Advertisement

Ovarian Cancer

  • Ben Davidson
Chapter

Abstract

Ovarian carcinoma, particularly of the serous type, has an almost universal predilection to involve the serosal cavities, matched only by malignant mesothelioma. The formation of peritoneal effusions, and not uncommonly pleural effusions, is a hallmark of this disease. The number of scientific studies focusing on the biology of ovarian carcinoma cells in effusions consequently surpasses that of any other malignancy. Carcinoma cells in effusions are considerably different from their counterparts in solid lesions, reflecting both tumor progression and growth in anchorage-independent manner. These cells are further characterized by chemoresistance and have cancer stem cell characteristics. In recent years, more focus has been directed to studies limited to one histotype, mainly high-grade serous carcinoma. This chapter discusses studies which have analyzed the expression, clinical relevance, and therapeutic potential of cancer-associated molecules in ovarian carcinoma effusions.

Keywords

Tumor progression Adhesion Proteases Cytokines Apoptosis resistance Intracellular signaling High-throughput analyses 

References

  1. 1.
    Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.CrossRefGoogle Scholar
  2. 2.
    Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16:201–18.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Thibault B, Castells M, Delord JP, Couderc B. Ovarian cancer microenvironment: implications for cancer dissemination and chemoresistance acquisition. Cancer Metastasis Rev. 2014;33:17–39.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ahmed N, Stenvers KL. Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front Oncol. 2013;3:256.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Davidson B. Recently identified drug resistance biomarkers in ovarian cancer. Expert Rev Mol Diagn. 2016;16:569–78.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Shirayoshi Y, Hatta K, Hosoda M, Tsunasawa S, Sakiyama F, Takeichi M. Cadherin cell adhesion molecules with distinct binding specificities share a common structure. EMBO J. 1986;5:2485–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Behrens J. Cadherins and catenins: role in signal transduction and tumor progression. Cancer Metastasis Rev. 1999;18:15–30.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66:107–19.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer. 2002;34:255–68.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Bruner HC, Derksen PWB. Loss of E-Cadherin-dependent cell-cell adhesion and the development and progression of cancer. Cold Spring Harb Perspect Biol. 2018;10(3):pii: a029330.CrossRefGoogle Scholar
  11. 11.
    Kourtidis A, Lu R, Pence LJ, Anastasiadis PZ. A central role for cadherin signaling in cancer. Exp Cell Res. 2017;358:78–85.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119:1429–37.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Risinger JI, Berchuck A, Kohler MF, Boyd J. Mutations of the E-cadherin gene in human gynecologic cancers. Nat Genet. 1994;7:98–102.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Palacios J, Gamallo C. Mutations in the beta-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res. 1998;58:1344–7.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Davidson B, Tropé CG, Reich R. Epithelial-mesenchymal transition in ovarian carcinoma. Front Oncol. 2012;2:33.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Davidson B, Berner A, Nesland JM, Risberg B, Berner HS, Tropé CG, Kristensen GM, Bryne M, Flørenes VA. E-cadherin and α-, β- and γ-catenin protein expression is up-regulated in ovarian carcinoma cells in serous effusions. J Pathol. 2000;192:460–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Sivertsen S, Berner A, Michael C, Bedrossian B, Davidson B. Ovarian carcinoma and malignant mesothelioma cells in effusions have comparable cadherin expression. Acta Cytol. 2006;50:603–7.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Elloul S, Bukholt Elstrand M, Nesland JM, Tropé CG, Kvalheim G, Goldberg I, Reich R, Davidson B. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103:1631–43.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Davidson B, Holth A, Hellesylt E, Tan TZ, Huang RYJ, Tropé CG, Nesland JM, Thiery JP. The clinical role of epithelial-mesenchymal transition and stem cell markers in advanced-stage serous ovarian carcinoma effusions. Hum Pathol. 2015;46:1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kim G, Davidson B, Henning R, Wang J, Yu M, Annunziata C, Hetland T, Kohn EC. Adhesion molecule protein signature in ovarian cancer effusions is prognostic of patient outcome. Cancer. 2012;118:1543–53.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Elloul S, Silins I, Tropé CG, Benshushan A, Davidson B, Site-dependent RR. expression of E-cadherin transcriptional regulators in ovarian carcinoma. Virchows Arch. 2006;449:520–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Elloul S, Vaksman O, Tuft Stavnes H, Tropé CG, Davidson B, Reich R. Mesenchymal-to-epithelial transition determinants as characteristics of ovarian carcinoma effusions. Clin Exp Metastasis. 2010;27:161–72.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2:91–100.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sanders RJ, Mainiero F, Giancotti FP. The role of integrins in tumorigenesis and metastasis. Cancer Invest. 1998;16:329–44.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25:234–40.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Moser TL, Pizzo SV, Bafetti LM, Fishman DA, Stack MS. Evidence for preferential adhesion of ovarian epithelial carcinoma cells to type I collagen mediated by the α2β1 integrin. Int J Cancer. 1996;67:695–701.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Strobel T, Cannistra SA. β1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol Oncol. 1999;73:362–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lessan K, Aguiar DJ, Oegema T, Siebenson L, Skubitz AP. CD44 and β1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am J Pathol. 1999;154:1525–37.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Skubitz APN, Bast RC Jr, Wayner EA, Letourneau PC, Wilke MS. Expression of α6 and β4 integrins in serous ovarian carcinoma correlates with expression of the basement membrane protein laminin. Am J Pathol. 1996;148:1445–61.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Cannistra SA, Ottensmeier C, Niloff J, Orta B, DiCarlo J. Expression and function of β1 and αvβ3 integrins in ovarian cancer. Gynecol Oncol. 1995;58:216–25.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Davidson B, Goldberg I, Reich R, Tell L, Dong HP, Tropé CG, Risberg B, Kopolovic J. αv and β1 integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patients. Gynecol Oncol. 2003;90:248–57.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Goldberg I, Davidson B, Reich R, Gotlieb WH, Ben-Baruch G, Bryne M, Berner A, Nesland JM, Kopolovic J. αV integrin is a novel marker of poor prognosis in advanced-stage ovarian carcinoma. Clin Cancer Res. 2001;7:4073–9.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Byers LJ, Osborne JL, Carson LF, Carter JR, Haney AF, Weinberg JB, Ramakrishnan S. Increased levels of laminin in ascitic fluid of patients with ovarian cancer. Cancer Lett. 1995;88:67–72.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Givant-Horwitz V, Davidson B, van de Putte G, Dong HP, Goldberg I, Amir S, Kristensen GB, Reich R. Expression of the 67kDa laminin receptor and the α6 integrin subunit in serous ovarian carcinoma. Clin Exp Metastasis. 2003;20:599–609.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ahmed N, Riley C, Oliva K, Rice G, Quinn M. Ascites induces modulation of alpha6beta1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma. Br J Cancer. 2005;92:1475–85.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Bar JK, Grelewski P, Popiela A, Noga L, Rabczyñski J. Type IV collagen and CD44v6 expression in benign, malignant primary and metastatic ovarian tumors: correlation with Ki-67 and p53 immunoreactivity. Gynecol Oncol. 2004;95:23–31.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Cracchiolo BM, Hanauske-Abel HM, Schwartz PE, Chambers JT, Holland B, Chambers SK. Procollagen-derived biomarkers in malignant ascites of ovarian cancer. Independent prognosticators for progression-free interval and survival. Gynecol Oncol. 2002;87:24–33.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zhu GG, Risteli J, Puistola U, Kauppila A, Risteli L. Progressive ovarian carcinoma induces synthesis of type I and type III procollagens in the tumor tissue and peritoneal cavity. Cancer Res. 1993;53:5028–32.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Kohn EC, Travers LA, Kassis J, Broome U, Klominek J. Malignant effusions are sources of fibronectin and other promigratory and proinvasive components. Diagn Cytopathol. 2005;33:300–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Olt G, Berchuck A, Soisson AP, Boyer CM, Bast RC Jr. Fibronectin is an immunosuppressive substance associated with epithelial ovarian cancer. Cancer. 1992;70:2137–42.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Menzin AW, Loret de Mola JR, Bilker WB, Wheeler JE, Rubin SC, Feinberg RF. Identification of oncofetal fibronectin in patients with advanced epithelial ovarian cancer: detection in ascitic fluid and localization to primary sites and metastatic implants. Cancer. 1998;82:152–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Tabariès S, Siegel PM. The role of claudins in cancer metastasis. Oncogene. 2017;36:1176–90.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tassi RA, Bignotti E, Falchetti M, Ravanini M, Calza S, Ravaggi A, Bandiera E, Facchetti F, Pecorelli S, Santin AD. Claudin-7 expression in human epithelial ovarian cancer. Int J Gynecol Cancer. 2008;18:1262–71.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Lonardi S, Manera C, Marucci R, Santoro A, Lorenzi L, Facchetti F. Usefulness of Claudin 4 in the cytological diagnosis of serosal effusions. Diagn Cytopathol. 2011;39:313–7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Jo VY, Cibas ES, Pinkus GS. Claudin-4 immunohistochemistry is highly effective in distinguishing adenocarcinoma from malignant mesothelioma in effusion cytology. Cancer Cytopathol. 2014;122:299–306.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Davidson B, Zhang Z, Kleinberg L, Li M, Flørenes VA, Wang TL, IeM S. Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from diffuse malignant peritoneal mesothelioma. Clin Cancer Res. 2006;12:5944–50.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kleinberg L, Holth A, Fridman E, Schwartz I, Shih IM, Davidson B. The diagnostic role of claudins in serous effusions. Am J Clin Pathol. 2007;127:928–37.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kleinberg L, Holth A, Tropé CG, Reich R, Davidson B. Claudin upregulation in ovarian carcinoma effusions is associated with poor survival. Hum Pathol. 2008;39:747–57.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Underhill C. CD44: the hyaluronan receptor. J Cell Sci. 1992;103:293–8.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Orian-Rousseau V. CD44, a therapeutic target for metastasising tumours. Eur J Cancer. 2010;46:1271–7.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Senbanjo LT, Chellaiah MA. CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front Cell Dev Biol. 2017;5:18.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Muinao T, Deka Boruah HP, Pal M. Diagnostic and prognostic biomarkers in ovarian cancer and the potential roles of cancer stem cells—an updated review. Exp Cell Res. 2018;362(1):1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Cannistra SA, Kansas GS, Niloff J, DeFranzo B, Kim Y, Ottensmeier C. Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44H. Cancer Res. 1993;53:3830–8.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Meunier L, Puiffe ML, Le Page C, Filali-Mouhim A, Chevrette M, Tonin PN, Provencher DM, Mes-Masson AM. Effect of ovarian cancer ascites on cell migration and gene expression in an epithelial ovarian cancer in vitro model. Transl Oncol. 2010;3:230–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Yang W, Toffa SE, Lohn JW, Seifalian AM, Winslet MC. Malignant ascites increases the antioxidant ability of human ovarian (SKOV-3) and gastric adenocarcinoma (KATO-III) cells. Gynecol Oncol. 2005;96:430–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Berner HS, Davidson B, Berner A, Risberg B, Nesland JM. Differential expression of CD44s and CD44v3-10 in adenocarcinoma cells and reactive mesothelial cells in effusions. Virchows Arch. 2000;436:330–5.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Berner HS, Davidson B, Berner A, Risberg B, Kristensen GB, Tropé CG, Van de Putte G, Nesland JM. Expression of CD44 in effusions of patients diagnosed with serous ovarian carcinoma—diagnostic and prognostic implications. Clin Exp Metastasis. 2000;18:197–202.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Dong WG, Sun XM, Yu BP, Luo HS, Yu JP. Role of VEGF and CD44v6 in differentiating benign from malignant ascites. World J Gastroenterol. 2003;9:2596–600.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Taylor DD, Gercel-Taylor C, Gall SA. Expression and shedding of CD44 variant isoforms in patients with gynecologic malignancies. J Soc Gynecol Investig. 1996;3:289–94.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev. 2004;23:77–99.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Carraway KL 3rd, Funes M, Workman HC, Sweeney C. Contribution of membrane mucins to tumor progression through modulation of cellular growth signaling pathways. Curr Top Dev Biol. 2007;78:1–22.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    van Putten JPM, Strijbis K. Transmembrane mucins: signaling receptors at the intersection of inflammation and cancer. J Innate Immun. 2017;9:281–99.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Singh AP, Chaturvedi P, Batra SK. Emerging roles of MUC4 in cancer: a novel target for diagnosis and therapy. Cancer Res. 2007;67:433–6.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Gautam SK, Kumar S, Cannon A, Hall B, Bhatia R, Nasser MW, Mahapatra S, Batra SK, Jain M. MUC4 mucin- a therapeutic target for pancreatic ductal adenocarcinoma. Expert Opin Ther Targets. 2017;21:657–69.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Davidson B, Baekelandt M, Shih IM. MUC4 is upregulated in ovarian carcinoma effusions and differentiates carcinoma cells from mesothelial cells. Diagn Cytopathol. 2007;35:756–60.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Iacono KT, Brown AL, Greene MI, Saouaf SJ. CD147 immunoglobulin superfamily receptor function and role in pathology. Exp Mol Pathol. 2007;83:283–95.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Xin X, Zeng X, Gu H, Li M, Tan H, Jin Z, Hua T, Shi R, Wang H. CD147/EMMPRIN overexpression and prognosis in cancer: A systematic review and meta-analysis. Sci Rep. 2016;6:32804.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Davidson B, Goldberg I, Berner A, Kristensen GB, Reich R. EMMPRIN (extracellular matrix metalloproteinase inducer) is a novel marker of poor outcome in serous ovarian carcinoma. Clin Exp Metastasis. 2003;20:161–9.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Davidson B, Givant-Horwitz V, Lazarovici P, Risberg B, Nesland JM, Tropé CG, Schaefer E, Reich R. Matrix metalloproteinases (MMP), EMMPRIN (extracellular matrix metalloproteinase inducer) and mitogen-activated protein kinases (MAPK): co-expression in metastatic serous ovarian carcinoma. Clin Exp Metastasis. 2003;20:621–31.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Davidson B, Goldberg I, Givant-Horwitz V, Nesland JM, Berner A, Bryne M, Risberg B, Kopolovic J, Kristensen GB, Tropé CG, van de Putte G, Reich R. Caveolin-1 expression in ovarian carcinoma is MDR1 independent. Am J Clin Pathol. 2002;117:225–34.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol. 2001;11:272–80.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Teng KK, Hempstead BL. Neurotrophins and their receptors: signaling trios in complex biological systems. Cell Mol Life Sci. 2004;61:35–48.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nakagawara A. Trk receptor tyrosine kinases: A bridge between cancer and neural development. Cancer Lett. 2001;169:107–14.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Fanburg-Smith JC, Miettinen M. Low-affinity nerve growth factor receptor (p75) in dermatofibrosarcoma protuberans and other nonneuronal tumors: a study of 1,150 tumors and fetal and adult normal tissues. Hum Pathol. 2001;32:976–83.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5:25–34.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F, Hong DS. Targeting TRK family proteins in cancer. Pharmacol Ther. 2017;173:58–66.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Davidson B, Lazarovici P, Ezersky A, Nesland JM, Berner A, Risberg B, Tropé CG, Kristensen GB, Goscinski M, van de Putte G, Reich R. Expression levels of the NGF receptors TrkA and p75 in effusions and solid tumors of serous ovarian carcinoma patients. Clin Cancer Res. 2001;7:3457–64.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Davidson B, Reich R, Lazarovici P, Nesland JM, Risberg B, Tropé CG, Flørenes VA. Expression and activation of the nerve growth factor receptor TrkA in serous ovarian carcinoma. Clin Cancer Res. 2003;9:2248–59.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Yu X, Liu L, Cai B, He Y, Wan X. Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci. 2008;99:543–52.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161–74.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Bjorklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta. 2005;1755:37–69.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Levin M, Udi Y, Solomonov I, Sagi I. Next generation matrix metalloproteinase inhibitors—novel strategies bring new prospects. Biochim Biophys Acta. 2017;1864:1927–39.Google Scholar
  85. 85.
    Jobin PG, Butler GS, Overall CM. New intracellular activities of matrix metalloproteinases shine in the moonlight. Biochim Biophys Acta. 2017;1864:2043–55.Google Scholar
  86. 86.
    Young TN, Rodriguez GC, Rinehart AR, Bast RCJ, Pizzo SV, Stack MS. Characterization of gelatinases linked to extracellular matrix invasion in ovarian adenocarcinoma: purification of matrix metalloproteinase 2. Gynecol Oncol. 1996;62:89–99.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Fishman DA, Bafetti LM, Banionis S, Kearns AS, Chilukuri K, Stack MS. Production of extracellular matrix-degrading proteinases by primary cultures of human epithelial ovarian carcinoma cells. Cancer. 1997;80:1457–63.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Fishman DA, Bafetti LM, Stack MS. Membrane-type matrix metalloproteinase expression and matrix metalloproteinase-2 activation in primary human ovarian epithelial carcinoma cells. Invasion Metastasis. 1996;16:150–9.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Sun XM, Dong WG, Yu BP, Luo HS, Yu JP. Detection of type IV collagenase activity in malignant ascites. World J Gastroenterol. 2003;9:2592–5.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Davidson B, Reich R, Berner A, Givant-Horwitz V, Goldberg I, Risberg B, Kristensen GB, Tropé CG, Bryne M, Kopolovic J, Nesland JM. Ovarian carcinoma cells in serous effusions show altered MMP-2 and TIMP-2 mRNA levels. Eur J Cancer. 2001;37:2040–9.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Davidson B, Goldberg I, Berner A, Nesland JM, Givant-Horwitz V, Bryne M, Risberg B, Kristensen GB, Tropé CG, Kopolovic J, Reich R. Expression of membrane-type 1,2 and 3 matrix metalloproteinases messenger RNA in ovarian carcinoma cells in serous effusions. Am J Clin Pathol. 2001;115:517–24.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Duffy MJ, Duggan C. The urokinase plasminogen activator system: a rich source of tumour markers for the individualized management of patients with cancer. Clin Biochem. 2004;37:541–8.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol. 2002;3:932–42.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Su SC, Lin CW, Yang WE, Fan WL, Yang SF. The urokinase-type plasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies. Expert Opin Ther Targets. 2016;20:551–66.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Young TN, Rodriguez GC, Moser TL, Bast RC Jr, Pizzo SV, Stack MS. Coordinate expression of urinary-type plasminogen activator and its receptor accompanies malignant transformation of the ovarian surface epithelium. Am J Obstet Gynecol. 1994;170:1285–96.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Sier CF, Stephens R, Bizik J, Mariani A, Bassan M, Pedersen N, Frigerio L, Ferrari A, Danø K, Brünner N, Blasi F. The level of urokinase-type plasminogen activator receptor is increased in serum of ovarian cancer patients. Cancer Res. 1998;58:1843–9.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Sier CF, Nicoletti I, Santovito ML, Frandsen T, Aletti G, Ferrari A, Lissoni A, Giavazzi R, Blasi F, Sidenius N. Metabolism of tumour-derived urokinase receptor and receptor fragments in cancer patients and xenografted mice. Thromb Haemost. 2004;91:403–11.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Chambers SK, Gertz RE Jr, Ivins CM, Kacinski BM. The significance of urokinase- type plasminogen activator, its inhibitors, and its receptor in ascites of patients with epithelial ovarian cancer. Cancer. 1995;75:1627–33.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Price FV, Chambers SK, Chambers JT, Carcangiu ML, Schwartz PE, Kohorn EI, Stanley ER, Kacinski BM. Colony-stimulating factor-1 in primary ascites of ovarian cancer is a significant predictor of survival. Am J Obstet Gynecol. 1993;168:520–7.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Kobayashi H, Hirashima Y, Sun GW, Ohi H, Fujie M, Terao T. Identification and characterization of a Kunitz-type protease inhibitor in ascites fluid from patients with ovarian carcinoma. Int J Cancer. 2000;87:44–54.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Avgeris M, Scorilas A. Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opin Ther Targets. 2016;20:801–18.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Shih IM, Salani R, Fiegl M, Wang TL, Soosaipillai A, Marth C, Müller-Holzner E, Gastl G, Zhang Z, Diamandis EP. Ovarian cancer specific kallikrein profile in effusions. Gynecol Oncol. 2007;105:501–7.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Davidson B, Xi Z, Klokk TI, Tropé CG, Dørum A, Scheistrøen M, Saatcioglu F. Kallikrein 4 expression is upregulated in ovarian carcinoma cells in effusions. Am J Clin Pathol. 2005;123:360–8.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Dong Y, Tan OL, Loessner D, Stephens C, Walpole C, Boyle GM, Parsons PG, Clements JA. Kallikrein-related peptidase 7 promotes multicellular aggregation via the alpha(5)beta(1) integrin pathway and paclitaxel chemoresistance in serous epithelial ovarian carcinoma. Cancer Res. 2010;70:2624–33.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Trackman PC. Lysyl oxidase isoforms and potential therapeutic opportunities for fibrosis and cancer. Expert Opin Ther Targets. 2016;20:935–45.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Sebban S, Davidson B, Reich R. Lysyl oxidase-like 4 is alternatively spliced in an anatomic site-specific manner in tumors involving the serosal cavities. Virchows Arch. 2009;454:71–9.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Sebban S, Golan-Gerstl R, Karni R, Vaksman O, Davidson B, Reich R. Alternatively spliced lysyl oxidase-like 4 isoforms have a pro-metastatic role in cancer. Clin Exp Metastasis. 2013;30:103–17.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Kassis J, Klominek J, Kohn EC. Tumor microenvironment: what can effusions teach us? Diagn Cytopathol. 2005;33:316–9.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Li H, Batth IS, Qu X, Xu L, Song N, Wang R, Liu Y. IGF-IR signaling in epithelial to mesenchymal transition and targeting IGF-IR therapy: overview and new insights. Mol Cancer. 2017;16:6.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bach LA, Headey SJ, Norton RS. IGF-binding proteins—the pieces are falling into place. Trends Endocrinol Metab. 2005;16:228–34.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23:824–54.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Slipicevic A, Øy GF, Askildt IC, Holth A, Hellesylt E, Flørenes VA, Davidson B. The diagnostic and prognostic role of the insulin growth factor pathway members IGF-II and IGFBP3 in serous effusions. Hum Pathol. 2009;40:527–37.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Fidler IJ, Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell. 1994;79:185–8.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235:442–7.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Roy H, Bhardwaj S, Yla-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett. 2006;580:2879–87.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers. 2016;2:16061.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Presta M, Chiodelli P, Giacomini A, Rusnati M, Ronca R. Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach. Pharmacol Ther. 2017;179:171–87.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Clayton NS, Wilson AS, Laurent EP, Grose RP, Carter EP. Fibroblast growth factor-mediated crosstalk in cancer etiology and treatment. Dev Dyn. 2017;246:493–501.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Alfaro C, Sanmamed MF, Rodríguez-Ruiz ME, Teijeira Á, Oñate C, González Á, Ponz M, Schalper KA, Pérez-Gracia JL, Melero I. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev. 2017;60:24–31.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Olson TA, Mohanraj D, Carson LF, Ramakrishnan S. Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res. 1994;54:276–80.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Boocock CA, Charnock-Jones DS, Sharkey AM, McLaren J, Barker PJ, Wright KA, Twentyman PR, Smith SK. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst. 1995;87:506–16.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Barton DP, Cai A, Wendt K, Young M, Gamero A, De Cesare S. Angiogenic protein expression in advanced epithelial ovarian cancer. Clin Cancer Res. 1997;3:1579–86.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Santin AD, Hermonat PL, Ravaggi A, Cannon MJ, Pecorelli S, Parham GP. Secretion of vascular endothelial growth factor in ovarian cancer. Eur J Gynaecol Oncol. 1999;20:177–81.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Kraft A, Weindel K, Ochs A, Marth C, Zmija J, Schumacher P, Unger C, Marmé D, Gastl G. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer. 1999;85:178–87.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Steele IA, Edmondson RJ, Bulmer JN, Bolger BS, Leung HY, Davies BR. Induction of FGF receptor 2-IIIb expression and response to its ligands in epithelial ovarian cancer. Oncogene. 2001;20:5878–87.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Davidson B, Reich R, Kopolovic J, Berner A, Nesland JM, Kristensen GB, Tropé CG, Bryne M, Risberg B, van de Putte G, Goldberg I. Interleukin-8 and vascular endothelial growth factor mRNA levels are down-regulated in ovarian carcinoma cells in serous effusions. Clin Exp Metastasis. 2002;19:135–44.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta. 2001;1471:M99–M108.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Sanderson RD, Elkin M, Rapraeger AC, Ilan N, Vlodavsky I. Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. FEBS J. 2017;284:42–55.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Davidson B, Shafat I, Ilan N, Tropé CG, Vlodavsky I, Reich R. Heparanase expression correlates with poor survival in metastatic ovarian carcinoma. Gynecol Oncol. 2007;104:311–9.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Ong CHP, Bateman A. Progranulin (Granulin-epithelin precursor, PC-cell derived growth factor, Acrogranin) in proliferation and tumorigenesis. Histol Histopathol. 2003;18:1275–88.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Kamrava M, Simpkins F, Alejandro E, Michener C, Meltzer E, Kohn EC. Lysophosphatidic acid and endothelin-induced proliferation of ovarian cancer cell lines is mitigated by neutralization of granulin-epithelin precursor (GEP), a prosurvival factor for ovarian cancer. Oncogene. 2005;24:7084–93.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Davidson B, Alejandro E, Flørenes VA, Goderstad JM, Risberg B, Kristensen GB, Tropé CG, Kohn EC. Granulin-epithelin precursor (GEP) is a novel prognostic marker in epithelial ovarian cancer. Cancer. 2004;100:2139–47.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Meulmeester E, Ten Dijke P. The dynamic roles of TGF-β in cancer. J Pathol. 2011;223:205–18.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Smith AL, Robin TP, Ford HL. Molecular pathways: targeting the TGF-β pathway for cancer therapy. Clin Cancer Res. 2012;18:4514–21.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10:415–24.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Saltzman AK, Hartenbach EM, Carter JR, Contreras DN, Twiggs LB, Carson LF, Ramakrishnan S. Transforming growth factor-alpha levels in the serum and ascites of patients with advanced epithelial ovarian cancer. Gynecol Obstet Invest. 1999;47:200–4.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Gutgold N, Davidson B, Catane LJ, Holth A, Hellesylt E, Tropé CG, Dørum A, Reich R. TGFβ splicing and canonical pathway activation in high-grade serous carcinoma. Virchows Arch. 2017;470:665–78.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Bock AJ, Stavnes HT, Kempf T, Tropè CG, Berner A, Davidson B, Staff AC. Expression and clinical role of growth differentiation factor-15 in ovarian carcinoma effusions. Int J Gynecol Cancer. 2010;20:1448–55.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ, Ellis LM. Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res. 2008;14:1931–7.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    ten Dijke P, Goumans MJ, Pardali E. Endoglin in angiogenesis and vascular diseases. Angiogenesis. 2008;11:79–89.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Ollauri-Ibáñez C, López-Novoa JM, Pericacho M. Endoglin-based biological therapy in the treatment of angiogenesis-dependent pathologies. Expert Opin Biol Ther. 2017;17:1053–63.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Bock AJ, Tuft Stavnes H, Kærn J, Berner A, Staff AC, Davidson B. Endoglin (CD105) expression in ovarian serous carcinoma effusions is related to chemotherapy status. Tumour Biol. 2011;32:589–96.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Matei D, Emerson RE, Lai YC, Baldridge LA, Rao J, Yiannoutsos C, Donner DD. Autocrine activation of PDGFRalpha promotes the progression of ovarian cancer. Oncogene. 2006;25:2060–9.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Richardson M, Gunawan J, Hatton MW, Seidlitz E, Hirte HW, Singh G. Malignant ascites fluid (MAF), including ovarian-cancer-associated MAF, contains angiostatin and other factor(s) which inhibit angiogenesis. Gynecol Oncol. 2002;86:279–87.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Kleinberg L, Pradhan M, Tropé CG, Nesland JM, Davidson D, Risberg B. Ovarian carcinoma cells in effusions show increased S-phase fraction compared to corresponding primary tumors. Diagn Cytopathol. 2008;36:637–44.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Deshpande A, Sicinski P, Hinds PW. Cyclins and cdks in development and cancer: a perspective. Oncogene. 2005;24:2909–15.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Cordon-Cardo C. Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J Pathol. 1995;147:545–60.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Graña X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene. 1995;11:211–9.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Watson JE, Gabra H, Taylor KJ, Rabiasz GJ, Morrison H, Perry P, Smyth JF, Porteous DJ. Identification and characterization of a homozygous deletion found in ovarian ascites by representational difference analysis. Genome Res. 1999;9:226–33.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Goto T, Takano M, Hirata J, Kohno T, Ohtsuka S, Fujiwara K, Tsuda H. p16INK4a expression in cytology of ascites and response to chemotherapy in advanced ovarian cancer. Int J Cancer. 2009;125:339–44.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Davidson B, Risberg B, Berner A, Nesland JM, Tropé CG, Kristensen GB, Bryne M, van de Putte G, Flørenes VA. Expression of cell cycle proteins in ovarian carcinoma cells in serous effusions—biological and prognostic implications. Gynecol Oncol. 2001;83:249–56.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Davidson B, Skrede M, Silins I, Shih IM, Tropé CG, Flørenes VA. Low molecular weight cyclin E forms differentiate ovarian carcinoma from cells of mesothelial origin and are associated with poor survival in ovarian carcinoma. Cancer. 2007;110:1264–71.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Salani R, Davidson B, Fiegl M, Marth C, Müller-Holzner E, Gastl G, Huang HY, Hsiao JC, Lin HS, Wang TL, Lin BL, Shih IM. Measurement of cyclin E genomic copy number and strand length in cell-free DNA distinguish malignant versus benign effusions. Clin Cancer Res. 2007;13:5805–9.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Provencher DM, Lounis H, Fink D, Drouin P, Mes-Masson AM. Discordance in p53 mutations when comparing ascites and solid tumors from patients with serous ovarian cancer. Tumour Biol. 1997;18:167–74.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Kappes S, Milde-Langosch K, Kressin P, Passlack B, Dockhorn-Dworniczak B, Röhlke P, Löning T. p53 mutations in ovarian tumors, detected by temperature-gradient gel electrophoresis, direct sequencing and immunohistochemistry. Int J Cancer. 1995;64:52–9.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Angelopoulou K, Diamandis EP. Detection of the TP53 tumour suppressor gene product and p53 auto-antibodies in the ascites of women with ovarian cancer. Eur J Cancer. 1997;33:115–21.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Abendstein B, Marth C, Müller-Holzner E, Widschwendter M, Daxenbichler G, Zeimet AG. Clinical significance of serum and ascitic p53 autoantibodies in epithelial ovarian carcinoma. Cancer. 2000;88:1432–7.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Montenarh M, Harloziñska A, Bar JK, Kartarius S, Günther J, Sedlaczek P. p53 autoantibodies in the sera, cyst and ascitic fluids of patients with ovarian cancer. Int J Oncol. 1998;13:605–10.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Ashkenazi A. Targeting death and decoy receptors of the tumor-necrosis factor superfamily. Nat Rev Cancer. 2002;2:420–30.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Twomey JD, Kim SR, Zhao L, Bozza WP, Zhang B. Spatial dynamics of TRAIL death receptors in cancer cells. Drug Resist Updat. 2015;19:13–21.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Reichmann E. The biological role of the Fas/FasL system during tumor formation and progression. Semin Cancer Biol. 2002;12:309–15.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Siegmund D, Lang I, Wajant H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J. 2017;284:1131–59.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Lane D, Goncharenko-Khaider N, Rancourt C, Piché A. Ovarian cancer ascites protects from TRAIL-induced cell death through alphavbeta5 integrin-mediated focal adhesion kinase and Akt activation. Oncogene. 2010;29:3519–31.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Lane D, Matte I, Rancourt C, Piché A. The prosurvival activity of ascites against TRAIL is associated with a shorter disease-free interval in patients with ovarian cancer. J Ovarian Res. 2010;3:1.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Connor JP, Felder M. Ascites from epithelial ovarian cancer contain high levels of functional decoy receptor 3 (DcR3) and is associated with platinum resistance. Gynecol Oncol. 2008;111:330–5.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Abrahams VM, Straszewski SL, Kamsteeg M, Hanczaruk B, Schwartz PE, Rutherford TJ, Mor G. Epithelial ovarian cancer cells secrete functional Fas ligand. Cancer Res. 2003;63:5573–81.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Ciaravino G, Bhat M, Manbeian CA, Teng NN. Differential expression of CD40 and CD95 in ovarian carcinoma. Eur J Gynaecol Oncol. 2004;25:27–32.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Dong HP, Kleinberg L, Silins I, Flørenes VA, Tropé CG, Risberg B, Nesland JM, Davidson B. Death receptor expression is associated with poor response to chemotherapy and shorter survival in metastatic ovarian carcinoma. Cancer. 2008;112:84–93.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2:277–88.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231–41.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Dong HP, Kleinberg L, Davidson B, Risberg B. Methods for simultaneous measurement of apoptosis and cell surface phenotype of epithelial cells in effusions by flow cytometry. Nat Protoc. 2008;3:955–64.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Kleinberg L, Dong HP, Holth A, Risberg B, Tropé CG, Nesland JM, Flørenes VA, Davidson B. Cleaved caspases and NF-κB are prognostic factors in metastatic ovarian carcinoma. Hum Pathol. 2009;40:795–806.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Dong HP, Holth A, Kleinberg L, Ruud MG, Elstrand MB, Tropé CG, Davidson B, Risberg B. Evaluation of cell surface expression of phosphatidylserine in ovarian carcinoma effusions using the Annexin-V/7-AAD assay - Clinical relevance and comparison to other apoptosis parameters. Am J Clin Pathol. 2009;132:756–62.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Dong HP, Ree Rosnes AK, Bock AJ, Holth A, Flørenes VA, Tropé CG, Risberg B, Davidson B. Flow cytometric measurement of cellular FLICE-inhibitory protein (c-FLIP) in ovarian carcinoma effusions. Cytopathology. 2011;22:373–82.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Fulda S. Molecular pathways: targeting inhibitor of apoptosis proteins in cancer—from molecular mechanism to therapeutic application. Clin Cancer Res. 2014;20:289–95.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Peery RC, Liu JY, Zhang JT. Targeting survivin for therapeutic discovery: past, present, and future promises. Drug Discov Today. 2017;22:1466–77.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Wu M, Yuan S, Szporn AH, Gan L, Shtilbans V, Burstein DE. Immunohistochemical detection of XIAP in body cavity effusions and washes. Mod Pathol. 2005;18:1618–22.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Kleinberg L, Flørenes VA, Silins I, Haug K, Tropé CG, Nesland JM, Davidson B. Nuclear expression of survivin is associated with improved survival in metastatic ovarian carcinoma. Cancer. 2007;109:228–38.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Danial NN. Bcl-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res. 2007;13:7254–63.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16:273–84.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Liu JR, Fletcher B, Page C, Hu C, Nunez G, Baker V. Bcl-xL is expressed in ovarian carcinoma and modulates chemotherapy-induced apoptosis. Gynecol Oncol. 1998;70:398–403.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Bunkholt Elstrand M, Kleinberg L, Kohn EC, Tropé CG, Davidson B. Expression and clinical role of anti-apoptotic proteins of the Bag, heat shock and Bcl-2 families in effusions, primary tumors and solid metastases in ovarian carcinoma. Int J Gynecol Pathol. 2009;28:211–21.CrossRefGoogle Scholar
  185. 185.
    Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive and treatment implications. Cell Stress Chaperones. 2005;10:86–103.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle. 2006;5:2592–601.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Beere HM. “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci. 2004;117:2641–51.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat shock proteins and cancer. Trends Pharmacol Sci. 2017;38:226–56.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 2017;18:345–60.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Elstrand MB, Stavnes HT, Tropé CG, Davidson B. Heat shock protein 90 is a putative therapeutic target in patients with recurrent advanced-stage ovarian carcinoma with serous effusions. Hum Pathol. 2012;43:529–35.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Behl C. Breaking BAG: the Co-Chaperone BAG3 in health and disease. Trends Pharmacol Sci. 2016;37:672–88.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Ma HT, Poon RY. How protein kinases co-ordinate mitosis in animal cells. Biochem J. 2011;435:17–31.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Damodaran AP, Vaufrey L, Gavard O, Prigent C. Aurora A Kinase is a priority pharmaceutical target for the treatment of cancers. Trends Pharmacol Sci. 2017;38:687–700.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Marumoto T, Zhang D, Saya H. Aurora-A—a guardian of poles. Nat Rev Cancer. 2005;5:42–50.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Vader G, Lens SM. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta. 2008;1786:60–72.PubMedPubMedCentralGoogle Scholar
  196. 196.
    Hetland TE, Nymoen DA, Holth A, Brusegard K, Flørenes VA, Kærn J, Tropé CG, Davidson B. Aurora B expression in metastatic effusions from advanced-stage ovarian serous carcinoma is predictive of intrinsic chemotherapy resistance. Hum Pathol. 2013;44:777–85.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Davidson B, Nymoen DA, Elgaaen BV, Staff AC, Tropé CG, Kærn J, Reich R, Falkenthal TE. BUB1 mRNA is significantly co-expressed with AURKA and AURKB mRNA in advanced-stage ovarian serous carcinoma. Virchows Arch. 2014;464:701–7.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Matheson CJ, Backos DS, Reigan P. Targeting WEE1 Kinase in Cancer. Trends Pharmacol Sci. 2016;37:872–81.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Slipicevic A, Holth A, Hellesylt E, Tropé CG, Davidson B, Flørenes VA. Wee1 is a novel independent prognostic marker of poor survival in post-chemotherapy ovarian carcinoma effusions. Gynecol Oncol. 2014;135:118–24.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Pakish JB, Jazaeri AA. Immunotherapy in gynecologic cancers: are we there yet? Curr Treat Options Oncol. 2017;18:59.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Gaillard SL, Secord AA, Monk B. The role of immune checkpoint inhibition in the treatment of ovarian cancer. Gynecol Oncol Res Pract. 2016;24:3–11.Google Scholar
  202. 202.
    Ventriglia J, Paciolla I, Pisano C, Cecere SC, Di Napoli M, Tambaro R, Califano D, Losito S, Scognamiglio G, Setola SV, Arenare L, Pignata S, Della Pepa C. Immunotherapy in ovarian, endometrial and cervical cancer: state of the art and future perspectives. Cancer Treat Rev. 2017;59:109–16.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Fumita Y, Tanaka F, Saji F, Nakamuro K. Immunosuppressive factors in ascites fluids from ovarian cancer patients. Am J Reprod Immunol. 1984;6:175–8.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Akyol S, Gercel-Taylor C, Reynolds LC, Taylor DD. HSP-10 in ovarian cancer: expression and suppression of T-cell signaling. Gynecol Oncol. 2006;101:481–6.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Taylor DD, Gerçel-Taylor C. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer. 2005;92:305–11.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Gordon IO, Freedman RS. Defective antitumor function of monocyte-derived macrophages from epithelial ovarian cancer patients. Clin Cancer Res. 2006;12:1515–24.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Lai P, Rabinowich H, Crowley-Nowick PA, Bell MC, Mantovani G, Whiteside TL. Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma. Clin Cancer Res. 1996;2:161–73.PubMedPubMedCentralGoogle Scholar
  208. 208.
    Loercher AE, Nash MA, Kavanagh JJ, Platsoucas CD, Freedman RS. Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J Immunol. 1999;163:6251–60.PubMedPubMedCentralGoogle Scholar
  209. 209.
    Takaishi K, Komohara Y, Tashiro H, Ohtake H, Nakagawa T, Katabuchi H, Takeya M. Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation. Cancer Sci. 2010;101:2128–36.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Webb TJ, Giuntoli RL 2nd, Rogers O, Schneck J, Oelke M. Ascites specific inhibition of CD1d-mediated activation of natural killer T cells. Clin Cancer Res. 2008;14:7652–8.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Wischhusen J, Waschbisch A, Wiendl H. Immune-refractory cancers and their little helpers—an extended role for immunetolerogenic MHC molecules HLA-G and HLA-E. Semin Cancer Biol. 2007;17:459–68.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Morandi F, Rizzo R, Fainardi E, Rouas-Freiss N, Pistoia V. Recent advances in our understanding of HLA-G biology: lessons from a wide spectrum of human diseases. J Immunol Res. 2016;2016:4326495.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Singer G, Rebmann V, Chen YC, Liu HT, Ali SZ, Reinsberg J, McMaster MT, Pfeiffer K, Chan DW, Wardelmann E, Grosse-Wilde H, Cheng CC, Kurman RJ, Shih IM. HLA-G is a potential tumor marker in malignant ascites. Clin Cancer Res. 2003;9:4460–4.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Davidson B, Bukholt Elstrand M, McMaster MT, Berner A, Kurman RJ, Risberg B, Trope’ CG, Shih IM. HLA-G expression in effusions is a possible marker of tumor susceptibility to chemotherapy in ovarian carcinoma. Gynecol Oncol. 2005;96:42–7.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Naylor MS, Stamp GW, Foulkes WD, Eccles D, Balkwill FR. Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. J Clin Invest. 1993;91:2194–206.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Stadlmann S, Amberger A, Pollheimer J, Gastl G, Offner FA, Margreiter R, Zeimet AG. Ovarian carcinoma cells and IL-1beta-activated human peritoneal mesothelial cells are possible sources of vascular endothelial growth factor in inflammatory and malignant peritoneal effusions. Gynecol Oncol. 2005;97:784–9.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Hurteau JA, Simon HU, Kurman C, Rubin L, Mills GB. Levels of soluble interleukin-2 receptor-alpha are elevated in serum and ascitic fluid from epithelial ovarian cancer patients. Am J Obstet Gynecol. 1994;170:918–28.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Barton DP, Blanchard DK, Michelini-Norris B, Nicosia SV, Cavanagh D, Djeu JY. High serum and ascitic soluble interleukin-2 receptor alpha levels in advanced epithelial ovarian cancer. Blood. 1993;81:424–9.PubMedPubMedCentralGoogle Scholar
  219. 219.
    Garg R, Wollan M, Galic V, Garcia R, Goff BA, Gray HJ, Swisher E. Common polymorphism in interleukin 6 influences survival of women with ovarian and peritoneal carcinoma. Gynecol Oncol. 2006;103:793–6.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Schröder W, Ruppert C, Bender HG. Concomitant measurements of interleukin-6 (IL-6) in serum and peritoneal fluid of patients with benign and malignant ovarian tumors. Eur J Obstet Gynecol Reprod Biol. 1994;56:43–6.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Moradi MM, Carson LF, Weinberg B, Haney AF, Twiggs LB, Ramakrishnan S. Serum and ascitic fluid levels of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in patients with ovarian epithelial cancer. Cancer. 1993;72:2433–40.PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Plante M, Rubin SC, Wong GY, Federici MG, Finstad CL, Gastl GA. Interleukin-6 level in serum and ascites as a prognostic factor in patients with epithelial ovarian cancer. Cancer. 1994;73:1882–8.PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Ripley D, Shoup B, Majewski A, Chegini N. Differential expression of interleukins IL-13 and IL-15 in normal ovarian tissue and ovarian carcinomas. Gynecol Oncol. 2004;92:761–8.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Zeimet AG, Widschwendter M, Knabbe C, Fuchs D, Herold M, Müller-Holzner E, Daxenbichler G, Offner FA, Dapunt O, Marth C. Ascitic interleukin-12 is an independent prognostic factor in ovarian cancer. J Clin Oncol. 1998;16:1861–8.PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Mustea A, Pirvulescu C, Könsgen D, Braicu EI, Yuan S, Sun P, Lichtenegger W, Sehouli J. Decreased IL-1 RA concentration in ascites is associated with a significant improvement in overall survival in ovarian cancer. Cytokine. 2008;42:77–84.PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Matte I, Lane D, Laplante C, Rancourt C, Piché A. Profiling of cytokines in human epithelial ovarian cancer ascites. Am J Cancer Res. 2012;2:566–80.PubMedPubMedCentralGoogle Scholar
  227. 227.
    Kolomeyevskaya N, Eng KH, Khan AN, Grzankowski KS, Singel KL, Moysich K, Segal BH. Cytokine profiling of ascites at primary surgery identifies an interaction of tumor necrosis factor-α and interleukin-6 in predicting reduced progression-free survival in epithelial ovarian cancer. Gynecol Oncol. 2015;138:352–7.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Naldini A, Morena E, Belotti D, Carraro F, Allavena P, Giavazzi R. Identification of thrombin-like activity in ovarian cancer associated ascites and modulation of multiple cytokine networks. Thromb Haemost. 2011;106:705–11.PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med. 2010;16:133–44.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Scotton CJ, Wilson JL, Milliken D, Stamp G, Balkwill FR. Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res. 2001;61:4961–5.PubMedPubMedCentralGoogle Scholar
  232. 232.
    Scotton CJ, Wilson JL, Scott K, Stamp G, Wilbanks GD, Fricker S, Bridger G, Balkwill FR. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res. 2002;62:5930–8.PubMedPubMedCentralGoogle Scholar
  233. 233.
    Milliken D, Scotton C, Raju S, Balkwill F, Wilson J. Analysis of chemokines and chemokine receptor expression in ovarian cancer ascites. Clin Cancer Res. 2002;8:1108–14.PubMedPubMedCentralGoogle Scholar
  234. 234.
    Dong HP, Bunkholt Elstrand M, Holth A, Silins I, Berner A, Tropé CG, Davidson B, Risberg B. NK and B cell infiltration correlates with worse outcome in metastatic ovarian carcinoma. Am J Clin Pathol. 2006;125:451–8.PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Schutyser E, Struyf S, Proost P, Opdenakker G, Laureys G, Verhasselt B, Peperstraete L, Van de Putte I, Saccani A, Allavena P, Mantovani A, Van Damme J. Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. J Biol Chem. 2002;277:24584–93.PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Bamias A, Tsiatas ML, Kafantari E, Liakou C, Rodolakis A, Voulgaris Z, Vlahos G, Papageorgiou T, Tsitsilonis O, Bamia C, Papatheodoridis G, Politi E, Archimandritis A, Antsaklis A, Dimopoulos MA. Significant differences of lymphocytes isolated from ascites of patients with ovarian cancer compared to blood and tumor lymphocytes. Association of CD3+CD56+ cells with platinum resistance. Gynecol Oncol. 2007;106:75–81.PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    Bamias A, Koutsoukou V, Terpos E, Tsiatas ML, Liakos C, Tsitsilonis O, Rodolakis A, Voulgaris Z, Vlahos G, Papageorgiou T, Papatheodoridis G, Archimandritis A, Antsaklis A, Dimopoulos MA. Correlation of NK T-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNFalpha in ascites from advanced ovarian cancer: Association with platinum resistance and prognosis in patients receiving first-line, platinum-based chemotherapy. Gynecol Oncol. 2008;108:421–7.PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Melichar B, Nash MA, Lenzi R, Platsoucas CD, Freedman RS. Expression of costimulatory molecules CD80 and CD86 and their receptors CD28, CTLA-4 on malignant ascites CD3+ tumour-infiltrating lymphocytes (TIL) from patients with ovarian and other types of peritoneal carcinomatosis. Clin Exp Immunol. 2000;119:19–27.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Landskron J, Helland Ø, Torgersen KM, Aandahl EM, Gjertsen BT, Bjørge L, Taskén K. Activated regulatory and memory T-cells accumulate in malignant ascites from ovarian carcinoma patients. Cancer Immunol Immunother. 2015;64:337–47.PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Reijnhart RM, Bieber MM, Teng NN. FACS analysis of peritoneal lymphocytes in ovarian cancer and control patients. Immunobiology. 1994;191:1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  241. 241.
    Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–6.PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66:605–12.PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Risberg B, Davidson B, Nielsen S, Dong HP, Christensen J, Johansen P, Asschenfeldt P, Berner A. Detection of monocyte/macrophage cell populations in effusions: a comparative study using flow cytometric immunophenotyping and immunocytochemistry. Diagn Cytopathol. 2001;25:214–9.PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Wang R, Zhang T, Ma Z, Wang Y, Cheng Z, Xu H, Li W, Wang X. The interaction of coagulation factor XII and monocyte/macrophages mediating peritoneal metastasis of epithelial ovarian cancer. Gynecol Oncol. 2010;117:460–6.PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Reinartz S, Schumann T, Finkernagel F, Wortmann A, Jansen JM, Meissner W, Krause M, Schwörer AM, Wagner U, Müller-Brüsselbach S, Müller R. Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: correlation of CD163 expression, cytokine levels and early relapse. Int J Cancer. 2014;134:32–42.PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Adhikary T, Wortmann A, Finkernagel F, Lieber S, Nist A, Stiewe T, Wagner U, Müller-Brüsselbach S, Reinartz S, Müller R. Interferon signaling in ascites-associated macrophages is linked to a favorable clinical outcome in a subgroup of ovarian carcinoma patients. BMC Genomics. 2017;18:243.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537–49.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802:396–405.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Rauch N, Rukhlenko OS, Kolch W, Kholodenko BN. MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance. Curr Opin Struct Biol. 2016;41:151–8.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Givant-Horwitz V, Davidson B, Lazarovici P, Schaefer E, Nesland JM, Tropé CG, Reich R. Mitogen-activated protein kinases (MAPK) as predictors of clinical outcome in serous ovarian carcinoma in effusions. Gynecol Oncol. 2003;91:160–72.PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Givant-Horwitz V, Davidson B, Goderstad JM, Nesland JM, Tropé CG, Reich R. The PAC-1 dual specificity phosphatase predicts poor outcome in serous ovarian carcinoma. Gynecol Oncol. 2004;93:517–23.PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Davidson B, Espina V, Flørenes VA, Liotta LA, Kristensen GB, Trope’ CG, Berner A, Kohn EC. Proteomic profiling of malignant ovarian cancer effusions: survival and injury pathways discriminate clinical outcome. Clin Cancer Res. 2006;12:791–9.PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Dokianakis DN, Varras MN, Papaefthimiou M, Apostolopoulou J, Simiakaki H, Diakomanolis E, Spandidos DA. Ras gene activation in malignant cells of human ovarian carcinoma peritoneal fluids. Clin Exp Metastasis. 1999;17:293–7.PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170:605–35.PubMedCrossRefPubMedCentralGoogle Scholar
  255. 255.
    Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169:381–405.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Davidson B, Hadar R, Schlossberg A, Sternlicht T, Slipicevic A, Skrede M, Risberg B, Flørenes VA, Kopolovic J, Reich R. Expression and clinical role of DJ-1, a negative regulator of PTEN, in ovarian carcinoma. Hum Pathol. 2008;39:87–95.PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Cao J, Lou S, Ying M, Yang B. DJ-1 as a human oncogene and potential therapeutic target. Biochem Pharmacol. 2015;93:241–50.PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Bunkholt Elstrand M, Dong HP, Ødegaard E, Holth A, Elloul S, Reich R, Tropé CG, Davidson B. Mammalian target of rapamycin is a biomarker of poor survival in metastatic ovarian carcinoma. Hum Pathol. 2010;41:794–804.PubMedCrossRefPubMedCentralGoogle Scholar
  259. 259.
    Perkins ND, Gilmore TD. Good cop, bad cop: the different faces of NF-kappaB. Cell Death Differ. 2006;13:759–72.PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Neumann M, Naumann M. Beyond IkappaBs: alternative regulation of NF-kappaB activity. FASEB J. 2007;21:2642–54.PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007;8:49–62.PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    Seth A, Watson DK. Ets transcription factors and their emerging roles in human cancer. Eur J Cancer. 2005;41:2462–78.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Verger A, Duterque-Coquillaud M. When Ets transcription factors meet their partners. Bioessays. 2002;24:362–70.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 2001;2:827–37.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer. 2017;17:337–51.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Davidson B, Risberg B, Goldberg I, Nesland JM, Berner A, Trope´ CG, Kristensen GB, Bryne M, Reich R. Ets-1 mRNA expression in effusions of serous ovarian carcinoma patients is a marker of poor outcome. Am J Surg Pathol. 2001;25:1493–500.PubMedCrossRefPubMedCentralGoogle Scholar
  267. 267.
    Davidson B, Goldberg I, Reich R, Tell L, Baekelandt M, Kristensen GB, Berner A, Kopolovic J. The clinical role of the PEA3 transcription factor in ovarian and breast carcinoma in effusions. Clin Exp Metastasis. 2004;21:191–9.PubMedCrossRefPubMedCentralGoogle Scholar
  268. 268.
    Brenne K, Nymoen DA, Hetland TE, Trope' CG, Davidson B. Expression of the Ets transcription factor EHF in serous ovarian carcinoma effusions is a marker of poor survival. Hum Pathol. 2012;43:496–505.PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Sertznig P, Seifert M, Tilgen W, Reichrath J. Present concepts and future outlook: function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer. J Cell Physiol. 2007;212:1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Michalik L, Desvergne B, Wahli W. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer. 2004;4:61–70.PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Davidson B, Hadar R, Tuft Stavnes H, Trope' CG, Reich R. Expression of the peroxisome proliferator-activated receptors (PPAR)-α, -β and -γ in ovarian carcinoma effusions is associated with poor chemoresponse and shorter survival. Hum Pathol. 2009;40:705–13.PubMedCrossRefPubMedCentralGoogle Scholar
  272. 272.
    Gorovetz M, Baekelandt M, Berner A, Trope' CG, Davidson B, Reich R. The clinical role of phospholipase A2 isoforms in advanced-stage ovarian carcinoma. Gynecol Oncol. 2006;103:831–40.PubMedCrossRefPubMedCentralGoogle Scholar
  273. 273.
    Denkert C, Köbel M, Pest S, Koch I, Berger S, Schwabe M, Siegert A, Reles A, Klosterhalfen B, Hauptmann S. Expression of cyclooxygenase 2 is an independent prognostic factor in human ovarian carcinoma. Am J Pathol. 2002;160:893–903.PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Westermann AM, Havik E, Postma FR, Beijnen JH, Dalesio O, Moolenaar WH, Rodenhuis S. Malignant effusions contain lysophosphatidic acid (LPA)-like activity. Ann Oncol. 1998;9:437–42.PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Xiao YJ, Schwartz B, Washington M, Kennedy A, Webster K, Belinson J, Xu Y. Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids. Anal Biochem. 2001;290:302–13.PubMedCrossRefPubMedCentralGoogle Scholar
  276. 276.
    Lee MJ, Jeon ES, Lee JS, Cho M, Suh DS, Chang CL, Kim JH. Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cells. J Cell Biochem. 2008;104:499–510.PubMedCrossRefPubMedCentralGoogle Scholar
  277. 277.
    Harel-Dassa K, Yedgar S, Tropé CG, Davidson B, Reich R. Phospholipase D messenger RNA expression and clinical role in high-grade serous carcinoma. Hum Pathol. 2017;62:115–21.PubMedCrossRefPubMedCentralGoogle Scholar
  278. 278.
    Melnikova VO, Bar-Eli M. Transcriptional control of the melanoma malignant phenotype. Cancer Biol Ther. 2008;7:997–1003.PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Pellikainen JM, Kosma VM. Activator protein-2 in carcinogenesis with a special reference to breast cancer—a mini review. Int J Cancer. 2007;120:2061–7.PubMedCrossRefPubMedCentralGoogle Scholar
  280. 280.
    Ødegaard E, Staff AC, Kærn J, Flørenes VA, Kopolovic J, Tropé CG, Abeler VM, Reich R, Davidson B. AP-2γ is a marker of tumor progression in ovarian carcinoma. Gynecol Oncol. 2006;100:462–8.PubMedCrossRefPubMedCentralGoogle Scholar
  281. 281.
    St Pierre R, Kadoch C. Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities. Curr Opin Genet Dev. 2017;42:56–67.PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Shih IM, Sheu JJ, Santillan A, Nakayama K, Yen MJ, Bristow RE, Vang R, Parmigiani G, Kurman RJ, Trope CG, Davidson B, Wang TL. Amplification of a chromatin remodeling gene, Rsf-1/HBXAP, in ovarian carcinoma. Proc Natl Acad Sci U S A. 2005;102:14004–9.PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Davidson B, Trope’ CG, Wang TL, Shih IM. Expression of the chromatin remodeling factor Rsf-1 in effusions is a novel predictor of poor survival in ovarian carcinoma. Gynecol Oncol. 2006;103:814–9.PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Collins T, Stone JR, Williams AJ. All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol Cell Biol. 2001;21:3609–15.PubMedPubMedCentralCrossRefGoogle Scholar
  285. 285.
    Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG. Sequence and structural analysis of BTB domain proteins. Genome Biol. 2005;6:R82.PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Cha XY, Pierce RC, Kalivas PW, Mackler SA. NAC-1, a rat brain mRNA, is increased in the nucleus accumbens three weeks after chronic cocaine self-administration. J Neurosci. 1997;17:6864–71.PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Nakayma K, Nakayma N, Davidson B, Sheu J, Jinawath N, Santillan A, Salani R, Bristow RE, Morin PJ, Kurman RJ, Wang TL, Shih IM. A BTB/POZ protein, NAC-1, is related to tumor recurrence and is essential for tumor growth and survival. Proc Natl Acad Sci U S A. 2006;103:18739–44.CrossRefGoogle Scholar
  288. 288.
    Davidson B, Berner A, Tropé CG, Wang TL, IeM S. Expression and clinical role of the BTB/POZ protein NAC-1 in ovarian carcinoma effusions. Hum Pathol. 2007;38:1030–6.PubMedCrossRefPubMedCentralGoogle Scholar
  289. 289.
    Ueda SM, Yap KL, Davidson B, Tian Y, Murthy V, Wang TL, Visvanathan K, Kuhajda FP, Bristow RE, Zhang H, Shih IM. Expression of fatty acid synthase depends on NAC1 and is associated with recurrent ovarian serous carcinomas. J Oncol. 2010;2010:285191.PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    D’Souza B, Meloty-Kapella L, Weinmaster G. Canonical and non-canonical Notch ligands. Curr Top Dev Biol. 2010;92:73–129.PubMedPubMedCentralCrossRefGoogle Scholar
  291. 291.
    Artavanis-Tsakonas S, Muskavitch MA. Notch: the past, the present, and the future. Curr Top Dev Biol. 2010;92:1–29.PubMedCrossRefPubMedCentralGoogle Scholar
  292. 292.
    Koch U, Radtke F. Notch signaling in solid tumors. Curr Top Dev Biol. 2010;92:411–55.PubMedCrossRefPubMedCentralGoogle Scholar
  293. 293.
    Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8:97–106.PubMedCrossRefPubMedCentralGoogle Scholar
  294. 294.
    Nowell CS, Radtke F. Notch as a tumour suppressor. Nat Rev Cancer. 2017;17:145–59.PubMedCrossRefPubMedCentralGoogle Scholar
  295. 295.
    Park JT, Li M, Nakayama K, Mao TL, Davidson B, Zhang Z, Kurman RJ, Eberhart CG, Shih IM, Wang TL. Notch3 gene amplification in ovarian cancer. Cancer Res. 2006;66:6312–8.PubMedCrossRefPubMedCentralGoogle Scholar
  296. 296.
    Choi JH, Park JT, Davidson B, Morin PJ, Shih IM, Wang TL. Jagged-1 and notch3 juxtacrine loop regulates ovarian tumor growth and adhesion. Cancer Res. 2008;68:5716–23.PubMedPubMedCentralCrossRefGoogle Scholar
  297. 297.
    Park J, Chen X, Tropè CG, Davidson B, Shih IM, Wang TL. Notch3 overexpression is related to the recurrence of ovarian cancer and confers resistance to carboplatin. Am J Pathol. 2010;177:1087–94.PubMedPubMedCentralCrossRefGoogle Scholar
  298. 298.
    Burleson KM, Casey RC, Skubitz KM, Pambuccian SE, Oegema TR Jr, Skubitz AP. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol Oncol. 2004;93:170–81.PubMedCrossRefPubMedCentralGoogle Scholar
  299. 299.
    Burleson KM, Boente MP, Pambuccian SE, Skubitz AP. Disaggregation and invasion of ovarian carcinoma ascites spheroids. J Transl Med. 2006;4:6.PubMedPubMedCentralCrossRefGoogle Scholar
  300. 300.
    Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, Silasi DA, Steffensen KD, Waldstrom M, Visintin I, Mor G. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle. 2009;8:158–66.PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Runz S, Keller S, Rupp C, Stoeck A, Issa Y, Koensgen D, Mustea A, Sehouli J, Kristiansen G, Altevogt P. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol. 2007;107:563–71.PubMedCrossRefPubMedCentralGoogle Scholar
  302. 302.
    Davidson B. CD24 is highly useful in differentiating high-grade serous carcinoma from benign and malignant mesothelial cells. Hum Pathol. 2016;58:123–7.PubMedPubMedCentralCrossRefGoogle Scholar
  303. 303.
    Meng E, Long B, Sullivan P, McClellan S, Finan MA, Reed E, Shevde L, Rocconi RP. CD44+/CD24- ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin Exp Metastasis. 2012;29:939–48.PubMedCrossRefPubMedCentralGoogle Scholar
  304. 304.
    Meng E, Mitra A, Tripathi K, Finan MA, Scalici J, McClellan S, Madeira da Silva L, Reed E, Shevde LA, Palle K, Rocconi RP. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling. PLoS One. 2014;9:e107142.PubMedPubMedCentralCrossRefGoogle Scholar
  305. 305.
    Latifi A, Luwor RB, Bilandzic M, Nazaretian S, Stenvers K, Pyman J, Zhu H, Thompson EW, Quinn MA, Findlay JK, Ahmed N. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS One. 2012;7:e46858.PubMedPubMedCentralCrossRefGoogle Scholar
  306. 306.
    Abubaker K, Luwor RB, Zhu H, McNally O, Quinn MA, Burns CJ, Thompson EW, Findlay JK, Ahmed N. Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden. BMC Cancer. 2014;14:317.PubMedPubMedCentralCrossRefGoogle Scholar
  307. 307.
    Rizzo S, Hersey JM, Mellor P, Dai W, Santos-Silva A, Liber D, Luk L, Titley I, Carden CP, Box G, Hudson DL, Kaye SB, Brown R. Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. Mol Cancer Ther. 2011;10:325–35.PubMedPubMedCentralCrossRefGoogle Scholar
  308. 308.
    Neradil J, Veselska R. Nestin as a marker of cancer stem cells. Cancer Sci. 2015;106:803–11.PubMedPubMedCentralCrossRefGoogle Scholar
  309. 309.
    Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68:4311–20.PubMedPubMedCentralCrossRefGoogle Scholar
  310. 310.
    Hetland TE, Hellesylt E, Flørenes VA, Tropé C, Davidson B, Kærn J. Class III β-tubulin expression in advanced-stage serous ovarian carcinoma effusions is associated with poor survival and primary chemoresistance. Hum Pathol. 2011;42:1019–26.PubMedCrossRefPubMedCentralGoogle Scholar
  311. 311.
    Salazar MD, Ratnam M. The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev. 2007;26:141–52.PubMedCrossRefPubMedCentralGoogle Scholar
  312. 312.
    Kelemen LE. The role of folate receptor α in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer. 2006;119:243–50.PubMedCrossRefPubMedCentralGoogle Scholar
  313. 313.
    Cheung A, Bax HJ, Josephs DH, Ilieva KM, Pellizzari G, Opzoomer J, Bloomfield J, Fittall M, Grigoriadis A, Figini M, Canevari S, Spicer JF, Tutt AN, Karagiannis SN. Targeting folate receptor alpha for cancer treatment. Oncotarget. 2016;7:52553–74.PubMedPubMedCentralGoogle Scholar
  314. 314.
    Mantovani LT, Miotti S, Ménard S, Canevari S, Raspagliesi F, Bottini C, Bottero F, Colnaghi MI. Folate binding protein distribution in normal tissues and biological fluids from ovarian carcinoma patients as detected by the monoclonal antibodies MOv18 and MOv19. Eur J Cancer. 1994;30A:363–9.PubMedCrossRefPubMedCentralGoogle Scholar
  315. 315.
    Corona G, Toffoli G, Fabris M, Viel A, Zarrelli A, Donada C, Boiocchi M. Homocysteine accumulation in human ovarian carcinoma ascitic/cystic fluids possibly caused by metabolic alteration of the methionine cycle in ovarian carcinoma cells. Eur J Cancer. 1997;33:1284–90.PubMedCrossRefPubMedCentralGoogle Scholar
  316. 316.
    Forster MD, Ormerod MG, Agarwal R, Kaye SB, Jackman AL. Flow cytometric method for determining folate receptor expression on ovarian carcinoma cells. Cytometry A. 2007;71:945–50.PubMedCrossRefPubMedCentralGoogle Scholar
  317. 317.
    Yuan Y, Nymoen DA, Dong HP, Bjørang O, Shih IM, Low PS, Trope' CG, Davidson B. Expression of the folate receptor genes FOLR1 and FOLR3 differentiates ovarian carcinoma from breast carcinoma and malignant mesothelioma in serous effusions. Hum Pathol. 2009;40:1453–60.PubMedCrossRefPubMedCentralGoogle Scholar
  318. 318.
    Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB. Mechanisms of Taxol resistance related to microtubules. Oncogene. 2003;22:7280–95.PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Parker AL, Teo WS, McCarroll JA, Kavallaris M. An emerging role for tubulin isotypes in modulating cancer biology and chemotherapy resistance. Int J Mol Sci. 2017;18. pii: E1434.PubMedCentralCrossRefGoogle Scholar
  320. 320.
    Kavallaris M, Kuo DY, Burkhart CA, Regl DL, Norris MD, Haber M, Band Horwitz S. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest. 1997;100:1282–93.PubMedPubMedCentralCrossRefGoogle Scholar
  321. 321.
    Chu TM, Lin TH, Kawinski E. Detection of soluble P-glycoprotein in culture media and extracellular fluids. Biochem Biophys Res Commun. 1994;203:506–12.PubMedCrossRefPubMedCentralGoogle Scholar
  322. 322.
    Kerr EH, Frederick PJ, Egger ME, Stockard CR, Sellers J, DellaManna D, Oelschlager DK, Amm HM, Eltoum IE, Straughn JM, Buchsbaum DJ, Grizzle WE, McNally LR. Lung resistance-related protein (LRP) expression in malignant ascitic cells as a prognostic marker for advanced ovarian serous carcinoma. Ann Surg Oncol. 2013;20:3059–65.PubMedCrossRefPubMedCentralGoogle Scholar
  323. 323.
    Huang H, Li Y, Liu J, Zheng M, Feng Y, Hu K, Huang Y, Huang Q. Screening and identification of biomarkers in ascites related to intrinsic chemoresistance of serous epithelial ovarian cancers. PLoS One. 2012;7:e51256.PubMedPubMedCentralCrossRefGoogle Scholar
  324. 324.
    Kase H, Kodama S, Nagai E, Tanaka K. Glutathione S-transferase pi immunostaining of cisplatin-resistant ovarian cancer cells in ascites. Acta Cytol. 1998;42:1397–402.PubMedCrossRefPubMedCentralGoogle Scholar
  325. 325.
    Brown JS, O’Carrigan B, Jackson SP, Yap TA. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 2017;7:20–37.PubMedCrossRefPubMedCentralGoogle Scholar
  326. 326.
    Ibanez de Caceres I, Battagli C, Esteller M, Herman JG, Dulaimi E, Edelson MI, Bergman C, Ehya H, Eisenberg BL, Cairns P. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res. 2004;64:6476–81.PubMedCrossRefPubMedCentralGoogle Scholar
  327. 327.
    Ercoli A, Ferrandina G, Raspaglio G, Marone M, Maggiano N, Del Mastro P, Benedetti Panici P, Mancuso S, Scambia G. hMSH2 and GTBP expression in advanced stage epithelial ovarian cancer. Br J Cancer. 1999;80:1665–71.PubMedPubMedCentralCrossRefGoogle Scholar
  328. 328.
    Stevens EV, Raffeld M, Espina V, Kristensen GB, Tropé CG, Kohn EC, Davidson B. Expression of Xeroderma Pigmentosum A protein predicts improved outcome in metastatic ovarian carcinoma. Cancer. 2005;103:2313–9.PubMedCrossRefPubMedCentralGoogle Scholar
  329. 329.
    Counter CM, Hirte HW, Bacchetti S, Harley CB. Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci U S A. 1994;91:2900–4.PubMedPubMedCentralCrossRefGoogle Scholar
  330. 330.
    Tseng CJ, Jain S, Hou HC, Liu W, Pao CC, Lin CT, Horng SG, Soong YK, Hsueh S. Applications of the telomerase assay in peritoneal washing fluids. Gynecol Oncol. 2001;81:420–3.PubMedCrossRefPubMedCentralGoogle Scholar
  331. 331.
    Murakami J, Nagai N, Ohama K. Telomerase activity in body cavity fluid and peritoneal washings in uterine and ovarian cancer. J Int Med Res. 1998;26:129–39.PubMedCrossRefPubMedCentralGoogle Scholar
  332. 332.
    Elg SA, Mayer AR, Carson LF, Twiggs LB, Hill RB, Ramakrishnan S. Alpha-1 acid glycoprotein is an immunosuppressive factor found in ascites from ovaria carcinoma. Cancer. 1997;80:1448–56.PubMedCrossRefPubMedCentralGoogle Scholar
  333. 333.
    Elg SA, Carson LF, Fowler JM, Twiggs LB, Moradi MM, Ramakrishnan S. Ascites levels of haptoglobin in patients with ovarian cancer. Cancer. 1993;71:3938–41.PubMedCrossRefPubMedCentralGoogle Scholar
  334. 334.
    Gericke B, Raila J, Sehouli J, Haebel S, Könsgen D, Mustea A, Schweigert FJ. Microheterogeneity of transthyretin in serum and ascitic fluid of ovarian cancer patients. BMC Cancer. 2005;5:133.PubMedPubMedCentralCrossRefGoogle Scholar
  335. 335.
    Schweigert FJ, Raila J, Sehouli J, Buscher U. Accumulation of selected carotenoids, alpha-tocopherol and retinol in human ovarian carcinoma ascitic fluid. Ann Nutr Metab. 2004;48:241–5.PubMedCrossRefPubMedCentralGoogle Scholar
  336. 336.
    Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res. 2002;62:5358–64.PubMedPubMedCentralGoogle Scholar
  337. 337.
    Hofmann M, Ruschenburg I. mRNA detection of tumor-rejection genes BAGE, GAGE, and MAGE in peritoneal fluid from patients with ovarian carcinoma as a potential diagnostic tool. Cancer. 2002;96:187–93.PubMedCrossRefPubMedCentralGoogle Scholar
  338. 338.
    Jeschke U, Mylonas I, Kunert-Keil C, Stahn R, Scholz C, Janni W, Kuhn C, Schröder E, Mayr D, Friese K. Immunohistochemistry, glycosylation and immunosuppression of glycodelin in human ovarian cancer. Histochem Cell Biol. 2009;131:283–95.PubMedCrossRefPubMedCentralGoogle Scholar
  339. 339.
    Kajiyama H, Kikkawa F, Maeda O, Suzuki T, Ino K, Mizutani S. Increased expression of dipeptidyl peptidase IV in human mesothelial cells by malignant ascites from ovarian carcinoma patients. Oncology. 2002;63:158–65.PubMedCrossRefPubMedCentralGoogle Scholar
  340. 340.
    Masiakos PT, MacLaughlin DT, Maheswaran S, Teixeira J, Fuller AF Jr, Shah PC, Kehas DJ, Kenneally MK, Dombkowski DM, Ha TU, Preffer FI, Donahoe PK. Human ovarian cancer, cell lines, and primary ascites cells express the human Mullerian inhibiting substance (MIS) type II receptor, bind, and are responsive to MIS. Clin Cancer Res. 1999;5:3488–99.PubMedPubMedCentralGoogle Scholar
  341. 341.
    Simon I, Zhuo S, Corral L, Diamandis EP, Sarno MJ, Wolfert RL, Kim NW. B7-h4 is a novel membrane-bound protein and a candidate serum and tissue biomarker for ovarian cancer. Cancer Res. 2006;66:1570–5.PubMedCrossRefPubMedCentralGoogle Scholar
  342. 342.
    Thomsen LL, Sargent JM, Williamson CJ, Elgie AW. Nitric oxide synthase activity in fresh cells from ovarian tumour tissue: relationship of enzyme activity with clinical parameters of patients with ovarian cancer. Biochem Pharmacol. 1998;56:1365–70.PubMedCrossRefPubMedCentralGoogle Scholar
  343. 343.
    Jandu N, Richardson M, Singh G, Hirte H, Hatton MW. Human ovarian cancer ascites fluid contains a mixture of incompletely degraded soluble products of fibrin that collectively possess an antiangiogenic property. Int J Gynecol Cancer. 2006;16:1536–44.PubMedCrossRefPubMedCentralGoogle Scholar
  344. 344.
    Wilhelm S, Schmitt M, Parkinson J, Kuhn W, Graeff H, Wilhelm OG. Thrombomodulin, a receptor for the serine protease thrombin, is decreased in primary tumors and metastases but increased in ascitic fluids of patients with advanced ovarian cancer FIGO IIIc. Int J Oncol. 1998;13:645–51.PubMedPubMedCentralGoogle Scholar
  345. 345.
    Hough CD, Sherman-Baust CA, Pizer ES, Montz FJ, Im DD, Rosenshein NB, Cho KR, Riggins GJ, Morin PJ. Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res. 2000;60:6281–7.PubMedPubMedCentralGoogle Scholar
  346. 346.
    Chen YC, Pohl G, Wang TL, Morin PJ, Risberg B, Kristensen GB, Yu A, Davidson B, Shih IM. Apolipoprotein E is required for cell proliferation and survival in ovarian cancer. Cancer Res. 2005;65:331–7.PubMedPubMedCentralGoogle Scholar
  347. 347.
    Chen YC, Davidson B, Cheng CC, Maitra A, Giuntoli RL II, Hruban RH, Wang TL, Shih IM. Identification and characterization of membralin, a novel tumor-associated gene, in ovarian carcinoma. Biochim Biophys Acta. 2005;1730:96–102.PubMedCrossRefPubMedCentralGoogle Scholar
  348. 348.
    Nakayama K, Nakayama N, Davidson B, Katabuci H, Kurman RJ, Velculescu VE, Shih IM, Wang TL. Homozygous deletion of MKK4 in ovarian serous carcinomas. Cancer Biol Ther. 2006;5:630–4.PubMedCrossRefPubMedCentralGoogle Scholar
  349. 349.
    Rayhman O, Klipper E, Muller L, Davidson B, Reich R, Meidan R. Small interfering RNA molecules targeting endothelin-converting enzyme-1 inhibit endothelin-1 synthesis and the invasive phenotype of ovarian carcinoma cells. Cancer Res. 2008;68:9265–73.PubMedCrossRefPubMedCentralGoogle Scholar
  350. 350.
    Mælandsmo GM, Flørenes VA, Nguyen MTP, Flatmark K, Davidson B. Different expression and clinical role of S100A4 in ovarian carcinoma at different anatomic sites. Tumor Biol. 2009;30:15–25.CrossRefGoogle Scholar
  351. 351.
    Davidson B, Holth A, Moripen L, Trope' CG, Shih IM. Osteopontin expression in ovarian carcinoma effusions is related to improved clinical outcome. Hum Pathol. 2011;42:991–7.PubMedCrossRefPubMedCentralGoogle Scholar
  352. 352.
    Reich R, Hadar S, Davidson B. Expression and clinical role of protein of regenerating liver (PRL) phosphatases in ovarian carcinoma. Int J Mol Sci. 2011;12:1133–45.PubMedPubMedCentralCrossRefGoogle Scholar
  353. 353.
    Becker MA, Haluska P Jr, Bale LK, Oxvig C, Conover CA. A novel neutralizing antibody targeting pregnancy-associated plasma protein-a inhibits ovarian cancer growth and ascites accumulation in patient mouse tumorgrafts. Mol Cancer Ther. 2015;14:973–81.PubMedPubMedCentralCrossRefGoogle Scholar
  354. 354.
    Bock AJ, Dong HP, Tropé CG, Staff AC, Risberg B, Davidson B. Nucleoside transporters are widely expressed in ovarian carcinoma effusions. Cancer Chemother Pharmacol. 2012;69:467–75.PubMedCrossRefPubMedCentralGoogle Scholar
  355. 355.
    Vaksman O, Davidson B, Tropé C, Reich R. Calreticulin expression is reduced in high-grade ovarian serous carcinoma effusions compared with primary tumors and solid metastases. Hum Pathol. 2013;44:2677–83.PubMedCrossRefPubMedCentralGoogle Scholar
  356. 356.
    Hetland TE, Nymoen DA, Emilsen E, Kærn J, Tropé CG, Flørenes VA, Davidson B. MGST1 expression in serous ovarian carcinoma differs at various anatomic sites, but is unrelated to chemoresistance or survival. Gynecol Oncol. 2012;126:460–5.PubMedCrossRefPubMedCentralGoogle Scholar
  357. 357.
    Hetland TE, Holth A, Kærn J, Flørenes VA, Tropé CG, Davidson B. HMGA2 protein expression in ovarian serous carcinoma effusions, primary tumors, and solid metastases. Virchows Arch. 2012;460:505–13.PubMedCrossRefPubMedCentralGoogle Scholar
  358. 358.
    Davidson B, Holth A, Hellesylt E, Hadar R, Katz B, Tropé CG, Reich R. HUR mRNA expression in ovarian high-grade serous carcinoma effusions is associated with poor survival. Hum Pathol. 2016;48:95–101.PubMedCrossRefPubMedCentralGoogle Scholar
  359. 359.
    Horwitz V, Davidson B, Stern D, Tropé CG, Tavor Re'em T, Reich R. Ezrin is associated with disease progression in ovarian carcinoma. PLoS One. 2016;11:e0162502.PubMedPubMedCentralCrossRefGoogle Scholar
  360. 360.
    Ioakim-Liossi A, Gagos S, Athanassiades P, Athanassiadou P, Gogas J, Davaris P, Markopoulos C. Changes of chromosomes 1, 3, 6, and 11 in metastatic effusions arising from breast and ovarian cancer. Cancer Genet Cytogenet. 1999;110:34–40.PubMedPubMedCentralCrossRefGoogle Scholar
  361. 361.
    Chang HW, Ali SZ, Cho SK, Kurman RJ, Shih IM. Detection of allelic imbalance in ascitic supernatant by digital single nucleotide polymorphism analysis. Clin Cancer Res. 2002;8:2580–5.PubMedPubMedCentralGoogle Scholar
  362. 362.
    Lounis H, Mes-Masson AM, Dion F, Bradley WE, Seymour RJ, Provencher D, Tonin PN. Mapping of chromosome 3p deletions in human epithelial ovarian tumors. Oncogene. 1998;17:2359–65.PubMedCrossRefPubMedCentralGoogle Scholar
  363. 363.
    Nagel H, Schulten HJ, Gunawan B, Brinck U, Füzesi L. The potential value of comparative genomic hybridization analysis in effusion-and fine needle aspiration cytology. Mod Pathol. 2002;15:818–25.PubMedCrossRefPubMedCentralGoogle Scholar
  364. 364.
    Brenne K, Nymoen DA, Reich R, Davidson B. PRAME (preferentially expressed antigen of melanoma) is a novel marker for differentiating serous carcinoma from malignant mesothelioma. Am J Clin Pathol. 2012;137:240–7.PubMedCrossRefPubMedCentralGoogle Scholar
  365. 365.
    Brusegard K, Stavnes HT, Nymoen DA, Flatmark K, Trope CG, Davidson B. Rab25 is overexpressed in Müllerian serous carcinoma compared to malignant mesothelioma. Virchows Arch. 2012;460:193–202.PubMedCrossRefPubMedCentralGoogle Scholar
  366. 366.
    Davidson B, Stavnes HT, Hellesylt E, Hager T, Zeppa P, Pinamonti M, Wohlschlaeger J. MMP-7 is a highly specific negative marker for benign and malignant mesothelial cells in serous effusions. Hum Pathol. 2016;47:104–8.PubMedPubMedCentralCrossRefGoogle Scholar
  367. 367.
    Yuan Y, Dong HP, Nymoen DA, Nesland JM, Wu C, Davidson B. PINCH-2 expression in cancers involving the serosal cavities using quantitative PCR. Cytopathology. 2011;22:22–9.PubMedPubMedCentralCrossRefGoogle Scholar
  368. 368.
    Yuan Y, Nymoen DA, Tuft Stavnes H, Rossnes AK, Bjørang O, Wu C, Nesland JM, Davidson B. Tenascin-X is a novel diagnostic marker of malignant mesothelioma. Am J Surg Pathol. 2009;33:1673–82.PubMedPubMedCentralCrossRefGoogle Scholar
  369. 369.
    Davidson B, Stavnes HT, Holth A, Chen X, Yang Y, Shih IM, Wang TL. Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from breast carcinoma in effusions. J Cell Mol Med. 2011;15:535–44.PubMedPubMedCentralCrossRefGoogle Scholar
  370. 370.
    Bock AJ, Nymoen DA, Brenne K, Kærn J, Davidson B. SCARA3 mRNA is overexpressed in ovarian carcinoma compared with breast carcinoma effusions. Hum Pathol. 2012;43:669–74.PubMedPubMedCentralCrossRefGoogle Scholar
  371. 371.
    Tuft Stavnes H, Nymoen DA, Hetland Falkenthal TE, Kærn J, Tropé CG, Davidson B. APOA1 mRNA expression in ovarian serous carcinoma effusions is a marker of longer survival. Am J Clin Pathol. 2014;142:51–7.PubMedCrossRefPubMedCentralGoogle Scholar
  372. 372.
    Stavnes HT, Holth A, Don T, Kærn J, Vaksman O, Reich R, Trope' CG, Davidson B. HOXB8 expression in ovarian serous carcinoma effusions is associated with shorter survival. Gynecol Oncol. 2013;129:358–63.PubMedCrossRefPubMedCentralGoogle Scholar
  373. 373.
    Stavnes HT, Nymoen DA, Langerød A, Holth A, Børresen Dale AL, Davidson B. AZGP1 and SPDEF mRNA expression differentiates breast carcinoma from ovarian serous carcinoma. Virchows Arch. 2013;462:163–73.PubMedPubMedCentralCrossRefGoogle Scholar
  374. 374.
    Schaner ME, Davidson B, Skrede M, Reich R, Flørenes VA, Risberg B, Berner A, Goldberg I, Givant-Horwitz V, Tropé CG, Kristensen GB, Nesland JM, Børresen-Dale AL. Variation in gene expression patterns in effusions and primary tumors from serous ovarian cancer patients. Mol Cancer. 2005;4:26.PubMedPubMedCentralCrossRefGoogle Scholar
  375. 375.
    Vaksman O, Stavnes HT, Kærn J, Trope CG, Davidson B, Reich R. miRNA profiling along tumor progression in ovarian carcinoma. J Cell Mol Med. 2011;15:1593–602.PubMedPubMedCentralCrossRefGoogle Scholar
  376. 376.
    Vaksman O, Hetland TE, Tropé CG, Reich R, Davidson B. Argonaute, Dicer, and Drosha are up-regulated along tumor progression in serous ovarian carcinoma. Hum Pathol. 2012;43:2062–9.PubMedCrossRefPubMedCentralGoogle Scholar
  377. 377.
    Nymoen DA, Slipicevic A, Holth A, Emilsen E, Hetland Falkenthal TE, Tropé CG, Reich R, Flørenes VA, Davidson B. MiR-29a is a candidate biomarker of better survival in metastatic high-grade serous carcinoma. Hum Pathol. 2016;54:74–81.PubMedCrossRefPubMedCentralGoogle Scholar
  378. 378.
    Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.PubMedCrossRefPubMedCentralGoogle Scholar
  379. 379.
    Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531–48.PubMedCrossRefPubMedCentralGoogle Scholar
  380. 380.
    Moore C, Kosgodage U, Lange S, Inal JM. The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy. Int J Cancer. 2017;141:428–36.PubMedCrossRefPubMedCentralGoogle Scholar
  381. 381.
    Vaksman O, Tropé C, Davidson B, Reich R. Exosome-derived miRNAs and ovarian carcinoma progression. Carcinogenesis. 2014;35:2113–20.PubMedCrossRefPubMedCentralGoogle Scholar
  382. 382.
    Cappellesso R, Tinazzi A, Giurici T, Simonato F, Guzzardo V, Ventura L, Crescenzi M, Chiarelli S, Fassina A. Programmed cell death 4 and microRNA 21 inverse expression is maintained in cells and exosomes from ovarian serous carcinoma effusions. Cancer Cytopathol. 2014;122:685–93.PubMedCrossRefPubMedCentralGoogle Scholar
  383. 383.
    Broner EC, Tropé CG, Reich R, Davidson B. TSAP6 is a novel candidate marker of poor survival in metastatic high-grade serous carcinoma. Hum Pathol. 2017;60:180–7.PubMedCrossRefPubMedCentralGoogle Scholar
  384. 384.
    Gillet JP, Wang J, Calcagno AM, Green LJ, Varma S, Bunkholt Elstrand M, Trope CG, Ambudkar SV, Davidson B, Gottesman MM. Clinical relevance of multidrug resistance gene expression in ovarian serous carcinoma effusions. Mol Pharm. 2011;8:2080–8.PubMedPubMedCentralCrossRefGoogle Scholar
  385. 385.
    Nymoen DA, Holth A, Hetland Falkenthal TE, Tropé CG, Davidson B. CIAPIN1 and ABCA13 are markers of poor survival in metastatic ovarian serous carcinoma. Mol Cancer. 2015;14:44.PubMedPubMedCentralCrossRefGoogle Scholar
  386. 386.
    Gortzak-Uzan L, Ignatchenko A, Evangelou AI, Agochiya M, Brown KA, St Onge P, Kireeva I, Schmitt-Ulms G, Brown TJ, Murphy J, Rosen B, Shaw P, Jurisica I, Kislinger T. A proteome resource of ovarian cancer ascites: integrated proteomic and bioinformatic analyses to identify putative biomarkers. J Proteome Res. 2008;7:339–51.PubMedCrossRefPubMedCentralGoogle Scholar
  387. 387.
    Gunawardana CG, Memari N, Diamandis EP. Identifying novel autoantibody signatures in ovarian cancer using high-density protein microarrays. Clin Biochem. 2009;42:426–9.PubMedCrossRefPubMedCentralGoogle Scholar
  388. 388.
    Puiffe ML, Le Page C, Filali-Mouhim A, Zietarska M, Ouellet V, Tonin PN, Chevrette M, Provencher DM, Mes-Masson AM. Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia. 2007;9:820–9.PubMedPubMedCentralCrossRefGoogle Scholar
  389. 389.
    Jinawath N, Vasoontara C, Jinawath A, Fang X, Zhao K, Yap KL, Guo T, Lee CS, Wang W, Balgley BM, Davidson B, Wang TL, Shih IM. Oncoproteomic analysis reveals co-upregulation of RELA and STAT5 in carboplatin resistant ovarian carcinoma. PLoS One. 2010;5:e11198.PubMedPubMedCentralCrossRefGoogle Scholar
  390. 390.
    Saini U, Naidu S, Elnaggar AC, Bid HK, Wallbillich JJ, Bixel K, Bolyard C, Suarez AA, Kaur B, Kuppusamy P, Hays J, Goodfellow PJ, Cohn DE, Selvendiran K. Elevated STAT3 expression in ovarian cancer ascites promotes invasion and metastasis: a potential therapeutic target. Oncogene. 2017;36:168–81.PubMedCrossRefPubMedCentralGoogle Scholar
  391. 391.
    Vettukattil R, Hetland TE, Flørenes VA, Kærn J, Davidson B, Bathen TF. Proton magnetic resonance metabolomic characterization of ovarian serous carcinoma effusions: chemotherapy-related effects and comparison with malignant mesothelioma and breast carcinoma. Hum Pathol. 2013;44:1859–66.PubMedCrossRefPubMedCentralGoogle Scholar
  392. 392.
    Zennaro L, Vanzani P, Nicolè L, Cappellesso R, Fassina A. Metabonomics by proton nuclear magnetic resonance in human pleural effusions: a route to discriminate between benign and malignant pleural effusions and to target small molecules as potential cancer biomarkers. Cancer. 2017;125:341–8.Google Scholar
  393. 393.
    Liu JF, Palakurthi S, Zeng Q, Zhou S, Ivanova E, Huang W, Zervantonakis IK, Selfors LM, Shen Y, Pritchard CC, Zheng M, Adleff V, Papp E, Piao H, Novak M, Fotheringham S, Wulf GM, English J, Kirschmeier PT, Velculescu VE, Paweletz C, Mills GB, Livingston DM, Brugge JS, Matulonis UA, Drapkin R. Establishment of patient-derived tumor xenograft models of epithelial ovarian cancer for preclinical evaluation of novel therapeutics. Clin Cancer Res. 2017;23:1263–73.PubMedCrossRefPubMedCentralGoogle Scholar
  394. 394.
    Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, Nones K, Cowin P, Alsop K, Bailey PJ, Kassahn KS, Newell F, Quinn MC, Kazakoff S, Quek K, Wilhelm-Benartzi C, Curry E, Leong HS, Australian Ovarian Cancer Study Group, Hamilton A, Mileshkin L, Au-Yeung G, Kennedy C, Hung J, Chiew YE, Harnett P, Friedlander M, Quinn M, Pyman J, Cordner S, O’Brien P, Leditschke J, Young G, Strachan K, Waring P, Azar W, Mitchell C, Traficante N, Hendley J, Thorne H, Shackleton M, Miller DK, Arnau GM, Tothill RW, Holloway TP, Semple T, Harliwong I, Nourse C, Nourbakhsh E, Manning S, Idrisoglu S, Bruxner TJ, Christ AN, Poudel B, Holmes O, Anderson M, Leonard C, Lonie A, Hall N, Wood S, Taylor DF, Xu Q, Fink JL, Waddell N, Drapkin R, Stronach E, Gabra H, Brown R, Jewell A, Nagaraj SH, Markham E, Wilson PJ, Ellul J, McNally O, Doyle MA, Vedururu R, Stewart C, Lengyel E, Pearson JV, Waddell N, deFazio A, Grimmond SM, Bowtell DD. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489–94.PubMedCrossRefPubMedCentralGoogle Scholar
  395. 395.
    Shah RH, Scott SN, Brannon AR, Levine DA, Lin O, Berger MF. Comprehensive mutation profiling by next-generation sequencing of effusion fluids from patients with high-grade serous ovarian carcinoma. Cancer Cytopathol. 2015;123:289–97.PubMedPubMedCentralCrossRefGoogle Scholar
  396. 396.
    Penner-Goeke S, Lichtensztejn Z, Neufeld M, Ali JL, Altman AD, Nachtigal MW, McManus KJ. The temporal dynamics of chromosome instability in ovarian cancer cell lines and primary patient samples. PLoS Genet. 2017;13:e1006707.PubMedPubMedCentralCrossRefGoogle Scholar
  397. 397.
    Lund RJ, Huhtinen K, Salmi J, Rantala J, Nguyen EV, Moulder R, Goodlett DR, Lahesmaa R, Carpén O. DNA methylation and transcriptome changes associated with Cisplatin resistance in ovarian cancer. Sci Rep. 2017;7:1469.PubMedPubMedCentralCrossRefGoogle Scholar
  398. 398.
    Castellarin M, Milne K, Zeng T, Tse K, Mayo M, Zhao Y, Webb JR, Watson PH, Nelson BH, Holt RA. Clonal evolution of high-grade serous ovarian carcinoma from primary to recurrent disease. J Pathol. 2013;229:515–24.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
  2. 2.Faculty of MedicineInstitute of Clinical Medicine, University of OsloOsloNorway

Personalised recommendations