Drone Placement for Optimal Coverage by Brain Storm Optimization Algorithm

  • Eva Tuba
  • Romana Capor-Hrosik
  • Adis Alihodzic
  • Milan TubaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 734)


Unmanned aerial vehicles or drones are used in wide range of applications and one of them is area monitoring. Finding the optimal positions for drones so that the coverage is maximized, while reducing the fuel consumption represents computationally hard problem. For these kinds of problems, swarm intelligence algorithms have been successfully used. In this paper we propose recent brain storm optimization algorithm for finding the locations for static drones. Optimal drone placement maximizes the number of covered targets while minimizing drones altitude. The proposed method was tested in two different environments, with uniformly and clustered deployed targets. Based on the obtained results it can be concluded that brain storm optimization is appropriate for solving drone placement problem in both considered environments.


Drone placement Area coverage Swarm intelligence Brain storm optimization 



This research is supported by the Ministry of Education, Science and Technological Development of Republic of Serbia, Grant No. III-44006.


  1. 1.
    Arsuaga-Ríos, M., Vega-Rodríguez, M.A.: Multi-objective energy optimization in grid systems from a brain storming strategy. Soft Comput. 19(11), 3159–3172 (2015)CrossRefGoogle Scholar
  2. 2.
    Bor-Yaliniz, R.I., El-Keyi, A., Yanikomeroglu, H.: Efficient 3-D placement of an aerial base station in next generation cellular networks. In: International Conference on Communications (ICC), pp. 1–5. IEEE (2016)Google Scholar
  3. 3.
    Cao, Z., Shi, Y., Rong, X., Liu, B., Du, Z., Yang, B.: Random grouping brain storm optimization algorithm with a new dynamically changing step size, pp. 357–364. Springer, Cham (2015)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Cheng, S., Chen, Y., Xie, Y., Shi, Y.: Enhanced brain storm optimization algorithm for wireless sensor networks deployment. In: International Conference in Swarm Intelligence, pp. 373–381. Springer (2015)Google Scholar
  5. 5.
    Chen, J., Wang, J., Cheng, S., Shi, Y.: Brain storm optimization with agglomerative hierarchical clustering analysis. In: Tan, Y., Shi, Y., Li, L. (eds.) Advances in Swarm Intelligence: 7th International Conference in Swarm Intelligence (ICSI), pp. 115–122. Springer, Cham (2016)CrossRefGoogle Scholar
  6. 6.
    Chow, J.Y.: Dynamic UAV-based traffic monitoring under uncertainty as a stochastic arc-inventory routing policy. Int. J. Transp. Sci. Technol. 5(3), 167–185 (2016)CrossRefGoogle Scholar
  7. 7.
    Hua, Z., Chen, J., Xie, Y.: Brain storm optimization with discrete particle swarm optimization for TSP. In: International Conference on Computational Intelligence and Security (CIS), pp. 190–193. IEEE (2016)Google Scholar
  8. 8.
    Jamil, M., Zepernic, H., Yang, X.: Improved bat algorithm for global optimization. Appl. Soft Comput. (2013)Google Scholar
  9. 9.
    Jia, Z., Duan, H., Shi, Y.: Hybrid brain storm optimisation and simulated annealing algorithm for continuous optimisation problems. Int. J. Bio-Inspired Comput. 8(2), 109–121 (2016)CrossRefGoogle Scholar
  10. 10.
    Li, J., Zheng, S., Tan, Y.: The effect of information utilization: introducing a novel guiding spark in the fireworks algorithm. IEEE Trans. Evol. Comput. 21(1), 153–166 (2017)CrossRefGoogle Scholar
  11. 11.
    Lyu, J., Zeng, Y., Zhang, R., Lim, T.J.: Placement optimization of UAV-mounted mobile base stations. IEEE Commun. Lett. 21(3), 604–607 (2017)CrossRefGoogle Scholar
  12. 12.
    Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) Advances in Swarm Intelligence, LNCS, vol. 6728, pp. 303–309. Springer, Heidelberg (2011)Google Scholar
  13. 13.
    Siebert, S., Teizer, J.: Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Autom. Constr. 41, 1–14 (2014)CrossRefGoogle Scholar
  14. 14.
    Sun, C., Duan, H., Shi, Y.: Optimal satellite formation reconfiguration based on closed-loop brain storm optimization. IEEE Comput. Intell. Mag. 8(4), 39–51 (2013)CrossRefGoogle Scholar
  15. 15.
    Tuba, E., Alihodzic, A., Tuba, M.: Multilevel image thresholding using elephant herding optimization algorithm. In: 14th International Conference on Engineering of Modern Electric Systems (EMES), pp. 240–243. IEEE (2017)Google Scholar
  16. 16.
    Tuba, E., Tuba, M., Beko, M.: Support vector machine parameters optimization by enhanced fireworks algorithm. In: International Conference in Swarm Intelligence, pp. 526–534. Springer (2016)Google Scholar
  17. 17.
    Tuba, E., Tuba, M., Dolicanin, E.: Adjusted fireworks algorithm applied to retinal image registration. Stud. Inform. Control 26(1), 33–42 (2017)CrossRefGoogle Scholar
  18. 18.
    Tuba, E., Tuba, M., Simian, D.: Adjusted bat algorithm for tuning of support vector machine parameters. In: Congress on Evolutionary Computation (CEC), pp. 2225–2232. IEEE (2016)Google Scholar
  19. 19.
    Tuba, E., Tuba, M., Simian, D.: Wireless sensor network coverage problem using modified fireworks algorithm. In: International Conference on Wireless Communications and Mobile Computing Conference (IWCMC), pp. 696–701. IEEE (2016)Google Scholar
  20. 20.
    Tuba, M., Bacanin, N.: Improved seeker optimization algorithm hybridized with firefly algorithm for constrained optimization problems. Neurocomputing 143, 197–207 (2014)CrossRefGoogle Scholar
  21. 21.
    Wang, J., Hou, R., Wang, C., Shen, L.: Improved v-support vector regression model based on variable selection and brain storm optimization for stock price forecasting. Appl. Soft Comput. 49, 164–178 (2016)CrossRefGoogle Scholar
  22. 22.
    Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foundations and Applications, LNCS, vol. 5792, pp. 169-178. Springer (2009)Google Scholar
  23. 23.
    Zhang, L., Wang, B., Peng, W., Li, C., Lu, Z., Guo, Y.: A method for forest fire detection using UAV. Adv. Sci. Technol. Lett. 81, 69–74 (2015)CrossRefGoogle Scholar
  24. 24.
    Zorbas, D., Razafindralambo, T., Guerriero, F., et al.: Energy efficient mobile target tracking using flying drones. Procedia Comput. Sci. 19, 80–87 (2013)CrossRefGoogle Scholar
  25. 25.
    Zorbas, D., Razafindralambo, T., Luigi, D.P.P., Guerriero, F.: Energy efficient mobile target tracking using flying drones. Procedia Comput. Sci. 19(Supplement C), 80–87 (2013). International Conference on Ambient Systems, Networks and Technologies (ANT 2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eva Tuba
    • 1
  • Romana Capor-Hrosik
    • 2
  • Adis Alihodzic
    • 3
  • Milan Tuba
    • 4
    Email author
  1. 1.Faculty of Informatics and ComputingSingidunum UniversityBelgradeSerbia
  2. 2.Institute for Marine and Coastal ResearchUniversity of DubrovnikDubrovnikCroatia
  3. 3.Faculty of MathematicsUniversity of SarajevoSarajevoBosnia and Herzegovina
  4. 4.Department of Technical SciencesState University of Novi PazarNovi PazarSerbia

Personalised recommendations