    C.T. Moynihan, A.J. Easteal, J. Wilder, J. Tucker, Dependence of the glass transition temperature on heating and cooling rate. J. Phys. Chem. 78, 2673 (1974)CrossRefGoogle Scholar
  81. 81.
    A.A. Abu-Sehly, M. Abu El-Oyoun, A.A. Elabbar, Study of the glass transition in amorphous se by differential scanning calorimetry. Thermochemica Acta 472, 25 (2008)CrossRefGoogle Scholar
  82. 82.
    S. Weyer, H. Huth, C. Schick, Application of an extended tool-Narayanaswamy-Moynihan model. part 2. Frequency and cooling rate dependence of glass transition from temperature modulated DSC. Ploymer 46, 12240 (2005)CrossRefGoogle Scholar
  83. 83.
    S. Grujic, N. Blagojevic, M. Tosic, V. Zivanovic, J. Nikolic, Crystallization kinetics of K2O·TiO2·3GeO2 glass studied by DTA. Sci. Sinter. 40, 333 (2008)CrossRefGoogle Scholar
  84. 84.
    A. Hruby, Evaluation of glass-forming tendency by means of DTA. Czechoslovak J. Phys. B 22, 1187 (1972)ADSCrossRefGoogle Scholar
  85. 85.
    M. Saad, M. Poulain, Glass forming ability criterion. Mater. Sci. Forum 19, 11 (1987)CrossRefGoogle Scholar
  86. 86.
    P. Subbalakshmi, N. Veeaiah, Study of CaO-WO3-P2O5 glass system by dielectric properties, IR spectra and differential thermal analysis. J. Non-Cryst. Solids 298, 89 (2002)ADSCrossRefGoogle Scholar
  87. 87.
    D.M. Rowe, Thermoelectrics Handbook (CRC Press, Boca Raton, 2005), p. 60CrossRefGoogle Scholar
  88. 88.
    R.R. Heikes, A.A. Maradudine, R.C. Miller, Une etude des properietes de transport des semiconducteures de valence mixte. Ann. Phys. NY 8, 733 (1963)CrossRefGoogle Scholar
  89. 89.
    R.R. Heikes, in Thermoelectricity, ed. by R. R. Heikes, R. W. Ure (Eds), (Interscience, New York, 1961), p. 2502Google Scholar
  90. 90.
    D. Souri, Z. Siahkali, M. Moradi, Thermoelectric power measurements of xSb-(60-x)V2O5-40TeO2 glasses. J. Electron. Mater. 45(1), 307 (2016)ADSCrossRefGoogle Scholar
  91. 91.
    D. Souri, Seebeck coefficient of Tellurite- vanadate glasses containing molybdenum. J. Phys. D:Appl. Phys 41, 105102 (2008.) (3pp)ADSCrossRefGoogle Scholar
  92. 92.
    D. Souri, P. Azizpour, H. Zaliani, Electrical conductivity of V2O5–TeO2–Sb glasses at low temperatures. J. Electron. Mater. 43(9), 3672 (2014)ADSCrossRefGoogle Scholar
  93. 93.
    D. Souri, Small polaron hopping conduction in tellurium based glasses containing vanadium and antimony. J. Non-Cryst. Solids 356, 2181 (2010)ADSCrossRefGoogle Scholar
  94. 94.
    A. Keyhani, M.N. Marwali, M. Dai, Integration of Green and Renewable Energy in Electric Power System (Wiley, Hoboken, 2009)CrossRefGoogle Scholar
  95. 95.
    S. Leva, D. Zaninelli, Technical and financial analysis for hybrid photovoltaic power generation systems. WSEAS Transact. Power Syst. 5(1), 831 (2006)Google Scholar
  96. 96.
    S. Leva, D. Zaninelli, R. Contino, Integrated renewable sources for supplying remote power systems. WSEAS Transact. Power Syst. 2(2), 41 (2007)Google Scholar
  97. 97.
    G.K. Singh, Solar power generation by PV (photovoltaic) technology. Renew. Sust. Energ. Rev. 53, 1013 (2013)Google Scholar
  98. 98.
    B. Parida, S. Iniyan, R. Goic, A review of solar photovoltaic technologies. Renew. Sust. Energ. Rev. 15, 1625–1636 (2011)CrossRefGoogle Scholar
  99. 99.
    Photovoltaic Efficiency – Inherent and System, solar facts, (Accessed 2015-6-5)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceMalayer UniversityMalayerIran

Personalised recommendations