Advertisement

Lanthanide-Doped Tellurite Glasses for Solar Energy Harvesting

  • Venkata Krishnaiah K Email author
  • Venkatramu V 
  • Jayasankar C. K. 
Chapter

Abstract

To meet an ever-increasing energy demand, it is of prime importance to utilize the solar energy effectively for improving the efficiency of silicon (Si)-based photovoltaic (PV) cells. So far, Si-based solar cells are ruling the global market due to their large availability and flexible price. On the other hand, lanthanide-doped materials exhibit the high photoluminescence quantum yield (PLQY) in the visible and near-infrared regions. Recently, these materials can be integrated with the Si solar cells to create an additional electron-hole pairs through optical conversion (upconversion and downconversion) processes. However, it is crucial to identify the suitable materials which convert light energy into electrical energy. Lanthanide-doped tellurite glasses have the advantages over other low phonon energy materials (i.e., fluoride glasses) that exhibit the properties including low phonon energy, wide transmission (ranging from visible to infrared region), and high refractive index. Low phonon energy of tellurite glasses favors in the enhancement of photoluminescence quantum yield for optical conversion. Moreover, high PLQY glasses could be employed on the top and bottom of PV cells to improve the photocurrent further. In addition, TiO2-modified lanthanide-doped tellurite glasses may also enrich the photocatalytic activity in the visible region of electromagnetic spectrum.

Notes

Acknowledgments

Dr. K.V. Krishnaiah is thankful to RGMCET for providing the necessary facilities. One of the authors Dr. C.K.J is grateful to DAE-BRNS for the sanction of mega research project (NO.2009/34/36/BRNS/3174) under MoU between SVU, Tirupati; RRCAT, Indore; and BARC, Mumbai. Dr. Venkatramu is indebted to DST, New Delhi, for the sanction of India-Portugal bilateral research project (No. INT/PORTUGAL/P-04/2017) under scientific and technological cooperation.

References

  1. 1.
    E. Snitzer, Phy. Rev. Lett. 7, 444 (1961)CrossRefADSGoogle Scholar
  2. 2.
    G. Boulon, J. Alloys Compounds 451, 1 (2008)CrossRefGoogle Scholar
  3. 3.
    F.J. Duarte, Tunable laser applications (CRC, New York, 2009)Google Scholar
  4. 4.
    I. Iparraguirre, J. Azkargorta, R. Balda, K. Venkata Krishnaiah, C.K. Jayasankar, M. Al-Saleh, J. Fernández, Opt. Express 19, 19440 (2011)Google Scholar
  5. 5.
    V.D. Del Cacho, D.M. da Silva, T.A.A. de Assumpção, L.R.P. Kassab, M.I. Alayo, E.G. Melo, Opt. Mater. 38, 198 (2014)CrossRefADSGoogle Scholar
  6. 6.
    T. Sun, Z.Y. Zhang, K.T.V. Grattam, A.W. Paimer, Rev. Sci. Instruments 69(12), 4179 (1998)CrossRefADSGoogle Scholar
  7. 7.
    J. Fernandeza, A. Mendioroz, A.J. Garcia, R. Balda, J.L. Adam, J. Alloys Compound. 323–324, 239 (2001)CrossRefGoogle Scholar
  8. 8.
    K. Venkata Krishnaiah, E.S. de Lima Filho, Y. Ledemi, G. Nemova, Y. Messaddeq, R. Kashyap, Sci. Rep. 6, 21905 (2016)CrossRefADSGoogle Scholar
  9. 9.
    C.E. Mungan, J. Opt. Soc. Am. B 20, 1075 (2003)CrossRefADSGoogle Scholar
  10. 10.
    J. Wang, X. Zhang, Q. Su, Rare earth solar spectral convertor for Si solar cells, in Phosphors, Up Conversion Nano Particles, Quantum Dots and their Applications, ed. by R. S. Liu, (Springer, Singapore, 2016)CrossRefGoogle Scholar
  11. 11.
    X. Liu, J. Lin, Solid State Sci. 11, 2030 (2009)CrossRefADSGoogle Scholar
  12. 12.
    N.Q. Wang, X. Zhao, C.M. Li, E.Y.B. Pun, H. Lin, J. Lumin. 130, 1044 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H.J. Bookey, A.K. Kar, J. Am. Ceram. Soc. 85(6), 1391 (2002)CrossRefGoogle Scholar
  14. 14.
    W.J. Chung, J. Heo, Appl. Phys. Lett. 79, 326 (2001)CrossRefADSGoogle Scholar
  15. 15.
    A. Mori, IEEE J. Lightwave Technol. LT-20, 822 (2002)CrossRefADSGoogle Scholar
  16. 16.
    J.S. Wang, E.M. Vogel, E. Snitzer, Opt. Mater. (Amsterdam, Neth.) 3, 187 (1994)CrossRefADSGoogle Scholar
  17. 17.
    P. Joshi, S. Shen, A. Jha, J. Appl. Phys. 103, 083543 (2008)CrossRefADSGoogle Scholar
  18. 18.
    K. Vu, S. Madden, Opt. Express 18, 19192 (2010)CrossRefADSGoogle Scholar
  19. 19.
    R. Josea, Y. Ohishi, Appl. Phys. Lett. 90, 211104 (2007)CrossRefADSGoogle Scholar
  20. 20.
    L. Gomes, J. Lousteau, D. Milanese, E. Mura, S.D. Jackson, J. Opt. Soc. Am. B. 31, 429 (2014)CrossRefADSGoogle Scholar
  21. 21.
    S.F. León-Luis, U.R. Rodríguez-Mendoza, E. Lalla, V. Lavín, Sensors Actuators B 158, 208 (2011)CrossRefGoogle Scholar
  22. 22.
    V.K. Rai, D.K. Rai, S.B. Rai, Sensors Actuators A 128, 14 (2006)CrossRefGoogle Scholar
  23. 23.
    Z.-X. Jia, L. Liu, C.-F. Yao, G.-S. Qin, Y. Ohishi, W.-P. Qin, J. Appl. Phys. 115, 063106 (2014)CrossRefADSGoogle Scholar
  24. 24.
    F. Yang, C. Liu, D. Wei, Y. Chen, Jingxiao Lu, Shi-e Yang. Opt. Mater. 36, 1040 (2014)CrossRefADSGoogle Scholar
  25. 25.
    K. Venkata Krishnaiah, P. Venkatalakshmamma, C. Basavapoornima, I.R. Martín, K. Soler-Carracedo, M.A. Hernandez-Rodríguez, V. Venkatramu, C.K. Jayasankar, Mater. Chem. Phys. 199, 67 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Balaji, D. Ghosh, K. Biswas, A.R. Allu, G. Gupta, K. Annapurna, J. Lumin. 187, 441 (2017)CrossRefGoogle Scholar
  27. 27.
    M.A. Green, Prog. Photovolt. Res. Appl. 13, 447 (2005)CrossRefGoogle Scholar
  28. 28.
    K. Sasaki, T. Agui, K. Nakaido, N. Takahashi, R. Onitsuka, T. Takamoto, in Proceedings of 9th International Conference on Concentrating Photovoltaics Systems, Miyazaki, Japan (2013)Google Scholar
  29. 29.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  30. 30.
    H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013)CrossRefGoogle Scholar
  31. 31.
    V. Aroutiounian, S. Petrosyan, A. Khachatryan, K. Touryan, J. Appl. Phys. 89, 2268 (2001)CrossRefADSGoogle Scholar
  32. 32.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595 (2010)CrossRefGoogle Scholar
  33. 33.
    G. Gruner, J. Mater. Chem. 16, 3533 (2006)CrossRefGoogle Scholar
  34. 34.
    A.C. Mayer, S.R. Scully, B.E. Hardin, M.W. Rowell, M.D. Mc Gehee, Mater. Today 10, 28 (2007)CrossRefGoogle Scholar
  35. 35.
    T. Saga, NPG Asia Mater. 2, 96 (2010)CrossRefGoogle Scholar
  36. 36.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)CrossRefADSGoogle Scholar
  37. 37.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8, 506 (2014)CrossRefADSGoogle Scholar
  38. 38.
    M.A. Hernández-Rodríguez, M.H. Imanieh, L.L. Martín, I.R. Martín, Sol. Energy Mater. Sol. Cells 116, 171 (2013)CrossRefGoogle Scholar
  39. 39.
    A. Shalav, B.S. Richards, T. Trupke, K.W. Krämer, H.U. Güdel, Appl. Phys. Lett. 86, 013505 (2005)CrossRefADSGoogle Scholar
  40. 40.
    B.S. Richards, Sol. Energy Mater. Sol. Cells 90, 2329 (2006)CrossRefGoogle Scholar
  41. 41.
    C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007)CrossRefGoogle Scholar
  42. 42.
    D.C. Law, R.R. King, H. Yoon, M.J. Archer, A. Boca, C.M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K.M. Edmondson, D. Bhusari, J. Yen, R.A. Sherif, H.A. Atwater, N.H. Karam, Sol. Energy Mater. Sol. Cells 94, 1314 (2010)CrossRefGoogle Scholar
  43. 43.
    J.H. Werner, S. Kolodinski, H.J. Queisser, Phys. Rev. Lett. 72, 3851 (1994)CrossRefADSGoogle Scholar
  44. 44.
    G. Conibeer, N. Ekins-Daukes, J.-F. Guillemoles, D. Kőnig, E.-C. Cho, C.-W. Jiang, S. Shrestha, M. Green, Sol. Energy Mater. Sol. Cells 93, 713 (2009)CrossRefGoogle Scholar
  45. 45.
    T. Trupke, M.A. Green, P. Wurfel, J. Appl. Phys. 92, 1668 (2002)CrossRefADSGoogle Scholar
  46. 46.
    D. Ross, E. Klampaftis, J. Fritsche, M. Bauer, B.S. Richards, Sol. Energy Mater. Sol. Cells 103, 11 (2012)CrossRefGoogle Scholar
  47. 47.
    T. Trupke, M.A. Green, P. Wurfel, J. Appl. Phys. 98, 4117 (2002)CrossRefADSGoogle Scholar
  48. 48.
    R.T. Wegh, H. Donker, K.D. Oskam, A. Meijerink, J. Lumin. 82, 93 (1999)CrossRefGoogle Scholar
  49. 49.
    D.L. Dexter, Phys. Rev. 108, 630 (1957)CrossRefADSGoogle Scholar
  50. 50.
    W.W. Piper, J.A. Deluca, F.S. Ham, J. Lumin. 8, 344 (1974)CrossRefGoogle Scholar
  51. 51.
    R.T. Wegh, H. Donker, K.D. Oskam, A. Meijerink, Science 283, 663 (1999)CrossRefADSGoogle Scholar
  52. 52.
    Q.Y. Zhang, X.Y. Huang, Prog. Mater. Sci. 55, 353 (2010)CrossRefGoogle Scholar
  53. 53.
    P. Vergeer, T.J.H. Vlugt, M.H.F. Kox, M.I. Den Hertog, J.P.J.M. van der Eerden, A. Meijerink, Phys. Rev. B 71, 014119 (2005)CrossRefADSGoogle Scholar
  54. 54.
    Q.Y. Zhang, C.H. Yang, Y.X. Pan, Appl. Phys. Lett. 90, 021107 (2007)CrossRefADSGoogle Scholar
  55. 55.
    Q.Y. Zhang, C.H. Yang, Z.H. Jiang, X.H. Ji, Appl. Phys. Lett. 90, 061914 (2007)CrossRefADSGoogle Scholar
  56. 56.
    Q.Y. Zhang, G.F. Yang, Z.H. Jiang, Appl. Phys. Lett. 91, 051903 (2007)CrossRefADSGoogle Scholar
  57. 57.
    R.T. Wegh, H. Donker, A. Meijerink, R.J. Lamminmaki, J. Hölsä, Phys. Rev. B 56, 13841 (1997)CrossRefADSGoogle Scholar
  58. 58.
    Z. Yang, J.H. Lin, M.Z. Su, Y. Tao, W. Wang, J. Alloys Compd. 308, 94 (2000)CrossRefGoogle Scholar
  59. 59.
    R.T. Wegh, E.V.D. van Loef, G.W. Burdick, A. Meijerink, Mol. Phys. 101, 1047 (2003)CrossRefADSGoogle Scholar
  60. 60.
    B.S. Richards, Sol. Energy Mater. Sol. Cells 90, 1189 (2006)CrossRefGoogle Scholar
  61. 61.
    L.G. Hwa, S.L. Hwang, L.C. Liu, J. Non-Cryst. Solids 238, 193 (1998)CrossRefADSGoogle Scholar
  62. 62.
    Z. Liu, Y. Yu, N. Dai, Q. Chen, L. Yang, J. Li, Y. Qiao, Appl. Phys. A Mater. Sci. Process. 108, 777 (2012)CrossRefGoogle Scholar
  63. 63.
    Z. Liu, J. Li, L. Yang, Q. Chen, Y. Chu, N. Dai, Sol. Energy Mater. Sol. Cells 122, 46 (2014)CrossRefGoogle Scholar
  64. 64.
    A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, B.S. Richards, Sol. Energy Mater. Sol. Cells 122, 8 (2014)CrossRefGoogle Scholar
  65. 65.
    W. Wang, X. Lei, H. Go, Y. Mao, Opt. Mater. 47, 270 (2015)CrossRefADSGoogle Scholar
  66. 66.
    D. Chen, Y. Wang, Y. Yu, P. Huang, F. Weng, Opt. Lett. 33, 1884 (2008)CrossRefADSGoogle Scholar
  67. 67.
    F.B. Costa, K. Yukimitu, L.A.O. Nunes, M.S. Figueiredo, J.R. Silva, L.H.C. Andrade, S.M. Lima, J.C.S. Moraes, J. Am. Ceram. Soc. 100, 1956 (2017)Google Scholar
  68. 68.
    M.M. Smedskjaer, J. Qiu, J. Wang, Y. Yue, Appl. Phys. Lett. 98, 071911 (2011)CrossRefADSGoogle Scholar
  69. 69.
    M.K, Lau and Jian-Hua Hao. Energy Procedia 15, 129 (2012)CrossRefADSGoogle Scholar
  70. 70.
    X. Qiao, T. Tsuboi, H.J. Seo, J. Alloys Compound. 687, 179 (2016)CrossRefGoogle Scholar
  71. 71.
    L.d.A. Florêncio, L.A. Gómez-Malagón, B.C. Lima, A.S.L. Gomes, J.A.M. Garcia, L.R.P. Kassab, Sol. Energy Mater. Sol. Cells 157, 468 (2016)CrossRefGoogle Scholar
  72. 72.
    X. Zhou, Y. Wang, X. Zhao, L. Li, Z. Wang, Q. Li, J. Am. Ceram. Soc. 97, 179 (2014)CrossRefGoogle Scholar
  73. 73.
    M.S. Figueiredo, F.A. Santos, K. Yukimitu, J.C.S. Moraes, L.A.O. Nunes, L.H.C. Andrade, S.M. Lima, J. Lumin. 157, 365 (2015)CrossRefGoogle Scholar
  74. 74.
    A. Pandey, R.E. Kroon, V. Kumar, H.C. Swart, J. Alloys Compound. 657, 32 (2016)CrossRefGoogle Scholar
  75. 75.
    Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu, G. Zhang, J. Qiu, D. Chen, J. Am. Ceram. Soc. 93, 654 (2010)CrossRefGoogle Scholar
  76. 76.
    G. Lakshminarayana, H. Yang, S. Ye, Y. Liu, J. Qiu, J. Phys. D. Appl. Phys. 41, 175111 (2008)CrossRefADSGoogle Scholar
  77. 77.
    S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, J. Qiu, Opt. Express 16, 8989 (2008)CrossRefADSGoogle Scholar
  78. 78.
    D. Rajesh, M. Reza Dousti, R.J. Amjad, A.S.S. de Camargo, J. Non-Cryst. Solids 450, 149 (2016)CrossRefADSGoogle Scholar
  79. 79.
    V.D. Rodrígueza, V.K. Tikhomirov, J. Me’ndez-Ramos, A.C. Yanes, V.V. Moshchalkov, Sol. Energy Mater. Sol. Cells 94, 1612 (2010)CrossRefGoogle Scholar
  80. 80.
    H. Lin, S. Zhou, X. Hou, W. Li, Y. Li, H. Teng, T. Jia, IEEE Photon. Tech. Lett. 22, 866 (2010)CrossRefADSGoogle Scholar
  81. 81.
    X. Chen, S. Li, L. Hu, K. Wang, G. Zhao, L. He, J. Liu, C. Yu, J. Tao, W. Lin, G. Yang, G.J. Salamo, Sci. Rep. 7, 1976 (2017)CrossRefADSGoogle Scholar
  82. 82.
    F. Auzel, C. R. Acad. Sci. Paris 262, 1016 (1966)Google Scholar
  83. 83.
    V.K. Rai, K. Kumar, S.B. Rai, Opt. Mater. 29, 873 (2007)CrossRefADSGoogle Scholar
  84. 84.
    I. Iparraguirre, J. Azkargorta, J.M. Fernández-Navarro, M. Al-Saleh, J. Fernandez, R. Balda, J. Non-Cryst. Solids 353, 990 (2007)CrossRefADSGoogle Scholar
  85. 85.
    V.K. Rai, S.B. Rai, D.K. Rai, Opt. Commun. 257, 112 (2006)CrossRefADSGoogle Scholar
  86. 86.
    M. Reza Dousti, R.J. Amjad, R. Hosseinian, M. Salehi, M.R. Sahar, J. Lumin. 159, 100 (2015)CrossRefGoogle Scholar
  87. 87.
    G. Poirier, F.C. Cassanjes, C.B. de Araújo, V.A. Jerez, S.J.L. Ribeiro, Y. Messaddeq, M. Poulain, J. Appl. Phys. 93, 3259 (2003)CrossRefADSGoogle Scholar
  88. 88.
    M. Kochanowicz, J. Zmojda, D. Dorosz, P. Miluski, J. Dorosz, Proc. SPIE 9228, 92280B-1 (2014)CrossRefGoogle Scholar
  89. 89.
    A. Pandey, V. Kumar, R.E. Kroon, H.C. Swart, J. Lumin. 192, 757 (2017)CrossRefGoogle Scholar
  90. 90.
    H. Lin, K. Liu, E.Y.B. Pun, T.C. Ma, X. Peng, Q.D. An, J.Y. Yu, S.B. Jiang, Chem. Phys. Lett. 398, 146 (2004)CrossRefADSGoogle Scholar
  91. 91.
    Y. Luo, J. Zhang, X. Zhang, X. Wang, J. Appl. Phys. 103, 063107 (2008)CrossRefADSGoogle Scholar
  92. 92.
    K. Venkata Krishnaiah, J. Marques-Hueso, K. Suresh, G. Venkataiah, B.S. Richards, C.K. Jayasankar, J. Lumin. 169, 270 (2016)CrossRefGoogle Scholar
  93. 93.
    N. Bloembergen, Phys. Rev. Lett. 2, 84 (1959)CrossRefADSGoogle Scholar
  94. 94.
    J. Wright, Up-conversion and excited-state energy transfer in rare-earth doped materials, in Radiationless Processes in Molecules and Condensed Phases, Topics in Applied Physics, ed. by F.K. Fong, vol 15, (Springer, New York, 1976), p. 239Google Scholar
  95. 95.
    E. Nakazawa, S. Shionoya, Phys. Rev. Lett. 25, 1710 (1970)CrossRefADSGoogle Scholar
  96. 96.
    J.S. Chivian, W.E. Case, D.D. Eden, Appl. Phys. Lett. 35, 124 (1979)CrossRefADSGoogle Scholar
  97. 97.
    M. Wolf, Proc. IRE 48, 1246 (1960)CrossRefGoogle Scholar
  98. 98.
    P. Gibart, F. Auzel, J.C. Guillaume, K. Zahraman, Jpn. J. Appl. Phys. Part 1(35), 4401 (1996)Google Scholar
  99. 99.
    J. de Wild, J.K. Rath, A. Meijerink, W.G.J.H.M. van Sark, R.E.I. Schropp, Sol. Energy Mater. Sol. Cell 94, 2395 (2010)CrossRefGoogle Scholar
  100. 100.
    H. Rodríguez-Rodríguez, M.H. Imanieh, F. Lahoz, I.R. Martín Sol, Energy Mater. Sol. Cells 144, 29 (2016)CrossRefGoogle Scholar
  101. 101.
    K. Nakata, A. Fujishima, J Photochem Photobiol C: Photochem Rev 13, 169 (2012)CrossRefGoogle Scholar
  102. 102.
    P.K.J. Robertson, J.M.C. Robertson, D.W. Bahnemann, J. Hazardous Mater. 211-212, 161 (2012)CrossRefGoogle Scholar
  103. 103.
    M. Adams, I. Campbell, C. McCullagh, D. Russell, D.W. Bahnemann, P.K.J. Robertson, Int. J. Chem. React. Eng. 11, 621 (2013)Google Scholar
  104. 104.
    C. McCullagh, P.K.J. Robertson, M. Adams, P.M. Pollard, A. Mohammed, J. Photochem. Photobiol. A 211, 42 (2010)CrossRefGoogle Scholar
  105. 105.
    D.W. Bahnemann, L.A. Lawton, P.K.J. Robertson, The application of semiconductor photocatalysis for the removal of cyanotoxins from water and design concepts for solar photocatalytic reactors for large scale water treatment, in New and Future Developments in Catalysis, ed. by S.L. Suib, 1st edn., (Elsevier, Amsterdam, 2013), pp. 395–415CrossRefGoogle Scholar
  106. 106.
    C. Kim, M. Choi, J. Jang, Catal. Commun. 11, 378 (2010)CrossRefGoogle Scholar
  107. 107.
    H. Fan, G. Li, F. Yang, L. Yang, S. Zhang, J. Chem. Technol. Biotechnol. 86, 1107 (2011)CrossRefGoogle Scholar
  108. 108.
    R. Brahimi, Y. Bessekhouad, A. Bouguelia, M. Trari, J. Photochem. Photobiol. A Chem. 186, 242 (2007)CrossRefGoogle Scholar
  109. 109.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefADSGoogle Scholar
  110. 110.
    G. Tomandl, F.D. Gnanam, Sol-Gel Processing of Advanced Ceramics (Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi, 1996)Google Scholar
  111. 111.
    T. Vincent, M. Gross, H. Dotan, A. Rothschild, Int. J. Hydrog. Energy 37, 8102 (2012)CrossRefGoogle Scholar
  112. 112.
    Q. Wang, J. Li, Y. Bai, J. Lian, H. Huang, Z. Li, Z. Leia, W. Shangguan, Green Chem. 16, 2728 (2014)CrossRefGoogle Scholar
  113. 113.
    J. Zhang, Y. Wang, J. Zhang, Z. Lin, F. Huang, J. Yu, ACS Appl. Mater. Interfaces 5, 1031 (2013)CrossRefGoogle Scholar
  114. 114.
    Y. Huo, Y. Jin, Y. Zhang, J. Mol. Catal. A Chem. 331, 15 (2010)CrossRefGoogle Scholar
  115. 115.
    J. Cao, B. Luo, H. Lin, B. Xu, S. Chen, Appl. Catal. B Environ. 111–112, 288 (2012)CrossRefGoogle Scholar
  116. 116.
    N. Serpone, D. Lawless, J. Disdier, J.-M. Herrmann, Langmuir 10, 643 (1994)CrossRefGoogle Scholar
  117. 117.
    Q. Luo, L. Wang, D. Wang, J. Environ. Chem. Eng. 3, 622 (2015)CrossRefGoogle Scholar
  118. 118.
    J.A. Navio, M.C. Hidalgo, G. Colon, S.G. Botta, M.I. Litter, Langmuir 17, 202 (2001)CrossRefGoogle Scholar
  119. 119.
    K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005)CrossRefADSGoogle Scholar
  120. 120.
    V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Adv. Funct. Mater. 21, 3744 (2011)CrossRefGoogle Scholar
  121. 121.
    D. Dvoranová, V. Brezová, M. Mazúr, M.A. Malati, Appl. Catal. B Environ. 37, 91 (2002)CrossRefGoogle Scholar
  122. 122.
    W. Choi, A. Termin, M. Hoffmann, J. Phys. Chem. 84, 13669 (1994)CrossRefGoogle Scholar
  123. 123.
    J. Reszczynska, T. Grzybb, J.W. Sobczakc, W. Lisowski, M. Gazda, B. Ohtani, A. Zaleska, Appl. Catal. B Environ. 163, 40 (2015)CrossRefGoogle Scholar
  124. 124.
    M. Zalas, M. Laniecki, Sol. Energy Mater. Sol. Cells 89, 287 (2005)CrossRefGoogle Scholar
  125. 125.
    H.S. Kushwaha, P. Thomas, R. Vaish, J. Photon. Energy 7, 016502 (2017)CrossRefADSGoogle Scholar
  126. 126.
    H. Kushwaha, N.A. Madhar, B. Ilahi, P. Thomas, A. Halder, R. Vaish, Sci. Rep. 6, 18557 (2016)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Venkata Krishnaiah K 
    • 1
    • 2
    • 3
    Email author
  • Venkatramu V 
    • 4
  • Jayasankar C. K. 
    • 5
  1. 1.Laser Applications Research GroupTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of PhysicsRGM College of Engineering and TechnologyNandyalIndia
  4. 4.Department of PhysicsYogi Vemana UniversityKadapaIndia
  5. 5.Department of PhysicsSri Venkateswara UniversityTirupatiIndia

Personalised recommendations