Rank Tests

  • Thorsten Dickhaus
Chapter

Abstract

Under the assumption of differentiability in the mean, we discuss parametric score tests. In the case of one-sided test problems with one-dimensional parameter spaces, score tests are locally optimal. Based on this motivation, we derive rank tests for two-sample problems, by means of conditioning on the ranks of the observables and calculating the corresponding score function. This leads to classical nonparametric tests like Wilcoxon’s rank sum test or the log-rank test. Finally, we provide an alternative justification of two-sample rank tests, which is based on statistical functionals.

References

  1. Hewitt E, Stromberg K (1975) Real and abstract analysis. A modern treatment of the theory of functions of a real variable, 3rd printing. Graduate texts in mathematics, vol 25. Springer, New York, NYGoogle Scholar
  2. Ibragimov IA (1956) On the composition of unimodal distributions. Teor Veroyatnost i Primenen 1:283–288Google Scholar
  3. Janssen A (1998) Zur Asymptotik nichtparametrischer Tests, Lecture notes. Skripten zur Stochastik Nr. 29. Gesellschaft zur Förderung der Mathematischen Statistik, MünsterGoogle Scholar
  4. Janssen A (1999) Testing nonparametric statistical functionals with applications to rank tests. J Stat Plann Inference 81(1):71–93. https://doi.org/10.1016/S0378-3758(99)00009-9
  5. Klaassen CAJ (2003) Asymptotically most accurate confidence intervals in the semiparametric symmetric location model. In: Mathematical statistics and applications: Festschrift for Constance van Eeden. IMS lecture notes monograph series, vol 42. Institute of Mathematical Statistics, Beachwood, OH, pp 65–84Google Scholar
  6. Reiss RD (1989) Approximate distributions of order statistics. With applications to nonparametric statistics. Springer series in statistics. Springer, New York, NYGoogle Scholar
  7. Shorack GR, Wellner JA (1986) Empirical processes with applications to statistics. Wiley series in probability and mathematical statistics. Wiley, New York, NYGoogle Scholar
  8. Witting H (1985) Mathematische Statistik I: Parametrische Verfahren bei festem Stichprobenumfang. B. G. Teubner, StuttgartGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thorsten Dickhaus
    • 1
  1. 1.Institute for StatisticsUniversity of BremenBremenGermany

Personalised recommendations