Advertisement

Memristor Emulators

  • Dalibor BiolekEmail author
Chapter

Abstract

There are three possible stages of exploring the memristor as the fourth fundamental circuit element via its model: (1) Generation of the model, (2) Simulation of the element behavior with the aid of the model, and (3) Hardware emulation of the memristor. This chapter deals with the third stage, describing circuit ideas of memristor emulators for practical laboratory experiments.

Notes

Acknowledgements

The research was supported by the Project of Specific research, K217 UD Brno, Czech Republic.

References

  1. 1.
    Sodhi, A., Gandhi, G.: Circuit mimicking TiO2 memristor: a plug and play kit to understand the fourth passive element. Int J Bifurcation Chaos 20(8), 2537–2545 (2010)CrossRefGoogle Scholar
  2. 2.
    Valsa, J., Biolek, D., Biolek, Z.: An analogue model of the memristor. Int. J. Numer. Modell. Electron. Netw. Devices Fields 24(4), 400–408 (2011)CrossRefGoogle Scholar
  3. 3.
    Wang, X.Y., et al.: Implementation of an analogue model of a memristor based on a light-dependent resistor. Chin. Phys. B. 21(10):108501-1-8 (2012)CrossRefGoogle Scholar
  4. 4.
    Wang, X.Y., et al.: Design of a memcapacitor emulator based on a memristor. Phys. Lett. A 376, 394–399 (2012)CrossRefGoogle Scholar
  5. 5.
    Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurcat. Chaos 20(5), 1335–1350 (2010)CrossRefGoogle Scholar
  6. 6.
    Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. arXiv:0905.2935 (2009)
  7. 7.
    Biolek, D.: Analog building blocks for emulating memristors, memcapacitors, and meminductors. In: Invited Lecture at 7th International Conference on Electrical and Electronics Engineering (ELECO 2011), Bursa, Turkey, 2012 (2011)Google Scholar
  8. 8.
    Biolek, D.: Modeling, simulation and analog emulation of memristors and higher-order elements. In: Invited Lecture at the 3rd Memristor and Memristive Symposium, Turin, Italy (2012)Google Scholar
  9. 9.
    Pershin, Y.V., Di Ventra, M.: Emulation of floating memcapacitors and meminductors using current conveyors. Electron. Lett. 47(4), 243–244 (2011)CrossRefGoogle Scholar
  10. 10.
    Biolek, D., et al.: Mutators for transforming nonlinear resistor into memristor. In: 20th European Conference on Circuit Theory and Design (ECCTD), pp. 488–491. Linkoping, Sweden (2011)Google Scholar
  11. 11.
    Biolkova, V., Biolek, D., Kolka, Z.: Unified approach to synthesis of mutators employing operational transimpedance amplifiers for memristor emulation. In: Proceedings of the 11th International Conference on Instrumentation, Measurement, Circuits and Systems (IMCAS‘12), pp. 110–115. Rovaniemi, Finland (2012)Google Scholar
  12. 12.
    Kim, H., et al.: Memristor emulator for memristor circuit applications. IEEE Trans. Circ. Syst. Regul. Pap. 59(10), 2422–2431 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kolka, Z., Biolek, D., Biolkova, V.: Hybrid modeling and emulation of mem-systems. Int. J. Numer. Modell. Electron. Netw. Devices Fields 25(3), 216–225 (2012)CrossRefGoogle Scholar
  14. 14.
    Biolek, D., Biolkova, V., Kolka, Z.: Low-voltage-low-power current conveyor for battery supplied memristor emulator. In: Proceedings of 5th International Conference on Circuits, Systems and Signals (CSS‘11), pp. 171–175. Corfu, Greece (2011)Google Scholar
  15. 15.
    Mutlu, R., Karakulak, E.: Emulator circuit of TiO2 memristor with linear dopant drift made using analog multiplier. In: Proceedings of 2010 National Conference on Electrical, Electronics and Computer Engineering (ELECO 2010), pp. 380–384. Bursa, Turkey (2010)Google Scholar
  16. 16.
    Wang, C., Xia, H., Zhou, L.: Implementation of a new memristor-based multiscroll hyperchaotic system. Pramana—J. Phys. 88:1–7 (2017)Google Scholar
  17. 17.
    Wang, C., Liu, X., Xia, H.: Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N+1-scroll chaotic attractors system. Chaos 27:033114-1-12 (2017)CrossRefGoogle Scholar
  18. 18.
    Wei, L., Fa-Qiang, W., Xi-Kui, M.: Exponential flux-controlled memristor model and its floating emulator. Chin. Phys. B 24:118401-1-7 (2015)Google Scholar
  19. 19.
    Yener, S.C., Kuntman, H.H.: Fully CMOS memristor based chaotic circuit. Radioengineering 23, 1140–1149 (2014)Google Scholar
  20. 20.
    Babacan, Y., Kacar, F.: Memristor emulator with spike-timing-dependent-plasticity. Int. J. Electron. Commun. (AEÜ) 73, 16–22 (2017)CrossRefGoogle Scholar
  21. 21.
    Biolek, D., Biolkova, V., Kolka, Z., Biolek, Z.: Passive fully floating emulator of memristive device for laboratory experiments. In: Proceedings of the 6th International Conference on Circuit System Control Signals (CSCS 2015), pp. 112–116. Tenerife, Spain (2015)Google Scholar
  22. 22.
    Zuin, S., et al.: Experience on material implication computing with an electromechanical memristor emulator. In: Proceedings of 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. Athens, Greece (2016)Google Scholar
  23. 23.
    Hua-Gan, W., Bo-Cheng, B., Mo, C.: Threshold flux-controlled memristor model and its equivalent circuit implementation. Chin. Phys. B 23:118401-1-6 (2014)Google Scholar
  24. 24.
    Asapu, S., Pershin, Y.V.: Electromechanical emulator of memristive systems and devices. IEEE Trans. Electron. Devices 62, 3678–3684 (2015)CrossRefGoogle Scholar
  25. 25.
    Bao, B., et al.: A simple third-order memristive band pass filter chaotic circuit. IEEE Trans Circ Syst II 2016(PP):1 (2016)Google Scholar
  26. 26.
    Alharbi, A.G., et al.: A new simple emulator circuit for current controlled memristor. In: Proceedings of the 2015 International Conference on Electronics, Circuits, and Systems (ICECS2015), pp. 288–291. Cairo, Egypt (2015)Google Scholar
  27. 27.
    Alharbi, A.G., Fouda, M.E., Chowdhury, M.H.: A novel memristor emulator based only on an exponential amplifier and CCII+. In: Proceedings of 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 376–379. Cairo, Egypt (2015)Google Scholar
  28. 28.
    Alharbi, A.G., Fouda, M.E., Chowdhury, M.H.: Memristor emulator based on single CCII. In: Proceedings of the 17th International Conference on Microelectronics (ICM), pp. 174–177. Casablanka, Morocco (2015)Google Scholar
  29. 29.
    Olumodeji, O.A., Gottardi, M.: Arduino-controlled HP memristor emulator for memristor circuit applications. Integr. VLSI J. 58, 438–445 (2017)CrossRefGoogle Scholar
  30. 30.
    Biolek, D., Kolka, Z., Vavra, J., Van, D.S.: Universal emulator of memristive and other two-terminal devices. Int. J. Unconventional Comput. 12, 281–302 (2016)Google Scholar
  31. 31.
    Abuelma’atti, M.T., Khalifa, Z.J.: A new floating memristor emulator and its application in frequency-to-voltage conversion. Analog Integr. Circ. Sig. Process 86:141–147 (2016)CrossRefGoogle Scholar
  32. 32.
    Sözen, H., Cam, U.: Electronically tunable memristor emulator circuit. Analog Integr. Circ. Sig. Process 89, 655–663 (2016)CrossRefGoogle Scholar
  33. 33.
    Fouda, M.E., Radwan, A.G.: Simple floating voltage-controlled memductor emulator for analog applications. Radioengineering 23, 944–948 (2014)Google Scholar
  34. 34.
    Sánchez-Lopez, C., et al.: A floating analog memristor emulator circuit. IEEE Trans Circ Syst II 61, 309–313 (2014)Google Scholar
  35. 35.
    Sánchez-Lopez, C., et al.: A simple floating memristor emulator circuit based on current conveyors. In: Proceedings of the 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 445–448. Mexico City, Mexico (2013)Google Scholar
  36. 36.
    Biolek, D., Biolkova, V., Kolka, Z., Dobes, J.: Analog emulator of genuinely floating memcapacitor with piecewise-linear constitutive relation. Circ. Syst. Sig. Process 35, 43–62 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Alharbi, A.G. et al.: Simple generic memristor emulator for voltage-controlled models. In: Proceedings of 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4. Abu Dhabi, UAE (2016)Google Scholar
  38. 38.
    Alharbi, A.G., et al.: Electrical nonlinearity emulation technique for current-controlled memristive devices. IEEE Access 5, 5399–5409 (2017)CrossRefGoogle Scholar
  39. 39.
    Elwakil, A.S., Fouda, M.E., Radwan, A.G.: A simple model of double-loop hysteresis behavior in memristive elements. IEEE Trans. Circ. Syst. II 60, 487–491 (2013)Google Scholar
  40. 40.
    Abuelma’atti, M.T., Khalifa, Z.J.: A new memristor emulator and its application in digital modulation. Analog Integr. Circ. Sig. Process 80:577–584 (2014)CrossRefGoogle Scholar
  41. 41.
    Abuelma’atti, M.T., Khalifa, Z.J.: A continuous-level memristor emulator and its application in a multivibrator circuit. Int. J. Electron. Commun. (AEÜ) 69:771–775 (2015)CrossRefGoogle Scholar
  42. 42.
    Sánchez-Lopez, C., Carrasco-Aguilar, M.A., Muniz-Montero, C.: A 16 Hz–160 kHz memristor emulator circuit. Int. J. Electron. Commun. (AEÜ) 69, 1208–1219 (2015)CrossRefGoogle Scholar
  43. 43.
    Preethi, E., et al.: Design, analysis and simulation of memristor emulator based anti-aliasing filter for biomedical applications. Indian J. Sci. Technol. 9, 1–6 (2016)Google Scholar
  44. 44.
    Yang, C., et al.: A memristor emulator as a replacement of a real memristor. Semicond. Sci. Technol. 30:015007, 1–9 (2015)CrossRefGoogle Scholar
  45. 45.
    Ranjan, R.K., et al.: Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectron. J. 60, 119–128 (2017)CrossRefGoogle Scholar
  46. 46.
    Yesil, A., Babacan, Y., Kacar, F.: A new DDCC based memristor emulator circuit and its applications. Microelectron. J. 45, 282–287 (2014)CrossRefGoogle Scholar
  47. 47.
    Minayi, E., Göknar, I.C.: Realization of a 4-port generalized mutator and its application to memstor simulations. In: Proceedings of 2013 8th International Conference on Electrical and Electronics Engineering (ELECO), pp. 5–8. Bursa, Turkey (2013)Google Scholar
  48. 48.
    Choi, H., Kim, H.: Comparative analysis of synthetic memristor emulator and M-R mutator. J. Inst. Electron. Inf. Eng. 53, 98–107 (2016)Google Scholar
  49. 49.
    Shin, S.H., et al.: Small-area and compact CMOS emulator circuit for CMOS/nanoscale memristor co-design. Nanoscale Res. Lett. 8, 454–460 (2013)CrossRefGoogle Scholar
  50. 50.
    Kolka, Z., Biolkova, V., Biolek, D.: Stability of digitally emulated mem-elements. In: Proceedings 2015 International Conference on Computing, Communication and Security (ICCCS), pp. 1–5. Pamplemousses, Mauritius (2015)Google Scholar
  51. 51.
    Biolek, Z., et al.: The simplest memristor in the world. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1854–1857. Montreal, Canada (2016)Google Scholar
  52. 52.
    Gandhi, G., Aggarwal, V., Chua, L.: Coherer is the elusive memristor. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2245–2248. Melbourne, Australia (2014)Google Scholar
  53. 53.
    Corinto, F., Ascoli, A.: Memristive diode bridge with LCR filter. Electron. Lett. 48, 824–825 (2012)CrossRefGoogle Scholar
  54. 54.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  55. 55.
    Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circ. Theor. 18(5), 507–519 (1971)CrossRefGoogle Scholar
  56. 56.
    Chua, L.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 2015(24), 319–368 (2015)CrossRefGoogle Scholar
  57. 57.
    Biolek, Z., Biolek, D., Biolková, V.: Spice model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)zbMATHGoogle Scholar
  58. 58.
    Pershin, Y.V., Fontaine, S., Di Ventra, M.: Memristive model of amoeba’s learning. Phys. Rev. E. 80:021926/1–6 (2009)Google Scholar
  59. 59.
    Biolek, D., Biolkova, V., Kolka, Z.: A note on the so-called inverse memristor. In: Proceedings of the International Conference on Memristive Materials, Devices & Systems (MEMRISYS 2017), p. 1. Athens, Greece (2017)Google Scholar
  60. 60.
    Fouda, M.E., et al.: Pinched hysteresis with inverse-memristor frequency characteristics in some nonlinear circuit elements. Microelectron. J. 46, 834–838 (2015)CrossRefGoogle Scholar
  61. 61.
    Chua, L.O.: Device modeling via basic nonlinear circuit elements. IEEE Trans Circ Syst CAS 27(11):1014–1044 (1980)Google Scholar
  62. 62.
    Chua, L.O.: Nonlinear circuit foundations for nanodevices, part I: the four-element torus. Proc. IEEE 91(11), 1830–1859 (2003)CrossRefGoogle Scholar
  63. 63.
    Maheshwar, P.S., et al.: A voltage mode memristor bridge synaptic circuit with memristor emulators. Sensors 12, 3587–3604 (2012)CrossRefGoogle Scholar
  64. 64.
    Prodromakis, T., Toumazou, C., Chua, L.: Two centuries of memristors. Nat. Mater. 2012(11), 478–481 (2012)CrossRefGoogle Scholar
  65. 65.
    Biolek, D., Biolek, Z.: How can the hysteresis loop of the ideal memristor be pinched? IEEE Trans. Circ. Syst. II 61, 491–495 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of DefenceBrnoCzech Republic

Personalised recommendations