Microwave Spectroscopy

Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)

Abstract

Microwave spectroscopy of confined particles in Penning traps is mainly applied to magnetic dipole transitions in various contexts. The strong magnetic field of the Penning trap gives rise to significant spin orientation energies and to Zeeman splitting of lines, which can be used for precision spectroscopy of magnetic dipole transitions and the determination of magnetic moments. Prominent examples are the precision measurements of the magnetic moments (g-factors) of the free (unbound) electron, proton and their anti-particles, as well as of the bound electron by Larmor frequency measurements, and in general the application to the Zeeman splitting of levels that occurs due to the presence of magnetic field used for confinement. We will discuss these applications in detail below.

References

  1. 1.
    J.J. Bollinger, et al., Laser Spectroscopy VI, ed. by H.P. Weber, W. Luthy (Springer, Berlin, 1983)Google Scholar
  2. 2.
    G. Tommaseo et al., The \(g_J\)-factor in the ground state of Ca\(^+\). Eur. Phys. J. D 25, 113 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    M. Chwalla et al., Absolute frequency measurement of the \(^{40}\)Ca\(^+\) 4s2S\(_{1/2}\) - 3d2D\(_{5/2}\) clock transition. Phys. Rev. Lett. 102, 023002 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    G. Marx, G. Tommaseo, G. Werth, Precise \(g_J\)- and \(g_I\)-factor measurements of Ba\(^+\) isotopes. Eur. Phys. J. D 4, 279 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    K.H. Knoell et al., Experimental \(g_J\) factor in the metastable 5D\(_{3/2}\) level of Ba\(^+\). Phys. Rev. A 54, 1199 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    R.J. Rafac et al., Sub-dekahertz ultraviolet spectroscopy of \(^{199}\)Hg\(^+\). Phys. Rev. Lett. 85, 2462 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    R. Loch, R. Stengler, G. Werth, Measurement of the electronic g factor of H\(_2^+\). Phys. Rev. A 38, 5484 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    W.M. Itano, D.J. Wineland, Precision measurement of the ground-state hyperfine constant of \(^{25}\)Mg\(^+\). Phys. Rev. A 24, 1364 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)CrossRefGoogle Scholar
  10. 10.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)Google Scholar
  11. 11.
    W. Demtröder, Elektrizität und Optik (Springer, Heidelberg, 2006)MATHGoogle Scholar
  12. 12.
    D.M. Pozar, Microwave Engineering, 4th edn. (Wiley, Hoboken, NJ, 2005)Google Scholar
  13. 13.
    W. Demtröder, Laser Spectroscopy (Springer, Heidelberg, 2003)CrossRefGoogle Scholar
  14. 14.
    C.J. Foot, Atomic Physics (Oxford University Press, Oxford, 2009)MATHGoogle Scholar
  15. 15.
    D.L. Moskovkin, V.M. Shabaev, Zeeman effect of the hyperfine-structure levels in hydrogenlike ions. Phys. Rev. A 73, 052506 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    H. Häffner et al., Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22, 163 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    R.S. Van Dyck, Jr., P.B. Schwinberg, H.G. Dehmelt, in Atomic Physics 9, ed. by R.S. Van Dyck, Jr., E.N. Fortson (World Scientific, Singapore, 1984)Google Scholar
  19. 19.
    H. Häffner, Präzisionsmessung des magnetischen Moments des Elektrons in wasserstoffähnlichen Kohlenstoff, Ph.D. thesis, University of Mainz, 2000Google Scholar
  20. 20.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961)Google Scholar
  21. 21.
    H. Häffner et al., High-accuracy measurement of the magnetic moment anomaly of the electron bound in Hydrogen-like Carbon. Phys. Rev. Lett. 85, 5308 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    J. Verdú et al., Electronic \(g\) factor of Hydrogen-like Oxygen \(^{16}\)O\(^{7+}\). Phys. Rev. Lett. 92, 093002 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    J. Verdú et al., Determination of the \(g\)-factor of single Hydrogen-like ions by mode coupling in a Penning trap. Phys. Scripta T112, 68 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    S. Sturm et al., g Factor of Hydrogen-like \(^{28}\)Si\(^{13+}\). Phys. Rev. Lett. 107, 023002 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations