Motion of a Single Particle in an Idealised Penning Trap

  • Manuel VogelEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)


This chapter is concerned with the motion that is performed by a single confined test particle in a Penning trap. For now we disregard any realisation of a Penning trap and see it as the abstract combination of an ideally homogeneous static magnetic field \(B_0\) perfectly aligned with a quadrupolar electrostatic potential U that creates a harmonic well across a ‘characteristic trap size’ d. We are concerned only with the motion of a single test particle of mass m and electric charge q in such an arrangement. Later we will discuss the effects that arise when each of these idealisations are dropped.


  1. 1.
    M. Kretzschmar, Particle motion in a Penning trap. Eur. J. Phys. 12, 240 (1991)CrossRefGoogle Scholar
  2. 2.
    R.C. Thompson, D.C. Wilson, The motion of small numbers of ions in a Penning trap. Z. Phys. D 42, 271 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)Google Scholar
  4. 4.
    L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    G.Z.K. Horvath, J.-L. Hernandez-Pozos, K. Dholakia, J. Rink, D.M. Segal, R.C. Thompson, Ion dynamics in perturbed quadrupole ion traps. Phys. Rev. A 57, 1944 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    R.J. Whitaker, Mathematics of the Spirograph. Sch. Sci. Math. 88, 554 (2010)CrossRefGoogle Scholar
  7. 7.
    T.G. Northrop, The guiding center approximation to charged particle motion. Ann. Phys. 15, 79 (1961)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    T.S. Pedersen, The guiding center approximation, in Trapped Charged Particles, ed. by M. Knoop, N. Madsen, R.C. Thompson (World Scientific, 2016)Google Scholar
  9. 9.
    C.J. Foot, Atomic Physics, Oxford Master Series in Atomic, Optical and Laser Physics (Oxford University Press, Oxford, 2005, reprint 2009)Google Scholar
  10. 10.
    Y. Yaremko, Relativistic shifts of eigenfrequencies in an ideal Penning trap. Int. J. Mass Spectrom. 405, 64 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Yaremko, M. Przybylska, A.J. Maciejewski, Dynamics of a relativistic charge in the Penning trap. Chaos 25, 053102 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Remy Mosseri, Leon Brillouin (1889–1969). A la croisee des ondes, Belin, Paris, ISBN 2-7011-2299-6 (1999)Google Scholar
  13. 13.
    R.C. Thompson, Penning traps, in Trapped Charged Particles, ed. by M. Knoop, N. Madsen, R.C. Thompson (World Scientific, 2016)Google Scholar
  14. 14.
    P. Ghosh, Ion Traps (Oxford University Press, Oxford, 1995)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations