Advertisement

Associative Enhancement and Its Application in Memristor Based Neuromorphic Devices

  • Curtis J. O’KellyEmail author
Chapter

Abstract

Binary state resistance switching memristors and multistate or continuum resistance memristors have begun to diverge in their application. The former application in non-volatile logic memory and the later with more focus on neuromorphic computation. The properties of continuum resistance memristors as neuromorphic hardware are presented in this paper. Concepts such as polymorphism, voltage flux equivalence and non voltage based memristive flux are discussed. Emergent functionalities observed in neuromorphic hardware such as associative enhancement of current/charge generation, spike time dependent plasticity (STDP) and associative memory between voltage and light pulse stimuli are expanded upon. Finally various applications that this hardware may enable such as machine learning and adaptive programs for brain-like functionality are discussed.

References

  1. 1.
    Markram, H., Gerstner, W., Sjöström, P.J.: Spike-timing-dependent plasticity: a comprehensive overview. Front. Synaptic Neurosci. 4, 2 (2012)Google Scholar
  2. 2.
    Linares-Barranco, B., Serrano-Gotarredona, T., Camuñas-Mesa, L.A., Perez-Carrasco, J.A., Zamarreño-Ramos, C., Masquelier, T.: On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front. Neurosci. 5, 26 (2011)Google Scholar
  3. 3.
    Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H., Matsudaira, P.: Mol. Cell Biol., 7th edn. Freeman, W. H (2012)Google Scholar
  4. 4.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)CrossRefGoogle Scholar
  5. 5.
    Huang, G., Huang, G.-B., Song, S., You, K.: Trends in extreme learning machines: a review. Neural Netw. 61, 32–48 (2015)CrossRefGoogle Scholar
  6. 6.
    Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M., Ekeberg, O., Lansner, A.: Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer. IBM J. Res. Dev. 52, 31–41 (2008)CrossRefGoogle Scholar
  7. 7.
    Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L., Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S.K., Appuswamy, R., Taba, B., Amir, A., Flickner, M.D., Risk, W.P., Manohar, R., Modha, D.S.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014)CrossRefGoogle Scholar
  8. 8.
    Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  9. 9.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  10. 10.
    Pershin, Y.V., Castelano, L.K., Hartmann, F., Lopez-Richard, V., Ventra, M.D.: A memristive pascaline. IEEE Trans. Circuits Syst. II Express Briefs 63, 558–562 (2016)CrossRefGoogle Scholar
  11. 11.
    Traversa, F.L., Ventra, M.D.: Universal memcomputing machines. IEEE Trans. Neural Netw. Learn. Syst. 26, 2702–2715 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pershin, Y.V., Shevchenko, S.N.: Computing with volatile memristors: an application of non-pinched hysteresis. Nanotechnology 28, 075204 (2017)CrossRefGoogle Scholar
  13. 13.
    Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K., Aono, M.: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011)CrossRefGoogle Scholar
  14. 14.
    van de Burgt, Y., Lubberman, E., Fuller, E.J., Keene, S.T., Faria, G.C., Agarwal, S., Marinella, M.J., Alec Talin, A., Salleo, A.: A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017)CrossRefGoogle Scholar
  15. 15.
    Caponi, S., Mattana, S., Ricci, M., Sagini, K., Juarez-Hernandez, L.J., Jimenez-Garduño, A.M., Cornella, N., Pasquardini, L., Urbanelli, L., Sassi, P., Morresi, A., Emiliani, C., Fioretto, D., Serra, M.D., Pederzolli, C., Iannotta, S., Macchi, P., Musio, C.: A multidisciplinary approach to study the functional properties of neuron-like cell models constituting a living bio-hybrid system: SH-SY5Y cells adhering to PANI substrate. AIP Adv. 6, 111303 (2016)CrossRefGoogle Scholar
  16. 16.
    Gkoupidenis, P., Schaefer, N., Garlan, B., Malliaras, G.G.: Neuromorphic functions in PEDOT: PSS organic electrochemical transistors. Adv. Mater. 27, 7176–7180 (2015)CrossRefGoogle Scholar
  17. 17.
    O’Kelly, C.J., Abunahla, H.N.M., Abi Jaoude, M., Homouz, D., Mohammad, B.: Subthreshold continuum conductance change in NbO Pt memristor interfaces. J. Phys. Chem. C 120, 18971–18976 (2016)CrossRefGoogle Scholar
  18. 18.
    Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)CrossRefGoogle Scholar
  19. 19.
    Pickett, M.D., Medeiros-Ribeiro, G., Williams, R.S.: A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013)CrossRefGoogle Scholar
  20. 20.
    Chiolerio, A., Chiappalone, M., Ariano, P., Bocchini, S.: Coupling resistive switching devices with neurons: state of the art and perspectives. Front. Neurosc. 11 (2017)Google Scholar
  21. 21.
    Sze, S.M., Ng, K.K.: Physics of semiconductor Devices. John wiley & sons (2006)Google Scholar
  22. 22.
    O’Kelly, C.J., Fairfield, J.A., McCloskey, D., Manning, H.G., Donegan, J.F., Boland, J.J.: Associative enhancement of time correlated response to heterogeneous stimuli in a neuromorphic nanowire device. Adv. Electr. Mater. 2, 1500458 (2016)CrossRefGoogle Scholar
  23. 23.
    Henderson, M.A.: A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011)CrossRefGoogle Scholar
  24. 24.
    Liu, G., Hoivik, N., Wang, X., Lu, S., Wang, K., Jakobsen, H.: Photoconductive, free-standing crystallized TiO2 nanotube membranes. Electrochim. Acta 93, 80–86 (2013)CrossRefGoogle Scholar
  25. 25.
    Pavlov, I.P.: Conditional reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford University Press, New York (1927)Google Scholar
  26. 26.
    Feldman, D.E.: The spike-timing dependence of plasticity. Neuron 75, 556–571 (2012)CrossRefGoogle Scholar
  27. 27.
    Hartley, C.A., Phelps, E.A.: Fear models in animals and humans. In: Vasa, R.A., Roy, A.K. (eds.) Pediatric Anxiety Disorders: A Clinical Guide, pp. 3–21. Springer, New York, NY (2013)CrossRefGoogle Scholar
  28. 28.
    Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)CrossRefGoogle Scholar
  29. 29.
    Zidan, M.A., Fahmy, H.A.H., Hussain, M.M., Salama, K.N.: Memristor-based memory: the sneak paths problem and solutions. Microelectron. J. 44, 176–183 (2013)CrossRefGoogle Scholar
  30. 30.
    O’Kelly, C., Fairfield, J.A., Boland, J.J.: A single nanoscale junction with programmable multilevel memory. ACS Nano 8, 11724–11729 (2014)CrossRefGoogle Scholar
  31. 31.
    Janotti, A., Varley, J.B., Rinke, P., Umezawa, N., Kresse, G., Van de Walle, C.G.: Hybrid functional studies of the oxygen vacancy in TiO 2. Phys. Rev. B 81 (2010)Google Scholar
  32. 32.
    Jeong, D.S., Schroeder, H., Breuer, U., Waser, R.: Characteristic electroforming behavior in Pt/TiO 2/Pt resistive switching cells depending on atmosphere. J. Appl. Phys. 104, 123716 (2008)CrossRefGoogle Scholar
  33. 33.
    Kwon, D.H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.S., Park, G.S., Lee, B., Han, S., Kim, M., Hwang, C.S.: Atomic structure of conducting nanofilaments in TiO 2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)CrossRefGoogle Scholar
  34. 34.
    Jeong, D.S., Schroeder, H., Waser, R.: Mechanism for bipolar switching in a Pt/TiO 2/Pt resistive switching cell. Phys. Rev. B 79, 195317 (2009)CrossRefGoogle Scholar
  35. 35.
    Roose, B., Pathak, S., Steiner, U.: Doping of TiO 2 for sensitized solar cells. Chem. Soc. Rev. 44, 8326–8349 (2015)CrossRefGoogle Scholar
  36. 36.
    Szczepankiewicz, S.H., Colussi, A.J., Hoffmann, M.R.: Infrared spectra of photoinduced species on hydroxylated titania surfaces. J. Phys. Chem. B 9842–9850 (2000)CrossRefGoogle Scholar
  37. 37.
    Berger, T., Sterrer, M., Diwald, O., Knözinger, E., Panayotov, D., Thompson, T.L., Yates, J.T.: Light-induced charge separation in anatase TiO2 particles. J. Phys. Chem. B 109, 6061–6068 (2005)CrossRefGoogle Scholar
  38. 38.
    Zou, J., Zhang, Q., Huang, K., Marzari, N.: Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J. Phys. Chem. C 114, 10725–10729 (2010)CrossRefGoogle Scholar
  39. 39.
    Rasmussen, M.D., Molina, L.M., Hammer, B.: Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO 2 (110): A density functional theory study. J. Chem. Phys. 120, 988–997 (2004)CrossRefGoogle Scholar
  40. 40.
    Xu, C., Niu, D., Muralimanohar, N., Balasubramonian, R., Zhang, T., Yu, S., Xie, Y.: Overcoming the challenges of crossbar resistive memory architectures. In: 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), 7–11 Feb. 2015, pp. 476–488 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ICYS-Namiki, National Institute for Materials ScienceTsukubaJapan

Personalised recommendations