Memristor Cellular Automata and Memristor Discrete-Time Cellular Neural Networks

  • Makoto Itoh
  • Leon ChuaEmail author


In this paper, we design a cellular automaton and a discrete-time cellular neural network (DTCNN) using nonlinear passive memristors. They can perform a number of applications, such as logical operations, image processing operations, complex behaviors, higher brain functions, etc. By modifying the characteristics of nonlinear memristors, the memristor DTCNN can perform almost all functions of memristor cellular automaton. Furthermore, it can perform more than one function at the same time, that is, it allows multitasking.



This work is supported in part by ONR grants No. N00014-07-1-0350 and N00014-09-1-0411.


  1. 1.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory CT–18(5), 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chua, L.O.: CNN: A Paradigm for Complexity. World Scientific, Singapore (1998)CrossRefGoogle Scholar
  4. 4.
    Chua, L.O., Roska, T.: Cellular Neural Networks and Visual Computing. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  5. 5.
    Chua, L.O.: A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, vol. I, II. World Scientific, Singapore (2006)CrossRefGoogle Scholar
  6. 6.
    Gardner, M.: Mathematical games: the fantastic combinations of John Conway’s new solitaire game “Life”. Sci. Am. 223, 120–123 (1970)CrossRefGoogle Scholar
  7. 7.
    Itoh, M., Chua, L.O.: Designing CNN genes. Int. J. Bifurcat. Chaos 13(10), 2739–2824 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Itoh, M., Chua, L.O.: Advanced image processing cellular neural networks. Int. J. Bifurcat. Chaos 17(4), 1109–1150 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurcat. Chaos 18(11), 3183–3206 (2008a)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Itoh, M., Chua, L.O.: Imitation of visual illusions via OpenCV and CNN. Int. J. Bifurcat. Chaos 18(12), 3551–3609 (2008b)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Itoh, M., Chua, L.O.: Difference equations for cellular automata. Int. J. Bifurcat. Chaos 19(3), 805–830 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Johnson, R.C.: Will memristors prove irresistible? EE Times issue 1538, August 18, 30–34 (2008)Google Scholar
  13. 13.
    Peitgen, H.O., Jurgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science. Springer, New York (1992)CrossRefGoogle Scholar
  14. 14.
    Snider, G.S.: Self-organized computation with unreliable, memrisitive nanodevices. Nanoechnology 18(36), 365202 (2007)CrossRefGoogle Scholar
  15. 15.
    Strukov, D.B., Snider, G.S., Stewart, G.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  16. 16.
    Tour, J.M., He, T.: The fourth element. Nature 453, 42–43 (2008)CrossRefGoogle Scholar
  17. 17.
    Wolfram, S.: Universality and complexity in cellular automata. Phys. D 10, 1–35 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.FukuokaJapan
  2. 2.Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations