Advertisement

Tellurite Glasses: Solar Cell, Laser, and Luminescent Displays Applications

  • Luciana R. P. Kassab
  • L. A. Gómez-Malagón
  • M. J. Valenzuela Bell
Chapter

Abstract

Rare-earth-doped glasses can be exploited to control the solar spectrum in order to enhance the solar cell efficiency. We review recent results of the management of the solar spectrum on a solar cell using rare-earth ion-doped TeO2-ZnO glasses, with and without metallic nanoparticles, as a cover slip. Transparent rare-earth-doped materials as glasses can absorb light at shorter wavelength and emit light at longer wavelengths, the well-known downconversion process; besides they have the advantage of easy preparation and high doping concentration of rare-earth ions. In this context tellurite glasses appear as potential candidates because of their wide transmission window (400–5000 nm), low phonon energy (800 cm−1) when compared to silicate, and thermal and chemical stability. Few vitreous hosts have been investigated to be used as cover slip to enhance the performance of conventional solar cell; so the lack of studies using rare-earth-doped glasses on the top of standard solar cells has motivated the recent reports that are reviewed in this chapter. We discuss the role of the downconversion process to increase the solar cell efficiency. It is shown that the management of Tb3+ and Yb3+ ions concentration can be optimized to modify the solar spectrum and consequently increase the solar cell efficiency. It is demonstrated that plasmon-assisted efficiency enhancement could be obtained for commercial Si and GaP solar cells, respectively, covered with Eu3+-doped TeO2-ZnO glasses with silver nanoparticles. Tellurite glasses have also proven to be adequate hosts for rare-earth ions and for the nucleation of metallic nanoparticles (NPs). We review results of the modification introduced by different Nd2O3 concentration on the laser operation of TeO2-ZnO glasses. The control and improvement of the photoluminescence efficiency due to the nucleation of gold NPs in Yb3+/Er3+-doped TeO2-PbO-GeO2 glasses is also reviewed. It is shown that the nucleation of silver NPs in Tb3+-doped TeO2-ZnO-Na2O-PbO glass contributes for the large enhancement in the blue-red spectrum.

Notes

Acknowledgments

We thank the financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through the National Institute of Photonics (INCT de Fotonica). The Nanotechnology National Laboratory (LNNano) from Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) is acknowledged for the TEM images.

References

  1. 1.
    W.H. Dumbaugh, Phys. Chem. Glasses 19, 121 (1978)Google Scholar
  2. 2.
    W.H. Dumbaugh, Phys. Chem. Glasses 27, 119 (1986)Google Scholar
  3. 3.
    L.R.P. Kassab, C.B. de Araujo, Chapter 2. Linear and nonlinear optical properties of some tellurium oxide glasses, in Technological Advances in Tellurite Glasses: Properties, Processing and Applications, ed. by V. A. G. Rivera, D. Manzani, (Springer, Cham, 2017), pp. 15–39. ISBN: 978-3-319-53038Google Scholar
  4. 4.
    L.R.P. Kassab, D.M. da Silva, V.D. del Cacho, L. Bontempo, S.G. dos Santos Filho, M.I.A. Chavez, Chapter 1. Tellurite thin films produced by RF sputtering for optical waveguides and memory device applications, in Technological Advances in Tellurite Glasses: Properties, Processing and Applications, ed. by V. A. G. Rivera, D. Manzani, (Springer, Cham, 2017), pp. 241–257. ISBN: 978-3-319-53038CrossRefGoogle Scholar
  5. 5.
    R. El-Mallawany, M. Sidkey, A. Khafagy, H. Afifi, Mater. Chem. Phys. 37(2), 197 (1994)CrossRefGoogle Scholar
  6. 6.
    M.M. El-Zaidia, A.A. Ammar, R. El-Mallawany, Phys. Status Solidi 91(2), 637 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    Z.C.K. Bouchaour, M. M Poulain, I. Bel-Hadji, R. Hager, El. Mallawany. J. Non-Cryst. Solids 351(10), 818 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    A. El-Adawy, R. El-Mallawany, J. Materials Sci. Lett. 15(23), 2065 (1996)Google Scholar
  9. 9.
    R. El-Mallawany, A. Abd El-Moneim, Phys. Status Solidi 166(2), 829 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    N.S. Hussain, G. Hungerford, R. El-Mallawany, M.J.M. Gomes, M.A. Lopes, A. Nasar, J.D. Santos, S. Buddhudu, J. Nanosci. Nanotechnol. 9(6), 3672 (2009)CrossRefGoogle Scholar
  11. 11.
    R. El-Mallawany, Phys. Status Solidi 177(2), 439 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Hager, R. El-Mallawany, J. Mater. Sci. 45(4), 897 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    A. Mirgorodsky, M. Colas, M. Smirnov, T. Merle-Méjean, R. El-Mallawany, P. Thomas, J. Solid State Chem. 190, 45 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    M.M. Elkholy, R.A. El-Mallawany, Mater. Chem. Phys. 40(3), 163 (1995)CrossRefGoogle Scholar
  15. 15.
    C.B. de Araújo, L.R.P. Kassab, R.A. Kobayashi, L.P. Naranjo, P.A.S. Cruz, J. Appl. Phys. 99, 123522 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    L.P. Naranjo, C.B.de Araújo, O.L. Malta, P.A.S. Cruz, L.R.P. Kassab, Appl. Phys. Lett. 87, 24194 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    L.R.P. Kassab, D.S. da Silva, R. de Almeida, C.B. de Araújo, Appl. Phys. Lett. 94, 101912 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    L.R.P. Kassab, L.F. Freitas, T.A.A. Assumpção, D.M. da Silva, C.B. de Araújo, Appl. Phys. B Lasers Opt. 104, 1029 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    L.R.P. Kassab, C.B. de Araújo, R.A. Kobayashi, R.A. Pinto, D.M. da Silva, J. Appl. Phys. 102, 103515 (2007)Google Scholar
  20. 20.
    R. de Almeida, D.M. da Silva, L.R.P. Kassab, C.B. de Araújo, Opt. Commun. 281, 108 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    V.P.P. de Campos, L.R.P. Kassab, T.A.A. de Assumpção, D.S. da Silva, C.B. de Araújo, J. Appl. Phys. 112, 063519 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    D.S. da Silva, T.A.A. de Assumpção, G.B.C. de Simone, L.R.P. Kassab, C.B. de Araújo, Appl. Phys. B Lasers Opt. 121, 117 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    M.J.V. Bell, V. Anjos, L.M. Moreira, F. Falci, L.R.P. Kassab, D.S. da Silva, J.L. Doualan, P. Camy, R. Moncorgé, J. Opt. Soc. Am. B. 31, 1590 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    L.M. Moreira, V. Anjos, M.J.V. Bell, C.A.R. Ramos, L.R.P. Kassab, D.J.L. Doualan, P. Camy, R. Moncorgé, Opt. Mater. 58, 84 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    L.A. Florencio, L.A.M. Gomez, B.C. Lima, A.S.L. Gomes, L.R.P. Kassab, Sol. Energy Mater. Sol. Cells 157, 468 (2016)Google Scholar
  26. 26.
    B.C. Lima, L.A.M. Gomez, A.S.L. Gomes, J.A.M. Garcia, L.R.P. Kassab, J. Electron. Mater. J. Electron. Mater. 46(2), 6750 (2017)Google Scholar
  27. 27.
    L.R.P. Kassab, M.E. Camilo, C.T. Amâncio, D.M. da Silva, J.R. Martinelli, Opt. Mater. 33, 1948 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    L.R.P. Kassab, R. de Almeida, D.M. da Silva, C.B. de Araújo, J. Appl. Phys. 104, 093531 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    P.N. Prasad, NanoPhotonics (Wiley, Hoboken, 2004)CrossRefGoogle Scholar
  30. 30.
    M.E. Camilo, T.A.A. Assumpcao, D.M. da Silva, D.S. da Silva, L.R.P. Kassab, C.B. de Araujo, J. Appl. Phys. 113, 153507 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    C.B. de Araújo, L.R.P. Kassab, Chapter 5. Enhanced photoluminescence and planar waveguides of rare-earth doped germanium oxide glasses with metallic nanoparticles, in Glass Nanocomposites: Preparation, Properties, and Applications, ed. by B. Karmakar, K. Rademann, A. L. Stepanov, (Elsevier, Oxford, 2016), pp. 132–144. ISBN: 978-0323-39309-6Google Scholar
  32. 32.
    D.M. Silva, L.R.P. Kassab, S.R. Luthi, C.B. Araujo, A.S.L. Gomes, M.J.V. Bell, Appl. Phys. Lett. 90, 081913 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    L.R.P. Kassab, D.M. Silva, J.A.M. Garcia, D.S. da Silva, C.B. de Aráujo, Opt. Mater. 60, 25 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    A.P. Silva, A.P. Carmo, V. Anjos, M.J.V. Bell, L.R.P. Kassab, R.A. Pinto, Opt. Mater. 34, 239 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    T.A.A. de Assumpção, L.R.P. Kassab, A.S.L. Gomes, C.B. de Araújo, N.U. Wetter, Appl. Phys. B. Lasers Opt. 103, 165 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    L. Bontempo, S.G.S. Filho, L.R.P. Kassab, Thin Solid Films 4, 21 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    L.R.P. Kassab, F.A. Bomfim, J.R. Martinelli, N.U. Wetter, J.J. Neto, C.B. de Araújo, Appl. Phys. B Lasers Opt. 94, 239 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    J. Jakutis, L. Gomes, C.T. Amancio, L.R.P. Kassab, J.R. Martinelli, N.U. Wetter, Opt. Mater. 33, 107 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    L.R.P. Kassab, R. de Almeida, D.M. da Silva, T.A.A. de Assumpção, C.B. de Araújo, J. Appl. Phys. 105, 103505 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    R.R. Petrin, M.L. Kliewer, J.T. Beasley, R.C. Powell, I.D. Aggarwal, R.C. Ginther, IEEE J. Quantum Electron. 27, 1031 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, E. Dénoue, J.L. Adam, IEEE J. Quantum Electron. 30, 1862–1867 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, Opt. Express. 16(16), 11894 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    T. Schweizer, D.W. Hewak, D.N. Payne, T. Jensen, G. Huber, Electron. Lett. 32, 666 (1996)CrossRefGoogle Scholar
  44. 44.
    D.F. de Sousa, L.A.O. Nunes, J.H. Rohling, M.L. Baesso, Appl. Phys. B Lasers Opt. 77, 59 (2003)CrossRefGoogle Scholar
  45. 45.
    J. Fernandez, I. Iparraguirre, R. Balda, J. Azkargorta, M. Voda, J.M. Fernandez-Navarro, Opt. Mater. 25(2), 185 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    J.C. Michel, D. Morin, F. Auzel, Rev. Phys. Appl. 13, 859 (1978)CrossRefGoogle Scholar
  47. 47.
    A. Miguel, J. Azkargorta, R. Morea, I. Iparraguirre, J. Gonzalo, J. Fermamdez, R. Balda, Opt. Express. 21, 009298 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    H. Kalaycioglu, H. Cankaya, G. Ozen, L. Ovecoglu, A. Sennaroglu, Opt. Commun. 281, 6056 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    I. Iparraguirre, J. Azkargorta, J.M. Fernández-Navarro, M. Al-Saleh, J. Fernández, R. Balda, J. Non-Cryst. Solids 353(8–10), 990 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    N. Lei, B. Xu, Z.H. Jiang, Opt. Commun. 127(4–6), 263 (1996)Google Scholar
  51. 51.
    J.S. Wang, E.M. Vogel, E. Snitzer, Opt. Mater. 3(3), 187 (1994)ADSCrossRefGoogle Scholar
  52. 52.
    A. Jha, S. Shen, M. Naftaly, Phys. Rev. B 62(10), 6215 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    H.A.A. Sidek, S. Rosmawati, Z.A. Talib, M.K. Halimah, W.M. Daud, Am. J. Appl. Sci. 6(8), 1489 (2009)CrossRefGoogle Scholar
  54. 54.
    M.J. Weber, J. Non-Cryst. Solids 123(1–3), 208 (1990)ADSCrossRefGoogle Scholar
  55. 55.
    J.S. Wang, D.P. Machewi, F. Wu, E. Snitzer, E.M. Vogel, Opt. Lett. 19, 1448 (1994)ADSCrossRefGoogle Scholar
  56. 56.
    I.A.A. Terra, L.J. Borrero-González, J.M. Carvalho, M.C. Terrile, M.C.F.C. Felinto, H.F. Brito, et al., J. Appl. Phys. 113, 073105 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    I.A.A. Terra, L.J. Borrero-González, T.R. Figueredo, J.M.P. Almeida, A.C. Hernandes, L.A.O. Nunes, et al., J. Lumin. 132, 1678 (2012)CrossRefGoogle Scholar
  58. 58.
    Q. Duan, F. Qin, Z. Zhang, W. Cao, Opt. Lett. 37, 521 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    P. Vergeer, T.J.H. Vlugt, M.H.F. Kox, M.I. den Hertog, J.P.J.M. van der Eerden, A. Meijerink, Phys. Rev. B 71, 014119 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    Y. Wang, L. Xie, H. Zhang, J. Appl. Phys. 105, 023528 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    Q.Y. Zhang, C.H. Yang, Z.H. Jiang, X.H. Ji, Appl. Phys. Lett. 90, 061914 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    L. Zhao, D. Wang, Y. Wang, Y. Tao, J. Am. Ceram. Soc. 97, 3913 (2014)CrossRefGoogle Scholar
  63. 63.
    X. Zhou, Y. Wang, G. Wang, L. Li, K. Zhou, Q. Li, J. Alloys Compd. 579, 27 (2013)CrossRefGoogle Scholar
  64. 64.
    L.R.P. Kassab, D.S. da Silva, C.B. de Araújo, J. Appl. Phys. 107, 113506 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    G. Li, C. Zhang, P. Song, P. Zhu, K. Zhu, J. He, J. Alloys Compd. 662, 89 (2016)CrossRefGoogle Scholar
  66. 66.
    Z.Q. Li, X.D. Li, Q.Q. Liu, X.H. Chen, Z. Sun, C. Liu, X.J. Ye, S.M. Huang, Nanotechnology 23, 025402 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    A.C. Atre, A. García-Etxarri, H. Alaeian, J.A. Dionne, J. Opt. 14, 024008 (2012)ADSCrossRefGoogle Scholar
  68. 68.
    S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A.M. Jurdyc, C. Girard, G.C. des Francs, Nanotechnology 24, 495704 (2013)CrossRefGoogle Scholar
  69. 69.
    G. Chen, J. Seo, C. Yang, P.N. Prasad, Chem. Soc. Rev. 42, 8304 (2013)CrossRefGoogle Scholar
  70. 70.
    B.S. Richards, Sol. Energy Mater. Sol. Cells 90, 2329 (2006)CrossRefGoogle Scholar
  71. 71.
    J. Zhou, Y. Teng, S. Ye, G. Lin, J. Qiu, Opt. Mater. 34, 901 (2012)ADSCrossRefGoogle Scholar
  72. 72.
    J. Merigeon, O. Maalej, B. Boulard, A. Stanculescu, L. Leontie, D. Mardare, M. Girtan, Opt. Mater. 48, 243 (2015)ADSCrossRefGoogle Scholar
  73. 73.
    B. Han, Y. Yang, J. Wu, J. Wei, Z. Li, Y. Mai, Ceram. Int. 41, 12267 (2015)CrossRefGoogle Scholar
  74. 74.
    K.R. Catchpole, A. Polman, Opt. Express. 16, 21793 (2008)ADSCrossRefGoogle Scholar
  75. 75.
    P. Song, C. Zhang, P. Zhu, IEEE J. Quantum. Electron. 51, 4800105 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luciana R. P. Kassab
    • 1
  • L. A. Gómez-Malagón
    • 2
  • M. J. Valenzuela Bell
    • 3
  1. 1.Faculdade de Tecnologia de São Paulo/ CEETEPSSão PauloBrazil
  2. 2.Escola Politécnica de Pernambuco, Universidade de PernambucoRecifeBrazil
  3. 3.Departamento de FísicaUniversidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations