Advertisement

Everything You Wish to Know About Memristors but Are Afraid to Ask

  • Leon ChuaEmail author
Chapter

Abstract

This paper classifies all memristors into three classes called Ideal, Generic, or Extended memristors. A subclass of Generic memristors is related to Ideal memristors via a one-to-one mathematical transformation, and is hence called Ideal Generic memristors. The concept of non-volatile memories is defined and clarified with illustrations. Several fundamental new concepts, including Continuum-memory memristor, POP (acronym for Power-Off Plot), DC V-I Plot, and Quasi DC V-I Plot, are rigorously defined and clarified with colorful illustrations. Among many colorful pictures the shoelace DC V-I Plot stands out as both stunning and illustrative. Even more impressive is that this bizarre shoelace plot has an exact analytical representation via 2 explicit functions of the state variable, derived by a novel parametric approach invented by the author.

Keywords

Memristor Continuum-memory memristor POP Power-Off plot DC V-I plot Quasi DC V-I plot Shoelace V-I plot Parametric approach Graphical composition Piecewise-Linear function (PWL) 

Notes

Acknowledgements

The author wishes to thank Prof. Hyongsuk Kim, Zubaer Ibna Mannan, and Cheol Choi for their wonderful assistance in the production of this paper. He would also like to thank Dr. R. Stanley Williams from hp for detecting several errors. The author would like to acknowledge financial support from the USA Air force office of Scientific Research under Grant number FA9550-13-1-0136 and from the European Commission Marie Curie Fellowship, and the EU COST Action IC 1401.

References

  1. 1.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008).  https://doi.org/10.1038/nature06932CrossRefGoogle Scholar
  2. 2.
    Chua, L.O.: Memristor: the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  3. 3.
    Sah, M.P., Kim, H., Chua, L.: Brains are made of memristors. IEEE Circ. Syst. Mag. 14(1), 12–36 (2014)CrossRefGoogle Scholar
  4. 4.
    VANCE, A.: With ‘The Machine’ HP may have invented a new kind of computer. Available at: http://www.businessweek.com/printer/articles/206401
  5. 5.
    Chua, L.O.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001–1040042 (2014)CrossRefGoogle Scholar
  6. 6.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chua, L.O.: Nonlinear circuit foundations for nanodevices, part I: The four-element tours. Proc. IEEE 91(11), 1830–1859 (2003)CrossRefGoogle Scholar
  8. 8.
    CHUA, L.O.: Introduction to memristor. IEEE Expert Now Short Course, 2009. Available at: http://ieeexplore.ieee.org/xpl/modulesabstract.jsp?mdnumber=EW1091
  9. 9.
    Chua, L.O.: Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)CrossRefGoogle Scholar
  10. 10.
    Chua, L.O.: The fourth element. Proc. IEEE 100(6), 1920–1927 (2012)CrossRefGoogle Scholar
  11. 11.
    Biolek, D., Biolek, Z., Biolkova, V.: Pinched hysteretic loops of ideal memrsitors, memcapacitors and meminductors must be self-crossing. Electron. Lett. 47(25), 1385–1387 (2011)CrossRefGoogle Scholar
  12. 12.
    Chua, L.O.: Introduction to Nonlinear Network Theory, McGraw-Hill (1969)Google Scholar
  13. 13.
    Sah, M.P., Yang, C., Kim, H., Muthuswamy, B., Jevtic, J., Chua, L.: A generic model of memristor with parasitic components. IEEE Trans. Circ. Syst.-I 62(3), 891–898 (2015)MathSciNetGoogle Scholar
  14. 14.
    Chua, L., Sbitnev, V., Kim, H.: Hodgkin-Huxley axon is made of memristors. Int. J. on Bifurcat. Chaos, 22(3), 1230011-1–1230011-48 (2012)CrossRefGoogle Scholar
  15. 15.
    Sah, M.P., Mannan, Z.I., Kim, H., Chua, L.: Oscillator made of only one memristor and one battery. Int. J. Bifurcat. Chaos, 25(03), 1530010–1530038 (2015)CrossRefGoogle Scholar
  16. 16.
    Pugh, C.C.: Functions of a real variable. In: Real Mathematical Analysis, pp. 139–200. Springer. ISBN: 0387952977 (2002)CrossRefGoogle Scholar
  17. 17.
    Chua, L.O.: Device modeling via basic nonlinear circuit elements. IEEE Trans. Circ. Syst. 27(11), 1014–1044 (1980)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gale, E., Adamatsky, A., Costello, B.: Personal CommunicationGoogle Scholar
  19. 19.
    Macvittie, K., Katz, E.: Electrochemical system with memimpedance properties. J. Phys. Chem. 117(47), 24943–24947 (2013)Google Scholar
  20. 20.
    Volkov, A., Tucket, C., Reedus, J., Volkova, M., Markin, V. S., Chua, L.O.: Memristor in plants. Plant Signaling and Behav., 9(2), e28152-1 – e28152-7 (2014)Google Scholar
  21. 21.
    Adhikari, S.P., Sah, M.P., Kim, H., Chua, L.O.: Three fingerprints of memristor. IEEE Trans. Circ Syst.-I 60(11), 3008–3021 (2013)Google Scholar
  22. 22.
    Tetzlaff, R.: Memristor and Memristive Systems. Springer, New York (2014)CrossRefGoogle Scholar
  23. 23.
    Martinsen, O.G., Grimnes, S., Lutken, C.A., Johnsen, G.K.: Memristance in human skin. J. Phys.: Conf. Series 224012071,  https://doi.org/10.1088/1742-6596/224/1/012071 (2010)Google Scholar
  24. 24.
    Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurc. Chaos 20(5), 1567–1580 (2010)CrossRefGoogle Scholar
  25. 25.
    Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction in Dynamical Systems. Springer, New York (1996)CrossRefGoogle Scholar
  26. 26.
    Chua, L.: Memristor, hodgkin-huxley, and edge of chaos. Semicond. Sci. Technol. 24(38), 383001–3830014 (2013)Google Scholar
  27. 27.
    Chua, L.O.: Nonlinear network analysis – the parametric approach. Phd Dissertation, University of Illinois, Urbana, Illinois (1964)Google Scholar
  28. 28.
    Carlin, H.J., Youla, D.C.: Network synthesis with negative resistors. Proc. IRE 49(5), 907–920 (1961)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Mainzer, K., Chua, L.: Local Activity Principle. Imperial College Press, London (2013)CrossRefGoogle Scholar
  30. 30.
    Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1989)CrossRefGoogle Scholar
  31. 31.
    Georgiou, P.S., Barahona, M., Yaliraki, S.N., Drakakis, E.M.: window function and sigmoidal behavior of memristive systems. Royal Society Open Science (under review) (2015)Google Scholar
  32. 32.
    Adamatzky, A., Chua, L.: Memristor Networks, Springer, New York (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations