Motional Cooling in Penning Traps

Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)

Abstract

The possibility to cool the motions of confined particles is one key motivation for the use of Penning traps, particularly in precision spectroscopy in any frequency domain. Here, we discuss the notion of a particle temperature, its measurement in different experimental situations, and review the most important cooling techniques applied in Penning traps.

References

  1. 1.
    W.M. Itano, J.C. Bergquist, J.J. Bollinger, D.J. Wineland, Cooling methods in ion traps. Phys. Scr. T59, 106 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Wineland, H.G. Dehmelt, Principles of the stored ion calorimeter. J. Appl. Phys. 46, 919 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    M. Vogel et al., Resistive and sympathetic cooling of highly-charged-ion clouds in a Penning trap. Phys. Rev. A 90, 043412 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    J.F. Goodwin, G. Stutter, R.C. Thompson, D.M. Segal, Resolved-sideband laser cooling in a Penning trap. Phys. Rev. Lett. 116, 143002 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    W.M. Itano, D.J. Wineland, Laser cooling of ions stored in harmonic and Penning traps. Phys. Rev. A 25, 35 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    J. Eschner, G. Morigi, F. Schmidt-Kaler, R. Blatt, Laser cooling of trapped ions. J. Opt. Soc. Am. B 20, 1003 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    S. Djekic et al., Temperature measurement of a single ion in a Penning trap. Eur. Phys. J. D 31, 451 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    B. D’Urso, B. Odom, G. Gabrielse, Feedback cooling of a one-electron oscillator. Phys. Rev. Lett. 90, 043001 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    A. Mooser et al., Demonstration of the double Penning trap technique with a single proton. Phys. Lett. B 723, 78 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    D.A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976)MATHGoogle Scholar
  11. 11.
    M.J. Jensen, T. Hasegawa, J.J. Bollinger, Temperature and heating rate of ion crystals in Penning traps. Phys. Rev. A 70, 033401 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    M.J. Jensen, T. Hasegawa, J.J. Bollinger, Temperature measurements of laser-cooled ions in a Penning trap, in: Non Neutral Plasmas V, AIP Conf. Proceedings vol. 692 (2003), p. 193Google Scholar
  13. 13.
    E.A. Cornell, R.M. Weisskoff, K.R. Boyce, D.E. Pritchard, Mode coupling in a Penning trap: \(\pi \) pulses and a classical avoided crossing. Phys. Rev. A 41, 312 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    H. Häffner et al., Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22, 163 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    J. Verdu, Ultrapräzise Messung des elektronischen g-Faktors in wasserstoffähnlichem Sauerstoff, Ph.D. thesis, University of Mainz (2003)Google Scholar
  16. 16.
    W. Nagourney, G. Janik, H. Dehmelt, Linewidth of single laser-cooled Mg ion in radiofrequency trap. Proc. Natl. Acad. Sci. U S A 80, 643 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    W. Neuhauser, M. Hohenstatt, P.E. Toschek, H.G. Dehmelt, Optical-sideband cooling of visible atom cloud confined in parabolic well. Phys. Rev. Lett. 41, 233 (1978)ADSCrossRefGoogle Scholar
  18. 18.
    D.J. Wineland, R.E. Drullinger, F.L. Walls, Radiation-pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 40, 1639 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    F. Diedrich et al., Observation of a phase transition of stored laser-cooled ions. Phys. Rev. Lett. 59, 2931 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    J.C. Bergquist, W.M. Itano, D.J. Wineland, Recoilless optical absorption and Doppler sidebands of a single trapped ion. Phys. Rev. A 36, 428 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    F. Diedrich, J.C. Bergquist, W.M. Itano, and D.J. Wineland, Laser Cooling to the Zero-Point Energy of Motion, Phys. Rev. Lett. 62, 403 (1989)Google Scholar
  22. 22.
    C. Champenois, Laser cooling techniques applicable to trapped ions, in: Trapped Charged Particles, ed. by M. Knoop, N. Madsen, R.C. Thompson (World Scientific, Singapore, 2016)Google Scholar
  23. 23.
    W. Demtröder, Laser Spectroscopy (Springer, Heidelberg, 2003)CrossRefGoogle Scholar
  24. 24.
    H.J. Metcalf, P. Straten, Laser Cooling and Trapping of Neutral Atoms (Wiley Online Library, 2007)Google Scholar
  25. 25.
    R.C. Thompson, G.P. Barwood, P. Gill, Laser cooling of magnesium ions confined in a Penning trap. Optica Acta 33, 535 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    K. Dholakia et al., Investigation of ion dynamics in a Penning trap using a pulse-probe technique. Appl. Phys. B 60, 375 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    G. Birkl, S. Kassner, H. Walther, Multiple-shell structures of laser-cooled \(^{24}\)Mg\(^+\) ions in a quadrupole storage ring. Nature 357, 310 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    C.J. Foot, Atomic Physics, Oxford Master Series in Atomic, Optical and Laser Physics, Oxford University Press (2005, reprint 2009)Google Scholar
  29. 29.
    G.Zs.K. Horvath, R.C. Thompson, Laser cooling of ions stored in a Penning trap: a phase-space picture. Phys. Rev. A 59, 4530 (1999)Google Scholar
  30. 30.
    R.C. Thompson, J. Papadimitriou, Simple model for the laser cooling of an ion in a Penning trap. J. Phys. B. 33, 3393 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    W.M. Itano, L.R. Brewer, D.J. Larson, D.J. Wineland, Perpendicular laser cooling of a rotating ion plasma in a Penning trap. Phys. Rev. A 38, 5698 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    S. Mavadia, Motional Sideband Spectra and Coulomb Crystals in a Penning Trap, Ph.D. thesis, Imperial College London (2013)Google Scholar
  33. 33.
    J.F. Goodwin, Sideband Cooling to the Quantum Ground State in a Penning Trap, Ph.D. thesis, Imperial College London (2015)Google Scholar
  34. 34.
    S.B. Torrisi, J.W. Britton, J.G. Bohnet, J.J. Bollinger, Perpendicular laser cooling with a rotating-wall potential in a Penning trap. Phys. Rev. A 93, 043421 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)Google Scholar
  36. 36.
    R.C. Thompson, Ion Coulomb crystals. Contemp. Phys. 56, 63 (2015)ADSGoogle Scholar
  37. 37.
    W.M. Itano, J.C. Bergquist, J.J. Bollinger, D.J. Wineland, Laser Cooling of Trapped Ions (North-Holland, 1992)Google Scholar
  38. 38.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, 1972)Google Scholar
  39. 39.
    S. Mavadia, G. Stutter, J.F. Goodwin, D.R. Crick, R.C. Thompson, D.M. Segal, Optical sideband spectroscopy of a single ion in a Penning trap. Phys. Rev. A 89, 032502 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    L. Gruber, J.P. Holder, D. Schneider, Formation of strongly coupled plasmas from multi-component ions in a Penning trap. Phys. Scr. 71, 60 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    J.H. Wesenberg et al., Fluorescence during Doppler cooling of a single trapped atom. Phys. Rev. A 76, 053416 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    M. Kretzschmar, Particle motion in a Penning trap. Eur. J. Phys. 12, 240 (1991)CrossRefGoogle Scholar
  43. 43.
    H.W. Ellis, R.Y. Pai, E.W. McDaniel, E.A. Mason, L.A. Viehland, Transport properties of gaseous ions over a wide energy range. Part I. At. Data Nucl. Data Tables 17, 177 (1976)ADSCrossRefGoogle Scholar
  44. 44.
    H.W. Ellis, E.W. McDaniel, D.L. Albritton, L.A. Viehland, S.L. Lin, E.A. Mason, Transport properties of gaseous ions over a wide energy range. Part I. At. Data Nucl. Data Tables 22, 197 (1978)CrossRefGoogle Scholar
  45. 45.
    H.W. Ellis, M.G. Thackston, E.W. McDaniel, E.A. Mason, Transport properties of gaseous ions over a wide energy range. Part III. At. Data Nucl. Data Tables 31, 113 (1984)ADSCrossRefGoogle Scholar
  46. 46.
    T. Murböck et al., Rapid crystallization of externally produced ions in a Penning trap. Phys. Rev. A 94, 043410 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    G. Morigi, J. Eschner, C. Keitel, Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett. 85, 4458 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    C.F. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, R. Blatt, Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. Phys. Rev. Lett. 85, 5547 (2000)ADSCrossRefGoogle Scholar
  49. 49.
    F. Schmidt-Kaler, J. Eschner, G. Morigi, C.F. Roos, D. Leibfried, A. Mundt, R. Blatt, Laser cooling with electromagnetically induced transparency: application to trapped samples of ions or neutral atoms. Appl. Phys. B 73, 807 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    S.E. Harris, Electromagnetically induced transparency. Phys. Today 50, 36 (1997)CrossRefGoogle Scholar
  51. 51.
    J. Dalibard, C. Cohen-Tanoudji, Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023 (1989)ADSCrossRefGoogle Scholar
  52. 52.
    S.M. Yoo, J. Javanainen, Polarization gradient cooling of a Trapped ion. Phys. Rev. A 48, R30 (1993)Google Scholar
  53. 53.
    G. Birkl, J.A. Yeazell, R. Rückerl, H. Walther, Polarization gradient cooling of Trapped ions. Europhys. Lett. 27, 197 (1994)ADSCrossRefGoogle Scholar
  54. 54.
    J. Dalibard, C. Cohen-Tannoudji, Dressed-atom approach to atomic motion in laser light: the dipole force revisited. J. Opt. Soc. Am. B 2, 1707 (1985)ADSCrossRefGoogle Scholar
  55. 55.
    M. Kasevich, S. Chu, Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett. 69, 1741 (1992)ADSCrossRefGoogle Scholar
  56. 56.
    C. Monroe et al., Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011 (1995)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    G. Savard et al., A new cooling technique for heavy ions in a Penning trap. Phys. Lett. A 158, 247 (1991)ADSCrossRefGoogle Scholar
  58. 58.
    H.-U. Hasse et al., External-ion accumulation in a Penning trap with quadrupole excitation assisted buffer gas cooling. Int. J. Mass Spectrom. Ion Processes 132, 181 (1994)ADSCrossRefGoogle Scholar
  59. 59.
    K.M. Ervin, Experimental techniques in gas-phase ion thermochemistry. Chem. Rev. 101, 391 (2001)CrossRefGoogle Scholar
  60. 60.
    S. Krückeberg et al., Multiple-collision induced dissociation of trapped silver clusters. J. Chem. Phys 110, 7216 (1999)ADSCrossRefGoogle Scholar
  61. 61.
    D. Fischer et al., Fully differential cross sections for the single ionization of helium by ion impact. J. Phys. B. 36, 3555 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    M. Kretzschmar, Calculating damping effects for the ion motion in a Penning trap. Eur. Phys. J. D 48, 313 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    W. Ketterle, N.J. van Druten, Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181 (1996)ADSCrossRefGoogle Scholar
  64. 64.
    T. Greytak, Prospects for Bose-Einstein condensation in magnetically trapped atomic hydrogen, in Bose-Einstein Condensation, ed. by A. Griffin, D. Snoke, S. Stringari (Cambridge University, Cambridge, UK, 1995)Google Scholar
  65. 65.
    M.B. Schneider, M.A. Levine, C.L. Bennett, J.R. Henderson, D.A. Knapp, R.E. Marrs, in Electron Beam Ion Sources and Their Applications, AIP Conference Proceedings, vol. 188, ed. by A. Hershcovitch (American Institute of Physics, New York, 1989)Google Scholar
  66. 66.
    B.M. Penetrante, D. Schneider, R.E. Marrs, J.N. Bardsley, Modeling the ion source performance of an electron beam ion trap. Rev. Sci. Instrum. 63, 2806 (1992)ADSCrossRefGoogle Scholar
  67. 67.
    I. Bergström, C. Carlberg, T. Fritioff, G. Douysset, J. Schnfelder, R. Schuch, SMILETRAP Penning trap facility for precision mass measurements using highly charged ions. Nucl. Instr. Meth. A 487, 618 (2002)ADSCrossRefGoogle Scholar
  68. 68.
    W. Shockley, Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635 (1938)ADSCrossRefGoogle Scholar
  69. 69.
    Z. He, Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl. Inst. Meth. A 463, 250 (2001)ADSCrossRefGoogle Scholar
  70. 70.
    L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  71. 71.
    P. Ghosh, Ion Traps (Oxford University Press, Oxford, 1995)Google Scholar
  72. 72.
    X. Feng et al., Tank circuit model applied to particles in a Penning trap. J. Appl. Phys. 79, 8 (1996)ADSCrossRefGoogle Scholar
  73. 73.
    D.F.A. Winters, M. Vogel, D.M. Segal, R.C. Thompson, Electronic detection of charged particle effects in a Penning trap. J. Phys. B 39, 3131 (2006)ADSCrossRefGoogle Scholar
  74. 74.
    P. Horowitz, W. Hill, The Art of Electronics (Cambridge University Press, Cambridge, 1989)Google Scholar
  75. 75.
    S. van Gorp et al., Simbuca, using a graphics card to simulate Coulomb interactions in a Penning trap. Nucl. Instr. Meth. A 638, 192 (2011)ADSCrossRefGoogle Scholar
  76. 76.
    J. Steinmann, Modellierung und Simulation der Widerstandskuehlung von hochgeladenen Ionen, Ph.D. thesis, University of Erlangen-Nürnberg (2015)Google Scholar
  77. 77.
    G. Gabrielse, L. Haarsma, S.L. Rolston, Open-endcap Penning traps for high precision experiments. Int. J. Mass Spectrom. Ion Processes 88, 319 (1989)ADSCrossRefGoogle Scholar
  78. 78.
    G. Gabrielse, F.C. Macintosh, Cylindrical Penning traps with orthogonalized anharmonicity compensation. Int. J. Mass. Spectrom. Ion Processes 57, 1 (1984)ADSCrossRefGoogle Scholar
  79. 79.
    D.J. Wineland, H.G. Dehmelt, Line shifts and widths of axial, cyclotron and G-2 resonances in tailored, stored electron (ion) cloud. Int. J. Mass Spectrom. Ion Processes 16, 338 (1975) and 19, 251 (1976)Google Scholar
  80. 80.
    S. Ulmer et al., The quality factor of a superconducting rf resonator in a magnetic field. Rev. Sci. Instrum. 80, 123302 (2009)ADSCrossRefGoogle Scholar
  81. 81.
    J.B. Johnson, Thermal agitation of electricity in conductors. Phys. Rev. 32, 97 (1928)ADSCrossRefGoogle Scholar
  82. 82.
    H. Nyquist, Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110 (1928)ADSCrossRefGoogle Scholar
  83. 83.
    S. Ulmer, C. Smorra, The magnetic moments of the proton and the antiproton, in Fundamental Physics in Particle Traps, Springer Tracts in Modern Physics, vol. 256 (Springer, 2014)Google Scholar
  84. 84.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)CrossRefGoogle Scholar
  85. 85.
    J. Steinmann, J. Groß, F. Herfurth, G. Zwicknagel, MD simulations of resistive cooling in HITRAP using GPUs, in AIP Conference Proceedings, vol. 1521 (2013), p. 240Google Scholar
  86. 86.
    G. Maero et al., Numerical investigations on resistive cooling of trapped highly charged ions. Appl. Phys. B 107, 1087 (2012)ADSCrossRefGoogle Scholar
  87. 87.
    G. Maero, Cooling of highly charged ions in a Penning trap for HITRAP, Ph.D. thesis, University of Heidelberg (2008)Google Scholar
  88. 88.
    B. d’Urso, Cooling and Self-Excitation of a One-Electron Oscillator, Ph.D. thesis, Harvard (2003)Google Scholar
  89. 89.
    N. Beverini et al., Experimental verification of stochastic cooling in Penning trap. Phys. Scr. T22, 238 (1988)ADSCrossRefGoogle Scholar
  90. 90.
    R.E. Drullinger, D.J. Wineland, J.C. Bergquist, High-resolution optical spectra of laser cooled ions. Appl. Phys. 22, 365 (1980)ADSCrossRefGoogle Scholar
  91. 91.
    M.A. van Eijkelenborg, M.E.M. Storkey, D.M. Segal, R.C. Thompson, Sympathetic cooling and detection of molecular ions in a Penning trap. Phys. Rev. A 60, 3903 (1999)ADSCrossRefGoogle Scholar
  92. 92.
    NRL Plasma Formulary, J.D. Huba, Beam Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (2013)Google Scholar
  93. 93.
    L. Gruber et al., Evidence for highly charged ion coulomb crystallization in multicomponent strongly coupled plasmas. Phys. Rev. Lett. 86, 636 (2001)ADSCrossRefGoogle Scholar
  94. 94.
    M. Vogel, W. Quint, Trap-assisted precision spectroscopy of forbidden transitions in highly charged ions. Phys. Rep. 490, 1 (2010)ADSCrossRefGoogle Scholar
  95. 95.
    G. Gabrielse et al., Cooling and slowing of trapped antiprotons below 100 meV. Phys. Rev. Lett. 63, 1360 (1989)ADSCrossRefGoogle Scholar
  96. 96.
    G. Gabrielse et al., Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198 (1999)ADSCrossRefGoogle Scholar
  97. 97.
    H. Higaki et al., Electron cooling of high-energy protons in a multiring trap with a tank circuit monitoring the electron-plasma oscillations. Phys. Rev. E 65, 046410 (2003)ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    N. Oshima et al., Development of a cold HCI source for ultra-slow collisions. Nucl. Instr. Meth. B 205, 178 (2003)ADSCrossRefGoogle Scholar
  99. 99.
    A. Mohri et al., in Proceedings of Non Neutral Physics IV, AIP, New York, ed. by F. Anderegg et al. (2002), pp. 634640Google Scholar
  100. 100.
    J. Bernard et al., Electron and positron cooling of highly charged ions in a cooler Penning trap. Nucl. Instr. Meth. A 532, 224 (2004)ADSCrossRefGoogle Scholar
  101. 101.
    B.E. Schultz et al., Cooling of highly-charged, short-lived ions for precision mass spectrometry at TRIUMF’s Ion Trap for Atomic and Nuclear Science. Phys. Scr. T156, 014097 (2013)ADSCrossRefGoogle Scholar
  102. 102.
    M. Bohmann et al., Sympathetic cooling of protons and antiprotons with a common endcap Penning trap. J. Mod. Opt. (2017),  https://doi.org/10.1080/09500340.2017.1404656
  103. 103.
    D.J. Heinzen, D.J. Wineland, Quantum-limited cooling and detection of radiofrequency oscillations by laser-cooled ions. Phys. Rev. A 42, 2977 (1990)ADSCrossRefGoogle Scholar
  104. 104.
    W. Schottky, Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern. Ann. Phys. 57, 541 (1918)CrossRefGoogle Scholar
  105. 105.
    YaM Blanter, M. Büttiker, Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–166 (2000)ADSCrossRefGoogle Scholar
  106. 106.
    R.F. Voss, J. Clarke, Flicker (1/f) noise: equilibrium temperature and resistance fluctuations. Phys. Rev. B. 13, 556 (1976)ADSCrossRefGoogle Scholar
  107. 107.
    H.G.E. Beck, W.P. Spruit, 1/f noise in the variance of Johnson noise. J. Appl. Phys. 49, 3384 (1978)ADSCrossRefGoogle Scholar
  108. 108.
    J. Labaziewicz et al., Temperature dependence of electric field noise above gold surfaces. Phys. Rev. Lett. 101, 180602 (2008)ADSCrossRefGoogle Scholar
  109. 109.
    M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Ion-trap measurements of electric-field noise near surfaces. Rev. Mod. Phys. 87, 1419 (2015)ADSCrossRefGoogle Scholar
  110. 110.
    A. Safavi-Naini, P. Rabl, P.F. Weck, H.R. Sadeghpour, Microscopic model of electric-field-noise heating in ion traps. Phys. Rev. A 84, 023412 (2011)ADSCrossRefGoogle Scholar
  111. 111.
    G.Z. Li, R. Poggiani, G. Testera, G. Werth, Adiabatic cooling of ions in the penning trap. Z. Phys. D 22, 375 (1991)ADSCrossRefGoogle Scholar
  112. 112.
    G. Gabrielse et al., Adiabatic cooling of antiprotons. Phys. Rev. Lett. 106, 073002 (2011)ADSCrossRefGoogle Scholar
  113. 113.
    S.L. Rolston, G. Gabrielse, Cooling antiprotons in an ion trap. Hyperfine Interact. 44, 233 (1988)ADSCrossRefGoogle Scholar
  114. 114.
    F.G. Major, The Quantum Beat: the Physical Principles of Atomic Clocks (Springer, Berlin, 1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations