Evaluation of the Physicochemical and Environmental Status of Qaraaoun Reservoir

Chapter
Part of the Water Science and Technology Library book series (WSTL, volume 85)

Abstract

Qaraaoun Reservoir, the largest freshwater body in Lebanon, is a vital organ for the Bekaa region. It is used for hydropower generation, fishing, crop irrigation, and tourist activities. In this chapter, we assess the evolution of its physico-chemical and ecological status and compare it with the results of previous studies. The lake, which is considered as monomictic, stratifies in spring and summer providing different physico-chemical compositions at different depths. The trophic state of the lake has not witnessed any improvements in the last 10 years. Its phytoplankton community has low biodiversity and is dominated by toxic cyanobacterial blooms Microcystis aeruginosa and Aphanizomenon ovalisporum. Due to these toxic blooms, using its water for swimming and drinking should be avoided under the present conditions. For safe use of its water, an effective management at the level of its watershed is highly recommended to improve water quality.

Keywords

Thermal stratification Water quality Cyanotoxins Eutrophication Plankton 

Notes

Acknowledgement

This work has been funded with support from the National Council for Scientific Research—Lebanon.

References

  1. Assaf H, Saadeh M (2008) Assessing water quality management options in the Upper Litani Basin, Lebanon, using an integrated GIS-based decision support system. Environ Model Softw 23:1327–1337.  https://doi.org/10.1016/j.envsoft.2008.03.006CrossRefGoogle Scholar
  2. Calace N, Di Muro A, Nardi E, Petronio BM, Pietroletti M (2002) Adsorption isotherms for describing heavy-metal retention in paper mill sludges. Ind Eng Chem Res 41:5491–5497.  https://doi.org/10.1021/ie011029uCrossRefGoogle Scholar
  3. Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:261–369CrossRefGoogle Scholar
  4. Chen Y, Qin B, Teubner K, Dokulil MT (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25:445–453.  https://doi.org/10.1093/plankt/25.4.445CrossRefGoogle Scholar
  5. Chorus I (2005) Water safety plans: a better regulatory approach to prevent human exposure to harmful cyanobacteria. In: Huisman J, Matthijs HCP (eds) Harmful Cyanobacteria. Springer, p 201–227Google Scholar
  6. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Ocean 51:2388–2397CrossRefGoogle Scholar
  7. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118Google Scholar
  8. Ebrahimpour M, Pourkhabbaz A, Baramaki R, Babaei H, Rezaei M (2011) Bioaccumulation of heavy metals in freshwater fish species, Anzali, Iran. Bull Environ Contam Toxicol 87:386–392CrossRefGoogle Scholar
  9. European Parliament Council (2000) Directive 2000/ 60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Communities L327:1–72Google Scholar
  10. Fadel A (2014) Physico-chemical functioning and development of phytoplankton in Karaoun reservoir (Lebanon): application of a hydrodynamic-ecological model. Doctoral dissertation, Paris EstGoogle Scholar
  11. Fadel A, Lemaire BJ, Atoui A, Vinçon-Leite B, Amacha N, Slim K, Tassin B (2014a) First assessment of the ecological status of Karaoun Reservoir, Lebanon. Lakes Reserv Res Manag 19:142–157CrossRefGoogle Scholar
  12. Fadel A, Atoui A, Lemaire B, Vinçon-Leite B, Slim K (2014b) Dynamics of the toxin cylindrospermopsin and the cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum in a Mediterranean eutrophic reservoir. Toxins 6:3041–3057CrossRefGoogle Scholar
  13. Fadel A, Atoui A, Lemaire BJ, Vinçon-Leite B, Slim K (2015) Environmental factors associated with phytoplankton succession in a Mediterranean reservoir with a highly fluctuating water level. Environ Monit Assess 187:633.  https://doi.org/10.1007/s10661-015-4852-4CrossRefGoogle Scholar
  14. Fadel A, Faour G, Slim K (2016) Assessment of the trophic state and chlorophyll-a concentrations using Landsat OLI in Karaoun reservoir. Lebanon Leban Sci J 17:130CrossRefGoogle Scholar
  15. Fadel A, Lemaire BJ, Vinçon-Leite B, Atoui A, Slim K, Tassin B (2017) On the successful use of a simplified model to simulate the succession of toxic cyanobacteria in a hypereutrophic reservoir with a highly fluctuating water level. Environ Sci Pollut Res Int, 1–15. doi:  https://doi.org/10.1007/s11356-017-9723-9
  16. Gupta A, Rai D, Pandey R, Sharma B (2009) Analysis of some heavy metals in the riverine water, sediments and fish from river Ganges at Allahabad. Environ Monit Assess 157:449–458.  https://doi.org/10.1007/s10661-008-0547-4CrossRefGoogle Scholar
  17. Hardy FJ, Johnson A, Hamel K, Preece E (2015) Cyanotoxin bioaccumulation in freshwater fish, Washington State, USA. Environ Monit Assess 187:667.  https://doi.org/10.1007/s10661-015-4875-xCrossRefGoogle Scholar
  18. Humphries SE, Lyne VD (1988) Cyanophyte blooms: the role of cell buoyancy. Limnol Oceanogr 33:79–91CrossRefGoogle Scholar
  19. Imai H, Chang KH, Nakano S (2009) Growth responses of harmful algal species Microcystis (cyanophyceae) under various environmental conditions. In: Obayashi Y, Isobe T, Subramanian A, Suzuki S, Tanabe S (eds) Interdisciplinary studies on environmental chemistry-environmental research in AsGoogle Scholar
  20. Jurdi M, Ibrahim Korfali S, Karahagopian Y, Davies BE (2002) Evaluation of water quality of the Qaraaoun reservoir, Lebanon: suitability for multipurpose usage. Environ Monit Assess 77:11–30.  https://doi.org/10.1023/a:1015781930601CrossRefGoogle Scholar
  21. Kiefer I, Odermatt D, Anneville O, Wüest A, Bouffard D (2015) Application of remote sensing for the optimization of in-situ sampling for monitoring of phytoplankton abundance in a large lake. Sci Total Environ 527–528:493–506.  https://doi.org/10.1016/j.scitotenv.2015.05.011CrossRefGoogle Scholar
  22. Kling GW (1988) Comparative transparency, depth of mixing, and stability of stratification in lakes of Cameroon, West Africa. Limnol Oceanogr 33:27–40CrossRefGoogle Scholar
  23. Korfali S, Jurdi M (2010) Speciation of metals in bed sediments and water of Qaraaoun Reservoir, Lebanon. Environ Monit Assess 178:563–579CrossRefGoogle Scholar
  24. Kouzayha A (2011) Développement des méthodes analytiques pour la détection et la quantification de traces des HAP et de pesticides dans l’eau. Application à l’évaluation de la qualité des eaux libanaises. Doctoral dissertation, Université Sciences et Technologies-Bordeaux IGoogle Scholar
  25. Lawson R, Anderson MA (2007) Stratification and mixing in Lake Elsinore, California: an assessment of axial flow pumps for improving water quality in a shallow eutrophic lake. Water Res 41:4457–4467.  https://doi.org/10.1016/j.watres.2007.06.004CrossRefGoogle Scholar
  26. Litani Basin Management Advisory Services (2005) Technical survey report. Development Alternatives, Inc. (DAI), LebanonGoogle Scholar
  27. Malik N, Biswas A, Qureshi T, Borana K, Virha R (2010) Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environ Monit Assess 160:267–276.  https://doi.org/10.1007/s10661-008-0693-8CrossRefGoogle Scholar
  28. Matsumura-Tundisi T, Tundisi JG, Luzia AP, Degani RM (2010) Occurrence of Ceratium furcoides (Levander) Langhans 1925 bloom at the Billings reservoir, Sao Paulo state, Brazil. Brazilian J Biol 70:825–829CrossRefGoogle Scholar
  29. Mishra S (2012) Remote sensing of cyanobacteria in turbid productive waters. AquacultureGoogle Scholar
  30. Moreno-Ostos E, Cruz-Pizarro L, Basanta-Alvés A, Escot C, George DG (2006) Algae in the motion: spatial distribution of phytoplankton in thermally stratified reservoirs. Limnetica 25:205–216Google Scholar
  31. Mortimer MR, Connell DW (1995) Effect of exposure to chlorobenzenes on growth-rates of the crab Portunus-Pelagicus (L). Environ Sci Technol 29:1881–1886CrossRefGoogle Scholar
  32. Naselli-Flores L (2003) Man-made lakes in Mediterranean semi-arid climate: the strange case of Dr Deep Lake and Mr Shallow Lake. Hydrobiologia 506–509:13–21.  https://doi.org/10.1023/b:hydr.0000008550.34409.06CrossRefGoogle Scholar
  33. Paerl HW, Paul VJ (2012) Climate change: links to global expansion of harmful cyanobacteria. Water Res 46:1349–1363CrossRefGoogle Scholar
  34. Palmer SCJ, Kutser T, Hunter PD (2015) Remote sensing of inland waters: challenges, progress and future directions. Remote Sens Environ 157:1–8.  https://doi.org/10.1016/j.rse.2014.09.021CrossRefGoogle Scholar
  35. Pawlik-Skowrońska B, Kalinowska R, Skowroński T (2013) Cyanotoxin diversity and food web bioaccumulation in a reservoir with decreasing phosphorus concentrations and perennial cyanobacterial blooms. Harmful Algae 28:118–125.  https://doi.org/10.1016/j.hal.2013.06.002CrossRefGoogle Scholar
  36. Piha H, Zampoukas N (2011) Review of methodological standards related to the marine strategy framework directive criteria on good environmental status. Publications Office of the European Union, Luxembourg.  https://doi.org/10.2788/60512
  37. Quinn MR, Feng X, Folt CL, Chamberlain CP (2003) Analyzing trophic transfer of metals in stream food webs using nitrogen isotopes. Sci Total Environ 317:73–89CrossRefGoogle Scholar
  38. Raikwar MK, Kumar P, Singh M, Singh A (2008) Toxic effect of heavy metals in livestock health. Vet World 1:28–30CrossRefGoogle Scholar
  39. Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, United States of AmericaCrossRefGoogle Scholar
  40. Robarts RD, Zohary T (1987) Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. New Zeal J Mar Freshw Res 21:391–399CrossRefGoogle Scholar
  41. Rohrlack T, Henning M, Kohl JG (1999) Mechanisms of the inhibitory effect of the cyanobacterium Microcystis aeruginosa on Daphnia galeata’s ingestion rate. J Plankton Res 21:1489–1500.  https://doi.org/10.1093/plankt/21.8.1489CrossRefGoogle Scholar
  42. Saad Z, Slim K, Elzein G, Elsamad O (2005) Evaluation of the water quality of Karaoun reservoir (Lebanon). Bull Soc Neuchatel Sci Nat 128:71–80Google Scholar
  43. Saadeh M, Semerjian L, Amacha N (2012) Physicochemical evaluation of the Upper Litani river watershed, Lebanon. Sci World J 2012: 8.  https://doi.org/10.1100/2012/462467
  44. Sarnelle O (2007) Initial conditions mediate the interaction between daphnia and bloom-forming cyanobacteria. Limnol Oceanogr 52:2120–2127CrossRefGoogle Scholar
  45. Slim K (1996) Contribution to the study of the flora of the basin of the Litani basin. Leb Sci Res Rep 1:65–73Google Scholar
  46. Slim K, Fadel A, Atoui A, Lemaire BJ, Vinçon-Leite B, Tassin B (2014) Global warming as a driving factor for cyanobacterial blooms in Lake Karaoun, Lebanon. Desalin Water Treat 52:2094–2101.  https://doi.org/10.1080/19443994.2013.822328CrossRefGoogle Scholar
  47. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10:126–139.  https://doi.org/10.1065/espr2002.12.142CrossRefGoogle Scholar
  48. Stephenson A, Labounskaia I, Stringer R (1998) Heavy metal and organic screen analysis of environmental and waste samples associated with industrial activities in Lebanon, Sept 1997. Greenpeace Research Laboratory, University of Exeter, UKGoogle Scholar
  49. Temsah M, Tarhini K, Fadel A, Slim K (2016) Effect of irrigation with lake water containing cylindrospermopsin toxin on seed germination and seedlings growth of Cucumis sativus and Lycopersicon esculatum. Int J Sci Basic Appl Res 27:108–122Google Scholar
  50. United Nations Development Program (1970) Etude des eaux souterraines. Programme des Nations Unies pour le developpement. NY, DP/SF/UN/44, Lebanon, p 185Google Scholar
  51. Valdespino-Castillo P, Merino-Ibarra M, Jiménez-Contreras J, Castillo-Sandoval F, Ramirez-Zierold JA (2014) Community metabolism in a deep (stratified) tropical reservoir during a period of high water-level fluctuations. Environ Monit Assess 186:6505–6520.  https://doi.org/10.1007/s10661-014-3870-yCrossRefGoogle Scholar
  52. Vinikour WS, Goldstein RM, Anderson RV (1980) Bioconcentration patterns of zinc, copper, cadmium and lead in selected fish species from the Fox river, Illinois. Bull Environ Contam Toxicol 24:727–734.  https://doi.org/10.1007/bf01608180CrossRefGoogle Scholar
  53. Wang W, Liu Y, Yang Z (2010) Combined effects of nitrogen content in media and Ochromonas sp grazing on colony formation of cultured Microcystis aeruginosa. J Limnol 69:193–198.  https://doi.org/10.3274/jl10-69-2-01CrossRefGoogle Scholar
  54. Zhang X, Warming TP, Hu H-Y, Christoffersen KS (2009) Life history responses of Daphnia magna feeding on toxic Microcystis aeruginosa alone and mixed with a mixotrophic Poterioochromonas species. Water Res 43:5053–5062CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Center for Remote Sensing, National Council for Scientific ResearchBeirutLebanon
  2. 2.Lebanese Atomic Energy Commission, National Council for Scientific ResearchBeirutLebanon

Personalised recommendations