Preparation of ATS Drugs 3D Molecular Structure for 3D Moment Invariants-Based Molecular Descriptors

  • Satrya Fajri Pratama
  • Azah Kamilah MudaEmail author
  • Yun-Huoy Choo
  • Ajith Abraham
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 734)


The campaign against drug abuse is fought by all countries, most notably on ATS drugs. The technical limitations of the current test kits to detect new brand of ATS drugs present a challenge to law enforcement authorities and forensic laboratories. Meanwhile, new molecular microscopy imaging devices which enabled the characterization of the physical 3D molecular structure have been recently introduced, and it can be used to remedy the limitations of existing drug test kits. Thus, a new type of 3D molecular structure representation, or molecular descriptors, technique should be developed to cater the 3D molecular structure acquired physically using these molecular imaging devices. One of the applications of image processing methods to represent a 3D image is 3D moment invariants. However, since there are currently no repository or database available which provide the drugs imaging results obtained using these molecular imaging devices, this paper proposes to construct the simulated 3D drugs molecular structure to be used by these 3D moment invariants-based molecular descriptors techniques. The drugs molecular structures are obtained from for the ATS drugs, while non-ATS drugs are obtained randomly from ChemSpider database.


ATS drugs Drugs identification and analysis Molecular structure representation Dataset preparation Preprocessing 



This work was supported by UTeM Postgraduate Fellowship (Zamalah) Scheme and PJP High Impact Research Grant (S01473-PJP/2016/FTMK/HI3) from Universiti Teknikal Malaysia Melaka (UTeM), Malaysia.


  1. 1.
    Lloyd, A.: The analysis of amphetamine-type stimulants using microchip capillary electrophoresis. Dissertation, University of Technology (2013)Google Scholar
  2. 2.
    United Nations Office of Drugs and Crime: Recommended Methods for the Identification and Analysis of Amphetamine, Methamphetamine and Their Ring-substituted Analogues in Seized Materials. UNODC, New York, USA, vol. 77 (2006). Sales No. E.06.XI.1Google Scholar
  3. 3.
    United Nations Office on Drugs and Crime: World Drug Report 2016. UNODC, Vienna, Austria, vol. 16 (2016). Sales No. E.16.XI.7Google Scholar
  4. 4.
    Drug Enforcement Administration: Drugs of Abuse: A DEA Resource Guide. Drug Enforcement Administration, Springfield (2015)Google Scholar
  5. 5.
    Bianchi, R.P., Shah, M.N., Rogers, D.H., Mrazik, T.J.: Laboratory analysis of the conversion of pseudoephedrine to methamphetamine from over-the-counter products. Microgram J. 3(1–2), 11–15 (2005)Google Scholar
  6. 6.
    Cohen, W.S.: Ephedra used as a precursor in methamphetamine manufacturing. J. Clandestine Lab. Investigating Chem. 16(2), 21–22 (2006)Google Scholar
  7. 7.
    Biavardi, E., Federici, S., Tudisco, C., Menozzi, D., Massera, C., Sottini, A., Condorelli, G.G., Bergese, P., Dalcanale, E.: Cavitand-grafted silicon microcantilevers as a universal probe for illicit and designer drugs in water. Angew. Chem. Int. Ed. Engl. 53(35), 9183–9188 (2014). Scholar
  8. 8.
    Cary, P.L.: Designer drugs: what drug court practitioners need to know. Drug Court Pract. Fact Sheet IX(2), 1–13 (2014)Google Scholar
  9. 9.
    Swortwood, M.J.: Comprehensive forensic toxicological analysis of designer drugs. Dissertation, Florida International University (2013)Google Scholar
  10. 10.
    Smith, M.C.F.: But what of designer drugs? Adv. Psychiatr. Treat. 17(2), 158 (2011). Scholar
  11. 11.
    Pratama, S.F., Pratiwi, L., Abraham, A., Muda, A.K.: Computational intelligence in digital forensics. In: Muda, A.K., Choo, Y.-H., Abraham, A.N., Srihari, S. (eds.) Computational Intelligence in Digital Forensics: Forensic Investigation and Applications. Studies in Computational Intelligence, vol. 555, pp. 1–16. Springer (2014)Google Scholar
  12. 12.
    Krasowski, M.D., Ekins, S.: Using cheminformatics to predict cross reactivity of “designer drugs” to their currently available immunoassays. J. Cheminform 6(1), 22 (2014). Scholar
  13. 13.
    Krasowski, M.D., Pizon, A.F., Siam, M.G., Giannoutsos, S., Iyer, M., Ekins, S.: Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine. BMC Emerg. Med. 9(5), 1–18 (2009). Scholar
  14. 14.
    Krasowski, M.D., Siam, M.G., Iyer, M., Ekins, S.: Molecular similarity methods for predicting cross-reactivity with therapeutic drug monitoring immunoassays. Ther. Drug Monit. 31(3), 337–344 (2009). Scholar
  15. 15.
    Krasowski, M.D., Siam, M.G., Iyer, M., Pizon, A.F., Giannoutsos, S., Ekins, S.: Chemoinformatic methods for predicting interference in drug of abuse/toxicology immunoassays. Clin. Chem. 55(6), 1203–1213 (2009). Scholar
  16. 16.
    Petrie, M., Lynch, K.L., Ekins, S., Chang, J.S., Goetz, R.J., Wu, A.H., Krasowski, M.D.: Cross-reactivity studies and predictive modeling of “Bath Salts” and other amphetamine-type stimulants with amphetamine screening immunoassays. Clin. Toxicol. (Phila) 51(2), 83–91 (2013). Scholar
  17. 17.
    Gute, B.D., Basak, S.C.: Optimal neighbor selection in molecular similarity: comparison of arbitrary versus tailored prediction spaces. SAR QSAR Environ. Res. 17(1), 37–51 (2006). Scholar
  18. 18.
    Amine, A., Elberrichi, Z., Simonet, M., Rahmouni, A.: A Hybrid Approach Based on Self-Organizing Neural Networks and the K-Nearest Neighbors Method to Study Molecular Similarity. Int. J. Chemoinform. Chem. Eng. 1(1), 75–95 (2011). Scholar
  19. 19.
    Klopmand, G.: Concepts and applications of molecular similarity, by Mark A. Johnson and Gerald M. Maggiora, eds., John Wiley & Sons, New York, 1990, 393 pp. Price: $65.00. J. Comput. Chem. 13(4), 539–540 (1992). Scholar
  20. 20.
    Patterson, D.E., Cramer, R.D., Ferguson, A.M., Clark, R.D., Weinberger, L.E.: Neighborhood behavior: a useful concept for validation of “molecular diversity” descriptors. J. Med. Chem. 39(16), 3049–3059 (1996). Scholar
  21. 21.
    Martin, Y.C., Kofron, J.L., Traphagen, L.M.: Do structurally similar molecules have similar biological activity? J. Med. Chem. 45(19), 4350–4358 (2002)CrossRefGoogle Scholar
  22. 22.
    Bender, A., Glen, R.C.: Molecular similarity: a key technique in molecular informatics. Org. Biomol. Chem. 2(22), 3204–3218 (2004). Scholar
  23. 23.
    Willett, P., Barnard, J.M., Downs, G.M.: Chemical similarity searching. J. Chem. Inf. Comput. Sci. 38(6), 983–996 (1998). Scholar
  24. 24.
    Bender, A.: Studies on molecular similarity. Dissertation, University of Cambridge (2005)Google Scholar
  25. 25.
    Consonni, V., Todeschini, R.: Molecular descriptors. In: Puzyn, T., Leszczynski, J., Cronin, T.M. (eds.) Recent Advances in QSAR Studies: Methods and Applications, pp. 29–102. Springer Netherlands, Dordrecht, Netherlands (2010)Google Scholar
  26. 26.
    Gasteiger, J., Engel, T.: Chemoinformatics: A Textbook. Wiley-VCH Verlag, Weinheim (2003)CrossRefGoogle Scholar
  27. 27.
    Axenopoulos, A., Daras, P., Papadopoulos, G., Houstis, E.N.: A shape descriptor for fast complementarity matching in molecular docking. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(6), 1441–1457 (2011). Scholar
  28. 28.
    Estrada, E.: Generalized graph matrix, graph geometry, quantum chemistry, and optimal description of physicochemical properties. J. Phys. Chem. A 107(38), 7482–7489 (2003). Scholar
  29. 29.
    Kortagere, S., Krasowski, M.D., Ekins, S.: The importance of discerning shape in molecular pharmacology. Trends Pharmacol. Sci. 30(3), 138–147 (2009). Scholar
  30. 30.
    de Oteyza, D.G., Gorman, P., Chen, Y.C., Wickenburg, S., Riss, A., Mowbray, D.J., Etkin, G., Pedramrazi, Z., Tsai, H.Z., Rubio, A., Crommie, M.F., Fischer, F.R.: Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340(6139), 1434–1437 (2013). Scholar
  31. 31.
    Gross, L., Mohn, F., Moll, N., Liljeroth, P., Meyer, G.: The chemical structure of a molecule resolved by atomic force microscopy. Science 325(5944), 1110–1114 (2009). Scholar
  32. 32.
    Gross, L., Mohn, F., Moll, N., Meyer, G., Ebel, R., Abdel-Mageed, W.M., Jaspars, M.: Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem. 2(10), 821–825 (2010)CrossRefGoogle Scholar
  33. 33.
    Gross, L., Mohn, F., Moll, N., Schuler, B., Criado, A., Guitian, E., Pena, D., Gourdon, A., Meyer, G.: Bond-order discrimination by atomic force microscopy. Science 337(6100), 1326–1329 (2012). Scholar
  34. 34.
    Hanssen, K.O., Schuler, B., Williams, A.J., Demissie, T.B., Hansen, E., Andersen, J.H., Svenson, J., Blinov, K., Repisky, M., Mohn, F., Meyer, G., Svendsen, J.S., Ruud, K., Elyashberg, M., Gross, L., Jaspars, M., Isaksson, J.: A combined atomic force microscopy and computational approach for the structural elucidation of breitfussin A and B: highly modified halogenated dipeptides from Thuiaria breitfussi. Angew. Chem. Int. Ed. Engl. 51(49), 12238–12241 (2012). Scholar
  35. 35.
    Pavliček, N., Fleury, B., Neu, M., Niedenführ, J., Herranz-Lancho, C., Ruben, M., Repp, J.: Atomic force microscopy reveals bistable configurations of Dibenzo[a, h]thianthrene and their interconversion pathway. Phys. Rev. Lett. 108(8), 1–5 (2012)CrossRefGoogle Scholar
  36. 36.
    Consonni, V., Todeschini, R.: Basic Requirements for Valid Molecular Descriptors (2006). Accessed 28 Jan 2016
  37. 37.
    Randić, M.: Molecular bonding profiles. J. Math. Chem. 19(3), 375–392 (1996). Scholar
  38. 38.
    Sun, Y., Liu, W., Wang, Y.: United moment invariants for shape discrimination. In: IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, China, 8–13 October 2003, pp. 88–93. IEEE (2003)Google Scholar
  39. 39.
    Kihara, D., Sael, L., Chikhi, R., Esquivel-Rodriguez, J.: Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking. Curr. Protein Pept. Sci. 12(6), 520–530 (2011)CrossRefGoogle Scholar
  40. 40.
    Sael, L., Li, B., La, D., Fang, Y., Ramani, K., Rustamov, R., Kihara, D.: Fast protein tertiary structure retrieval based on global surface shape similarity. Proteins 72(4), 1259–1273 (2008). Scholar
  41. 41.
    Langman, L.J., Bowers, L.D., Collins, J.A., Hammett-Stabler, C.A., LeBeau, M.A.: Gas Chromatography/Mass Spectrometry Confirmation of Drugs; Approved Guidelines, 2nd edn. Clinical and Laboratory Standards Institute, Pennsylvania, USA (2010)Google Scholar
  42. 42.
    Lin, D.-L., Yin, R.-M., Ray, L.H.: Gas Chromatography-Mass Spectrometry (GC-MS) analysis of Amphetamine, Methamphetamine, 3,4-Methylenedioxyamphetamine and 3,4-Methylenedioxymethamphetamine in Human Hair and Hair Sections. J. Food Drug Anal. 13(3), 193–200 (2005)Google Scholar
  43. 43.
    McShane, J.J.: GC-MS is Not Perfect: The Case Study of Methamphetamine (2011). Accessed 13 Mar 2012
  44. 44.
    International Union of Pure and Applied Chemistry: Compendium of Chemical Terminology, 2nd edn. Gold Book, Blackwell Scientific Publications, Oxford (2006)Google Scholar
  45. 45.
    Mendelson, J., Uemura, N., Harris, D., Nath, R.P., Fernandez, E., Jacob 3rd, P., Everhart, E.T., Jones, R.T.: Human pharmacology of the methamphetamine stereoisomers. Clin. Pharmacol. Ther. 80(4), 403–420 (2006). Scholar
  46. 46.
    Rahman, S.A., Bashton, M., Holliday, G.L., Schrader, R., Thornton, J.M.: Small molecule subgraph detector (SMSD) toolkit. J. Cheminform. 1(1), 12 (2009). Scholar
  47. 47.
    Nikolova, N., Jaworska, J.: Approaches to measure chemical similarity – a review. QSAR Comb. Sci. 22(9–10), 1006–1026 (2003)CrossRefGoogle Scholar
  48. 48.
    Morita, S.: Introduction. In: Morita, S., Giessibl, F.J., Meyer, E., Wiesendanger, R. (eds.) Noncontact Atomic Force Microscopy, vol. 3, pp. 1–8. Springer, Cham (2015)Google Scholar
  49. 49.
    Ma, Y., Soatto, S., Košecká, J., Sastry, S.S.: Step-by-step building of a 3-D model from images. In: Ma, Y., Soatto, S., Košecká, J., Sastry, S.S. (eds.) An Invitation to 3-D Vision: From Images to Geometric Models, pp. 375–411. Springer, New York (2004)CrossRefGoogle Scholar
  50. 50.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2003)zbMATHGoogle Scholar
  51. 51.
    Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016: Proceedings of 14th European Conference, Part VIII, Amsterdam, Netherlands, 11–14 October 2016, pp. 628–644. Springer (2016)Google Scholar
  52. 52.
    Kar, A., Tulsiani, S., Carreira, J., Malik, J.: Category-specific object reconstruction from a single image. In: Computer Vision Foundation (ed.) 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 7–12 June 2015, pp. 1966–1974. IEEE Computer Society (2015)Google Scholar
  53. 53.
    Isomer Design: (2015). Accessed 23 Jan 2016
  54. 54.
    Royal Society of Chemistry: ChemSpider Database (2015). Accessed 23 Jan 2016
  55. 55.
    ChemAxon Ltd.: Marvin (2016). Accessed 30 Nov 2016
  56. 56.
    Jmol: Jmol: an open-source Java viewer for chemical structures in 3D (2016). Accessed 30 Nov 2016
  57. 57.
    Min, P.: binvox 3D mesh voxelizer (2016). http://www.patrickmin/binvox. Accessed 30 Nov 2016
  58. 58.
    Yang, B., Flusser, J., Suk, T.: 3D rotation invariants of Gaussian-Hermite moments. Patt. Recogn. Lett. 54, 18–26 (2015). Scholar
  59. 59.
    Connolly, M.L.: Solvent-accessible surfaces of proteins and nucleic acids. Science 221(4612), 709–713 (1983)CrossRefGoogle Scholar
  60. 60.
    Min, P.: meshconv 3D model converter (2017). Accessed 9 Nov 2017

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Satrya Fajri Pratama
    • 1
  • Azah Kamilah Muda
    • 1
    Email author
  • Yun-Huoy Choo
    • 1
  • Ajith Abraham
    • 1
    • 2
  1. 1.Computational Intelligence and Technologies (CIT) Research Group, Center of Advanced Computing and Technologies, Faculty of Information and Communication TechnologyUniversiti Teknikal Malaysia MelakaDurian TunggalMalaysia
  2. 2.Machine Intelligence Research Labs (MIR Labs)Scientific Network for Innovation and Research ExcellenceAuburnUSA

Personalised recommendations