Traits: Structuring Species Information for Discoverability, Navigation and Identification

  • Thomas Vattakaven
  • Prabhakar Rajagopal
  • Balasubramanian Dhandapani
  • Pierre Grard
  • Thomas Le Bourgeois
Part of the Multimedia Systems and Applications book series (MMSA)


Conventionally, species traits concepts have been conceived from an ecological perspective after grouping them as functional traits, response traits or effect traits: attributes of individual organisms that express phenotypes in response to the environment and its effects on the organism. From an informatics perspective, traits may be conceived to encompass a broader vocabulary that can capture any species attribute including, but not limited to those concerning its morphology, taxonomy, functional role, habitat, ecological interactions, trophic strategies, genetics, evolution, conservation status, anthropological uses, ecosystem services etc. The evolution of such a vocabulary and its standardisation across disciplines and taxa is a challenge, but one that needs imminent attention as the field develops. Furthermore, traits can have values that vary within and across individuals and species. The ability to associate traits with levels of a taxonomic hierarchy, aggregate species traits from individual records, flexibility to attribute categorical text, numeric, temporal and spatial values; associate them with ontologies; and conform to standards, can evolve traits as a flexible framework to structure descriptive, numeric and tabular data on species. Such a framework for structuring descriptive species data will, allow better discoverability and navigation of the information and has potential for developing further applications such as polyclave identification keys and analytical aids for big data. The open source Biodiversity Informatics Platform that powers three international initiatives across Asia and Africa has been evolving as an effective platform to aggregate and build open access databases for varied biodiversity data types. It has ability to handle varied data types such as descriptive data, occurrences, maps and documents. The platform has recently added a traits infrastructure that is participatory and can aggregate traits from curated databases as well as by crowdsourcing from observation and collection data. It is flexible in building vocabularies to structure descriptive species information and media, evolving into a framework which allows flexible yet efficient navigation of species information in an information system. Here, we discuss this model, its application within the applied initiatives, its potential use in classifying multimedia data for species characterization in a complex context and in facilitating trait analysis. We also cover potential applications of the trait framework for developing into a comprehensive and effective infrastructure for aggregating and structuring species information.


  1. 1.
    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Zheng, X. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. Retrieved from
  2. 2.
    Akella, L., Norton, C. N., & Miller, H. (2012). NetiNeti: discovery of scientific names from text using machine learning methods. BMC Bioinformatics, 13(1), 211. CrossRefGoogle Scholar
  3. 3.
    Aldershoff, F., Salden, A. H., Iacob, S. M., & Kempen, M. (2003). Supervised multimedia categorization. In M. M. Yeung, R. W. Lienhart, & C.-S. Li (Eds.) (p. 100).
  4. 4.
    Alpaydin, E. (2010). Introduction to machine learning. MIT Press.Google Scholar
  5. 5.
    Arnold, S. J. (1983). Morphology, Performance and Fitness. American Zoologist, 23(2), 347–361. CrossRefGoogle Scholar
  6. 6.
    Asner, G. P., Martin, R. E., Knapp, D. E., Tupayachi, R., Anderson, C. B., Sinca, F., Llactayo, W. (2017). Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science, 355(6323). Retrieved from CrossRefGoogle Scholar
  7. 7.
    Baker, K. S., & Millerand, F. (2010). Infrastructuring ecology: challenges in achieving data sharing Karen S. Baker and Florence Millerand. In Collaboration in the new life sciences / edited by John N. Parker, Niki Vermeulen and Bart Penders. Farnham, Surrey, England: Ashgate.Google Scholar
  8. 8.
    Barry, J. (2016). Identifying biodiversity using citizen science and computer vision: Introducing Visipedia. TDWG 2016 ANNUAL CONFERENCE. Retrieved from
  9. 9.
    Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Retrieved from
  10. 10.
    Bonnet, P., Joly, A., Goëau, H., Champ, J., Vignau, C., Molino, J.-F., Boujemaa, N. (2016). Plant identification: man vs. machine. Multimedia Tools and Applications, 75(3), 1647–1665. CrossRefGoogle Scholar
  11. 11.
    Borst, W. N. (1997, September 5). Construction of Engineering Ontologies for Knowledge Sharing and Reuse. Centre for Telematics and Information Technology University of Twente University of Twente. Retrieved from
  12. 12.
    Buttigieg, P., Morrison, N., Smith, B., Mungall, C. J., & Lewis, S. E. (2013). The environment ontology: contextualising biological and biomedical entities. Journal of Biomedical Semantics, 4(1), 43. CrossRefGoogle Scholar
  13. 13.
    Cernansky, R. (2017). Biodiversity moves beyond counting species. Nature, 546(7656), 22–24. CrossRefGoogle Scholar
  14. 14.
    Cui, H. (2008). Converting Taxonomic Descriptions to New Digital Formats. Biodiversity Informatics, 5(0).
  15. 15.
    Cui, H. (2010a). Competency evaluation of plant character ontologies against domain literature. Journal of the American Society for Information Science and Technology, 61(6), n/a-n/a.
  16. 16.
    Cui, H. (2010b). Semantic annotation of morphological descriptions: an overall strategy. BMC Bioinformatics, 11, 278. CrossRefGoogle Scholar
  17. 17.
    Diederich, J., Fortuner, R., & Milton, J. (1999). Computer-assisted data extraction from the taxonomical literature. Retrieved November 27, 2017, from
  18. 18.
    Doan, A., Madhavan, J., Domingos, P., & Halevy, A. (2004). Ontology Matching: A Machine Learning Approach. In Handbook on Ontologies (pp. 385–403). Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
  19. 19.
    Edwards, M., & Morse, D. R. (1995). The potential for computer-aided identification in biodiversity research. Trends in Ecology & Evolution, 10(4), 153–158. CrossRefGoogle Scholar
  20. 20.
    Estrada, A., Morales-Castilla, I., Caplat, P., & Early, R. (2016). Usefulness of Species Traits in Predicting Range Shifts. Trends in Ecology & Evolution, 31(3), 190–203. CrossRefGoogle Scholar
  21. 21.
    Geijzendorffer, I. R., Regan, E. C., Pereira, H. M., Brotons, L., Brummitt, N., Gavish, Y., Walters, M. (2016). Bridging the gap between biodiversity data and policy reporting needs: An Essential Biodiversity Variables perspective. Journal of Applied Ecology, 53(5), 1341–1350. CrossRefGoogle Scholar
  22. 22.
    Guralnick, R. (2017). Traits as Essential Biodiversity Variables. Proceedings of TDWG, 1, e20295. CrossRefGoogle Scholar
  23. 23.
    Grard, P., Bonnet, P., Prosperi, M.-J., Le Bourgeois, T., Edelin, C., Theveny, F., & Alain, C. (2009). A graphical tool for computer-assisted plant identification. In Proceedings of TDWG 2009 Annual Conference. Montpellier, France. Retrieved from
  24. 24.
    Hébert, M.-P., Beisner, B. E., & Maranger, R. (2017). Linking zooplankton communities to ecosystem functioning: toward an effect-trait framework. Journal of Plankton Research, 39(1), 3–12. CrossRefGoogle Scholar
  25. 25.
    Hillebrand, H., & Matthiessen, B. (2009). Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters, 12(12), 1405–1419. CrossRefGoogle Scholar
  26. 26.
    Hoehndorf, R., Alshahrani, M., Gkoutos, G. V., Gosline, G., Groom, Q., Hamann, T., Weiland, C. (2016). The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants. Journal of Biomedical Semantics, 7(1), 65.
  27. 27.
    Hughes, L. M., Bao, J., Hu, Z.-L., Honavar, V., & Reecy, J. M. (2008). Animal trait ontology: The importance and usefulness of a unified trait vocabulary for animal species. Journal of Animal Science, 86(6), 1485–91. CrossRefGoogle Scholar
  28. 28.
    Jaiswal, P., Ware, D., Ni, J., Chang, K., Zhao, W., Schmidt, S., McCouch, S. (2002). Gramene: Development and Integration of Trait and Gene Ontologies for Rice. Comparative and Functional Genomics, 3(2), 132–136. CrossRefGoogle Scholar
  29. 29.
    Joly, A., Bonnet, P., Goëau, H., Barbe, J., Selmi, S., Champ, J., Barthélémy, D. (2016). A look inside the Pl@ntNet experience. Multimedia Systems, 22(6), 751–766. CrossRefGoogle Scholar
  30. 30.
    Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O’Dell, J., Orme, C. D. L., Purvis, A. (2009). PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90(9), 2648–2648. CrossRefGoogle Scholar
  31. 31.
    Kattge, J., Daz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Wirth, C. (2011). TRY - a global database of plant traits. Global Change Biology, 17(9), 2905–2935.
  32. 32.
    Khan, S., & Safyan, M. (2014). Semantic matching in hierarchical ontologies. Journal of King Saud University - Computer and Information Sciences, 26(3), 247–257. CrossRefGoogle Scholar
  33. 33.
    Le Bourgeois, T., E. Jeuffrault, P. Grard and A. Carrara (2004). A new process to identify the weeds of La Réunion Island: the AdvenRun system. 14th Australian Weeds Conference, Charles Sturt University, Wagga Wagga, Australia, Weed Society of New South Wales.Google Scholar
  34. 34.
    Le Bourgeois, T., P. Bonnet, M. Couteau, P. Grard, C. Edelin, J. Prosperi and F. theveny (2008). IDAO Identification assisted by computer. IUCN World Conservation Congress. Workshop : Safegarding biodiversity and livelyhood from biological invasion: goal sharing of experience and information as a key step to effective management at local level. Barcelona, Spain.Google Scholar
  35. 35.
    Le Bourgeois, T., P. Grard, A. P. Andrianaivo, A. Gaungoo, Y. Ibrahim, J. A. Randriamampianina, D. Balasubramanian, P. Marnotte, B. Ramesh, V. Andrianavalona, F. Hadji, Y. Karthik, M. Ramamonjihasina, K. Sathish and A. Seechurn (2015). WIKWIO - Weed Identification and Knowledge in the Western Indian Ocean - Web 2.0 participatory portal., European Union programme ACP S&T II, Cirad, IFP, MCIA/MSIRI, FOFIFA, CNDRS eds.
  36. 36.
    Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Wardle, D. A. (2001). Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science, 294(5543). Retrieved from CrossRefGoogle Scholar
  37. 37.
    Mabee, P., Ashburner, M., Cronk, Q., Gkoutos, G., Haendel, M., Segerdell, E., Westerfield, M. (2007). Phenotype ontologies: the bridge between genomics and evolution. Trends in Ecology & Evolution, 22(7), 345–350. CrossRefGoogle Scholar
  38. 38.
    Mata-Montero, E., & Carranza-Rojas, J. (2016). Automated Plant Species Identification: Challenges and Opportunities (pp. 26–36). Springer, Cham. CrossRefGoogle Scholar
  39. 39.
    Martellos, S., & Nimis, P. L. (n.d.). KeyToNature: Teaching and Learning Biodiversity: Dryades, the Italian Experience.Google Scholar
  40. 40.
    McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21(4), 178–185. CrossRefGoogle Scholar
  41. 41.
    Mungall, C. J., Torniai, C., Gkoutos, G. V, Lewis, S. E., & Haendel, M. A. (2012). Uberon, an integrative multi-species anatomy ontology. Genome Biology, 13(1), R5. CrossRefGoogle Scholar
  42. 42.
    Nock, C. A., Vogt, R. J., Beisner, B. E., Nock, C. A., Vogt, R. J., & Beisner, B. E. (2016). Functional Traits. In eLS (pp. 1–8). Chichester, UK: John Wiley & Sons, Ltd.
  43. 43.
    Ong, E., Xiang, Z., Zhao, B., Liu, Y., Lin, Y., Zheng, J., He, Y. (2017). Ontobee: A linked ontology data server to support ontology term dereferencing, linkage, query and integration. Nucleic Acids Research, 45(D1), D347–D352. CrossRefGoogle Scholar
  44. 44.
    Page, R. (2016). Towards a biodiversity knowledge graph. Research Ideas and Outcomes, 2, e8767.
  45. 45.
    Park, C. A., Bello, S. M., Smith, C. L., Hu, Z.-L., Munzenmaier, D. H., Nigam, R., Reecy, J. M. (2013). The Vertebrate Trait Ontology: a controlled vocabulary for the annotation of trait data across species. Journal of Biomedical Semantics, 4(1), 13. CrossRefGoogle Scholar
  46. 46.
    Parr, C. S., Schulz, K. S., Hammock, J., Wilson, N., Leary, P., Rice, J., & Corrigan, R. J. (2016). TraitBank: Practical semantics for organism attribute data. Semantic Web, 7(6), 577–588. CrossRefGoogle Scholar
  47. 47.
    Silvertown, J., Harvey, M., Greenwood, R., Dodd, M., Rosewell, J., Rebelo, T., McConway, K. (2015). Crowdsourcing the identification of organisms: A case-study of iSpot. ZooKeys, 480, 125–146. CrossRefGoogle Scholar
  48. 48.
    Statzner, B., Hildrew, A. G., & Resh, V. H. (2001). Species traits and environmental constraints: Entomological research and the history of ecological theory. Annual Review of Entomology, 46(1), 291–316. CrossRefGoogle Scholar
  49. 49.
    Thessen, A. E., Cui, H., & Mozzherin, D. (2012). Applications of natural language processing in biodiversity science. Advances in Bioinformatics, 2012, 391574.
  50. 50.
    Tilman, D., & Downing, J. A. (1994). Biodiversity and stability in grasslands. Nature, 367(6461), 363–365. CrossRefGoogle Scholar
  51. 51.
    Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. (1997). The Influence of Functional Diversity and Composition on Ecosystem Processes. Science, 277(5330). Retrieved from CrossRefGoogle Scholar
  52. 52.
    Vattakaven, T., George, R., Balasubramanian, D., Réjou-Méchain, M., Muthusankar, G., Ramesh, B., & Prabhakar, R. (2016). India Biodiversity Portal: An integrated, interactive and participatory biodiversity informatics platform. Biodiversity Data Journal, 4, e10279. CrossRefGoogle Scholar
  53. 53.
    Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882–892. CrossRefGoogle Scholar
  54. 54.
    Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J., & Kattge, J. (2014). The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences of the United States of America, 111(38), 13690–6. CrossRefGoogle Scholar
  55. 55.
    Witten, I. H. (Ian H., Frank, E., & Hall, M. A. (Mark A. (2011). Data mining : practical machine learning tools and techniques. Morgan Kaufmann. Retrieved from CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Vattakaven
    • 1
  • Prabhakar Rajagopal
    • 1
  • Balasubramanian Dhandapani
    • 2
  • Pierre Grard
    • 3
  • Thomas Le Bourgeois
    • 4
  1. 1.Strand Life SciencesBangaloreIndia
  2. 2.French Institute of Pondicherry, UMIFRE 21 CNRS-MAEEPondicherryIndia
  3. 3.CIRADNairobiKenya
  4. 4.CIRAD, UMR AMAPMontpellierFrance

Personalised recommendations