Advertisement

Radiation Shielding Properties of Tellurite Glasses

  • Raouf El-Mallawany
Chapter

Abstract

This chapter summarizes the shielding properties by simulation for tellurite glasses to show their superior properties. The radiation shielding properties of the present glasses such properties as density, shielding parameters: mass attenuation coefficient, μ/ρ , line attenuation coefficient, μ, effective atomic numbers, Zeff, half value layers, HVL, mean free path, MFP and Exposure buildup factors, EBF have been collected. Values of the mass attenuation coefficient have been computed using WinXCOM program.

References

  1. 1.
    O.A. Zamyatin, M.F. Churbanov, J.A. Medvedeva, S.A. Gavrin, E.V. Zamyatina, A.D. Plekhovich, Glass-forming region and optical properties of the TeO2 –ZnO–NiO system. J. Non-Cryst. Solids 479, 29–41 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    G. Lakshminarayanaa, S.O. Baki, M.I. Sayyed, M.G. Dong, A. Lira, A.S.M. Noor, I.V. Kityk, M.A. Mahdi, Vibrational, thermal features, and photon attenuation coefficients evaluation for TeO2-B2O3-BaO-ZnO-Na2O-Er2O3-Pr6O11 glasses as gamma arrays shielding materials. J. Non-Cryst. Solids 481, 568–578 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    M.A. Merzliakov, V.V. Kouhar, G.E. Malashkevich, E.V. Pestryakov, Spectroscopy of Yb-doped tungsten-tellurite glass and assessment of its lasing properties. Opt. Mater. 75, 142–149 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    M.E. Alvarez-Ramos, J. Alvarado-Rivera, M.E. Zayas, U. Caldi-no, J. Hern_andez-Paredes, Yellow to orange-reddish glass phosphors: Sm3+, Tb3+ and Sm3+/Tb3+ in zinc tellurite-germanate glasses. Opt. Mater. 75, 88–93 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    S.H. Elazoumi, H.A.A. Sidek, Y.S. Rammah, R. El-Mallawany, M.K. Halimah, K.A. Matori, M.H.M. Zaid, Effect of PbO on optical properties of tellurite glass. Res. Phys. 8, 16–25 (2018)Google Scholar
  6. 6.
    M.I. Sayyed, M. Çelikbilek Ersundu, A.E. Ersundu, G. Lakshminarayana, P. Kostka, Investigation of radiation shielding properties for MeO-PbCl2-TeO2 (MeO =Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses. Radiat. Phys. Chem. 144, 419–425 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    R. El-Mallawany, Y.S. Rammah, A. El Adawy, Z. Wasses, Optical and thermal properties of some Tellurite glasses. Am. J. Opt. Photon. 5(2), 11–18 (2017)CrossRefGoogle Scholar
  8. 8.
    M.M. El-Zaidia, A.A. Ammar, R.A. El-Mallwany, Infra-red spectra, electron spin resonance spectra, and density of (TeO2) 100− x–(WO3) x and (TeO2) 100− x–(ZnCl2) x glasses. Phys. Status Solidi A 91(2), 637–642 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    I.Z. Hager, R. El-Mallawany, A. Bulou, Luminescence spectra and optical properties of TeO 2–WO 3–Li 2 O glasses doped with Nd, Sm and Er rare earth ions. Physica B: Condensed Matter 406(4), 972–980 (2011), 406(4), 1844 (2011)Google Scholar
  10. 10.
    I.Z. Hager, R. El-Mallawany, Preparation and structural studies in the (70− x) TeO2–20WO3–10Li2O–xLn2O3 glasses. J. Mater. Sci. 45(4), 897 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    N.S. Hussain, G. Hungerford, R. El-Mallawany, M.J.M. Gomes, M.A. Lopes, J.D. Nasar Ali, Santos, and S. Buddhudu, absorption and emission analysis of RE3+ (Sm3+ and Dy3+): Lithium Boro Tellurite glasses. J. Nanosci. Nanotechnol. 9(6), 3672–3677 (2009)CrossRefGoogle Scholar
  12. 12.
    M.M. Elkholy, R.A. El-Mallawany, Ac conductivity of tellurite glasses. Mater. Chem. Phys. 40(3), 163–167 (1995)CrossRefGoogle Scholar
  13. 13.
    A. El-Adawy, R. El-Mallawany, Elastic modulus of tellurite glasses. J. Mater. Sci. Lett. 15(23), 2065–2067 (1996)Google Scholar
  14. 14.
    R. El-Mallawany, Specific heat capacity of semiconducting glasses: Binary vanadium tellurite. Phys. Status Solidi A 177(2), 439–444 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    R. El-Mallawany, A. Abd El-Moneim, Comparison between the elastic moduli of tellurite and phosphate glasses. Phys. Status Solidi A 166(2), 829–834 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    R. El-Mallawany, A.H. El-Sayed, M.M.H.A. El-Gawad, ESR and electrical conductivity studies of (TeO2) 0.95 (CeO2) 0.05 semiconducting glasses. Mater. Chem. Phys. 41(2), 87–91 (1996)CrossRefGoogle Scholar
  17. 17.
    H.M.M. Moawad, H. Jain, R. El-Mallawany, DC conductivity of silver vanadium tellurite glasses. J. Phys. Chem. Solids 70(1), 224–233 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    R. El-Mallawany, Theoretical analysis of the electrical properties of tellurite glasses. Mater. Chem. Phys. 37(4), 376–381 (1994)CrossRefGoogle Scholar
  19. 19.
    R. El-Mallawany, P. Separation, Ultrasonic detection of microphase separation in Tellurite glasses. Phys. Stat. Sol. (a) 133, 245 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    M.I. Sayyed, R. El-Mallawany, Shielding properties of (100-x)TeO2-(x)MoO3 glasses. Mater. Chem. Phys. 201, 50e56 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Dong, X. Xue, Y. He, et al., A novel comprehensive utilization of vanadium slag: As gamma ray shielding material. J. Hazard. Mater. 318, 751–757 (2016)CrossRefGoogle Scholar
  22. 22.
    Z. Li, X. Xue, S. Liu, et al., Effects of boron number per unit volume on the shielding properties of composites made with boron ores from China. J. Nucl. Sci. Tech. 23(6), 344–348 (2012)Google Scholar
  23. 23.
    X. Cao, X. Xue, T. Jiang, et al., Mechanical properties of UHMWPE/Sm2O3, composite shielding material. J. Rare Earths 28(S1, 482–484 (2010)CrossRefGoogle Scholar
  24. 24.
    M. Sayed, J.A. Khan, L.A. Shah, et al., Degradation of quinolone antibiotic, norfloxacin, in aqueous solution using gamma-ray irradiation. J. Environ. Sci. Poll. Res. 23(13), 13155–13168 (2016)CrossRefGoogle Scholar
  25. 25.
    L.R. Amparo, G. Elliotpaul, Neutron scattering: A natural tool for food science and technology research. Trends Food Sci. Technol. 20(11–12), 576–586 (2010)Google Scholar
  26. 26.
    A. Wyszomirska, Iodine-131 for therapy of thyroid diseases. Physical and biological basis. Nucl. Med. Rev. Cent. East. Eur. 15(2), 120–123 (2012)Google Scholar
  27. 27.
    I. Akkurt, C. Basyigit, S. Kilincarslan, et al., The shielding of γ-rays by concretes produced with barite. Prog. Nucl. Energy 46(1), 1–11 (2005)CrossRefGoogle Scholar
  28. 28.
    I. Akkurt, H. Akyıldırım, B. Mavi, et al., Radiation shielding of concrete containing zeolite. J. Radiat. Measure. 45(7), 827–830 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    I. Akkurt, A.M. El-Khayatt, The effect of barite proportion on neutron and gamma-ray shielding, J. Ann. Nucl. Energy 51, 5–9 (2013)CrossRefGoogle Scholar
  30. 30.
    B. Oto, A. Gür, M.R. Kaçal, et al., Photon attenuation properties of some concretes containing barite and colemanite in different rates. J. Ann. Nucl. Ener. 51, 120–124 (2013)CrossRefGoogle Scholar
  31. 31.
    C.M. Lee, Y.H. Lee, K.J. Lee, Cracking effect on gamma-ray shielding performance in concrete structure. J. Prog. Nucl. Energy 49(4), 303–312 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    J.C. Khong, D. Daisenberger, G. Burca, et al., Design and characterization of metallic glassy alloys of high neutron shielding capability. J. Sci. Rep. 6, 36998 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    J.E. Martin, Physics for Radiation Protection, 3rdrd Edition, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, ISBN:978–3–527-41176-4, 670 pages, 2013)Google Scholar
  34. 34.
    M.F. Kaplan, Concrete Radiation Shielding (John, New York, 1989)Google Scholar
  35. 35.
    L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom—A program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    M.G. Dong, R. El-Mallawany, M.I. Sayyed, H.O. Tekin, Shielding properties of 80TeO2–5TiO2–(15−x) WO3–xAnOm glasses using WinXCom and MCNP5 code. Radiat. Phys. Chem. 141, 172–178 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    R. El-Mallawany, M.I. Sayyed, Comparative shielding properties of some tellurite glasses: Part 1. Physica B, 539c, 133–140 (2018)CrossRefGoogle Scholar
  38. 38.
    R. El-Mallawany, M.I. Sayyed, Comparative shielding properties of some tellurite glasses: Part 2. J. Non-Crys. Sol. 474, 16–23 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses. J. Alloy. Compd. 688, 111–117 (2016)CrossRefGoogle Scholar
  40. 40.
    M.I. Sayyed, S.I. Qashou, Z.Y. Khattari, Radiation shielding competence of newly developed TeO2-WO3 glasses. J. Alloy. Compd. 696, 632–638 (2017)CrossRefGoogle Scholar
  41. 41.
    M.I. Sayyed, Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions. Can. J. Phys. 94, 1133–1139 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    S.R. Manohara, S.M. Hanagodimath, K.S. Thind, L. Gerward, On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl. Instrum. Methods Phys. Res. B 266, 3906–3912 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    R. Bagheri et al., Gamma ray shielding study of barium bismuth borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data. Nucl. Eng. Technol. (2016).  https://doi.org/10.1016/j.net.2016.08.013
  44. 44.
    K.J. Singh, N. Singh, R.S. Kaundal, K. Singh, Gamma-ray shielding and structural properties of PbO–SiO2 glasses. Nucl. Instrum. Methods Phys. Res. B 266, 944–948 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    R. El-Mallawany, M. Sidkey, A. Khafagy, H. Afifi, Elastic constants of semiconducting tellurite glasses. Mater. Chem. Phys. 37, 295–298 (1994)CrossRefGoogle Scholar
  46. 46.
    R.A. El-Mallawany, G.A. Saunders, Elastic properties of binary, ternary and quaternary rare earth tellurite glasses. J. Mater. Sci. Lett. 7(8), 870–874 (1988)CrossRefGoogle Scholar
  47. 47.
    R. El-Mallawany, I.A. Ahmed, Thermal properties of multicomponent tellurite glass. J. Mater. Sci. 43(15), 5131–5138 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    M.A. Sidkey, R. El Mallawany, R.I. Nakhla, A.A. El-Moneim, Ultrasonic studies of (TeO2) 1-x-(V2O5) x glasses. J. Non-Cryst. Solids 215(1), 75–82 (1997)ADSCrossRefGoogle Scholar
  49. 49.
    R. El-Mallawany, N. El-Khoshkhany, H. Afifi, Ultrasonic studies of (TeO2) 50–(V2O5) 50− x (TiO2) x glasses. Mater. Chem. Phys. 95(2), 321–327 (2006)CrossRefGoogle Scholar
  50. 50.
    S.R. Manohara, S.M. Hanagodimath, K.S. Thind, On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials for all types of materials and energies above 1 keV. Nucl. Instrum. Methods Phys. Res. B 266(18), 3906–3912 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    Y. Elmahroug, B. Tellili, C. Souga, Determination of shielding parameters for different types of resins. Ann. Nucl. Energy 63, 619–623 (2014)CrossRefGoogle Scholar
  52. 52.
    M.F. Kaplan, Concrete Radiation Shielding (Longman Scientific and Technology, Longman Group UK, Limited, Essex, 1989)Google Scholar
  53. 53.
    A.B. Chilten, J.K. Shultis, R.E. Faw, Principle of Radiation Shielding (Prentice-Hall, Englewood Cliffs, 1984)Google Scholar
  54. 54.
    V.P. Singh, N.M. Badiger, J. Kaewkhao, J. Non-Cryst. Solids 404, 167 (2014.)  https://doi.org/10.1016/j.jnoncrysol.2014.08.003 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Raouf El-Mallawany
    • 1
  1. 1.Physics Department, Faculty of ScienceMenoufia UniversityShebin ElKommEgypt

Personalised recommendations