Advertisement

Organic Memristive Devices and Neuromorphic Circuits

  • Victor ErokhinEmail author
Chapter

Abstract

Bio-inspired computational systems must be based on elements involved, similarly to the brain, in both memorizing and processing of the information. This paper is dedicated to organic memristive devices—elements that were designed and constructed for mimicking the most important properties of synapses, responsible for Hebbian type of learning. We will consider the architecture of the device and its properties, as well as circuits and networks with adaptive features.

Notes

Acknowledgements

We acknowledge the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under the Collaborative project PhyChip, grant agreement number 316366.

References

  1. 1.
    Hebb, D.O.: The Organization of Behavior. A Neurophychological Theory, 2nd edn. Wiley, New York (1961)Google Scholar
  2. 2.
    Chua, L.: Memristor–the missing circuit element. IEEE Trans. Circ. Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  3. 3.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  5. 5.
    Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145–227 (2011)CrossRefGoogle Scholar
  6. 6.
    Erokhin, V., Schüz, A., Fontana, M.P.: Organic memristor and bio-inspired information processing. Int. J. Unconventional Comput. 6, 15–32 (2010)Google Scholar
  7. 7.
    Kang, E.T., Neoh, K.G., Tan, K.L.: Polyaniline: a polymer with many interesting intrinsic redox states. Progr. Polym. Sci. 23, 277–324 (1998)CrossRefGoogle Scholar
  8. 8.
    Erokhin, V., Berzina, T., Fontana, M.P.: Hybrid electronic device based on polyaniline-polyethylenoxide junction. J. Appl. Phys. 97, 064501 (2005)CrossRefGoogle Scholar
  9. 9.
    Gorshkov, K., Berzina, T.: On the hysteresis loop of organic memristive device. BioNanoScience 1, 198–201 (2011)CrossRefGoogle Scholar
  10. 10.
    Smerieri, A., Erokhin, V., Fontana, M.P.: Origin of current oscillations in a polymeric electrochemically controlled element. J. Appl. Phys. 103, 094517 (2008)CrossRefGoogle Scholar
  11. 11.
    Berzina, T., Erokhin, V., Fontana, M.P.: Spectroscopic investigation of an electrochemically controlled conducting polymer-solid electrolyte junction. J. Appl. Phys. 101, 024501 (2007)CrossRefGoogle Scholar
  12. 12.
    Berzina, T., Erokhina, S., Camorani, P., Konovalov, O., Erokhin, V., Fontana, M.P.: Electrochemical control of the conductivity in an organic memristor: a time-resolved X-ray fluorescence study of ionic drift as a function of the applied voltage. ACS Appl. Mater. Interfaces 1, 2115–2118 (2009)CrossRefGoogle Scholar
  13. 13.
    Pierce, W.H., Angell, J.B.: Birth, Life, and Death in Microelectronic Systems. Office of Naval Research Technical Report 1552-2/1851-1, 30 May 1961Google Scholar
  14. 14.
    V. Braitenberg, Vehicles. Experiments in Synthetic Psychology. MIT press, 1984Google Scholar
  15. 15.
    Erokhin, V., Howard, G.D., Adamatzky, A.: Organic memristor devices for logic elements with memory. Int. J. Bifurcat. Chaos 22, 1250283 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Schrödinger, E.: What is Life?. Cambridge University Press, Physical Aspect of the Living Cell (1944)Google Scholar
  17. 17.
    Erokhin, V., Berzina, T., Camorani, P., Fontana, M.P.: Non-equilibrium electrical behaviour of polymeric electrochemical junctions. J. Phys. Condens. Matter 19, 205111 (2007)CrossRefGoogle Scholar
  18. 18.
    Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurcat. Chaos 18, 3183–3206 (2008)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Erokhin, V., Berzina, T., Fontana, M.P.: Polymeric elements for adaptive networks. Cryst. Rep. 52, 159–166 (2007)CrossRefGoogle Scholar
  20. 20.
    Zaikin, A.N., Zhabotinsky, A.M.: Poncentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535–537 (1970)CrossRefGoogle Scholar
  21. 21.
    Erokhin, V.: Polymer-based adaptive networks. In: Ram, M.K., Yavuz, O. (eds.) The New Frontiers of Organic and Composite Nanotechnologies, vol. Erokhin, pp. 287–353. Elsevier, Oxford, Amsterdam (2007)Google Scholar
  22. 22.
    Smerieri, A., Berzina, T., Erokhin, V., Fontana, M.P.: A functional polymeric material based on hybrid electrochemically controlled junctions. Mater. Sci. Eng. C 28, 18–22 (2008)CrossRefGoogle Scholar
  23. 23.
    Smerieri, A., Berzina, T., Erokhin, V., Fontana, M.P.: Polymeric electrochemical element for adaptive networks: pulse mode. J. Appl. Phys. 104, 114513 (2008)CrossRefGoogle Scholar
  24. 24.
    Benjamin, P.R., Staras, K., Kemenes, G.: A systems approach to the cellular analysis of associative learning in the pond snail Lymnaea. Learn. Memory 7, 124–131 (2000)CrossRefGoogle Scholar
  25. 25.
    Erokhin, V., Berzina, T., Camorani, P., Smerieri, A., Vavoulis, D., Feng, J., Fontana, M.P.: Material memristive device circuits with synaptic plasticity: learning and memory. BioNanoScience 1, 24–30 (2011)CrossRefGoogle Scholar
  26. 26.
    Erokhin, V., Berzina, T., Camorani, P., Fontana, M.P.: Conducting polymer–solid electrolyte fibrillar composite material for adaptive networks. Soft Matter 2, 870–874 (2006)CrossRefGoogle Scholar
  27. 27.
    Erokhin, V., Fontana, M.P.: Thin film electrochemical memristive systems for bio-inspired computation. J. Comput. Theor. Nanosci. 8, 313–330 (2011)CrossRefGoogle Scholar
  28. 28.
    Erokhin, V., Berzina, T., Smerieri, A., Camorani, P., Erokhina, S., Fontana, M.P.: Bio-inspired adaptive networks based on organic memristors. Nano Commun. Netw. 1, 108–117 (2010)CrossRefGoogle Scholar
  29. 29.
    Berzina, T., Pucci, A., Ruggeri, G., Erokhin, V., Fontana, M.P.: Gold nanoparticles-polyaniline composite materials: synthesis, structure and electrical properties. Synth. Met. 161, 1408–1413 (2011)CrossRefGoogle Scholar
  30. 30.
    Erokhin, V., Berzina, T., Gorshkov, K., Camorani, P., Pucci, A., Ricci, L., Ruggeri, G., Sigala, R., Schuz, A.: Stochastic hybrid 3D matrix: learning and adaptation of electrical properties. J. Mater. Chem. 22, 22881–22887 (2012)CrossRefGoogle Scholar
  31. 31.
    Erokhin, V.: On the learning of stochastic networks of organic memristive devices. Int. J. Unconventional Comput. 9, 303–310 (2013)Google Scholar
  32. 32.
    Berzina, T., Gorshkov, K., Erokhin, V.: Chains of organic memristive devices: cross-talk of elements. AIP Conf. Proc. 1479, 1888–1891 (2012)CrossRefGoogle Scholar
  33. 33.
    Berzina, T., Gorshkov, K., Pucci, A., Ruggeri, G., Erokhin, V.: Langmuir-Schaefer films of a polyaniline gold nanoparticle composite material for applications in organic memristive devices. RSC Adv. 1, 1537–1541 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CNR—IMEM (National Council of the Researches—Institute of Materials for Electronic and Magnetism)ParmaItaly

Personalised recommendations