Advertisement

Radiation Therapy for Spinal Metastases

  • Waqar Haque
  • Bin S. Teh
Chapter

Abstract

Up to 10% of all cancer patients develop metastatic disease in the bone. The purpose of the present report is to describe radiation therapy, including radionuclide treatment, conventional external beam radiation therapy (CEBRT), and stereotactic body radiation therapy (SBRT), for the management of spinal metastases. Radionuclide treatment can provide palliation in patients with painful skeletal metastases. CEBRT can be offered for palliation, treatment of cord compression, to prevent morbidity of bone metastases. Spinal SBRT can also be used for palliation or spinal cord compression and is typically recommended for us over CEBRT for radioresistant histologies.

Keywords

External beam radiation therapy Stereotactic body radiation therapy Bone metastases Radiation resistance Biological effective dose Radionuclide treatment 

References

  1. 1.
    Fornasier VL, Horne JG. Metastases to the vertebral column. Cancer. 1975;36(2):590–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Grant R, Papadopoulos SM, Greenberg HS. Metastatic epidural spinal cord compression. Neurol Clin. 1991;9(4):825–41.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hatrick NC, Lucas JD, Timothy AR, et al. The surgical treatment of metastatic disease of the spine. Radiother Oncol. 2000;56(3):335–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Tomblyn M. The role of bone-seeking radionuclides in the palliative treatment of patients with painful osteoblastic skeletal metastases. Cancer Control. 2012;19:137–44.CrossRefPubMedGoogle Scholar
  5. 5.
    Fuster D, Herranz D, Vidal-Sicart S, et al. Usefulness of strontium-89 for bone pain palliation in metastatic breast cancer patient. Nucl Med Commun. 2000;21:623–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Gunawardana DH, Lichtenstein M, Better N, et al. Results of strontium-89 therapy in patients with prostate cancer resistant to chemotherapy. Clin Nucl Med. 2004;29:81–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Oosterhof GO, Roberts JT, de Reijke TM, et al. Strontium(89) chloride versus palliative local field radiotherapy in patients with hormonal escaped prostate cancer: a phase III sstudy of the European Organisation for Research and Treatment of Cancer, Genitourinary Group. Eur Urol. 2003;44:519–26.CrossRefPubMedGoogle Scholar
  8. 8.
    Parker C, Nilsson S, Heinrich D, et al. Alpha Emitter Radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.CrossRefPubMedGoogle Scholar
  9. 9.
    Patchell RA, Tibbs PA, Regine WF, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomized trial. Lancet. 2005;366:643–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Maranzano E, Bellavita R, Rossi R, et al. Short-course versus split-course radiotherapy in metastatic spinal cord compression: results of a phase III, randomized, multicenter trial. J Clin Oncol. 2005;23:3358–65.CrossRefPubMedGoogle Scholar
  11. 11.
    Maranzano E, Trippa F, Casale M, et al. 8Gy single-dose radiotherapy is effective in metastatic spinal cord compression: results of a phase III randomized multicenter Italian trial. Radiother Oncol. 2009;93:174–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Rades D, Fehlauer F, Stalpers LJ, et al. A prospective evaluation of two radiotherapy schedules with 10 versus 20 fractions for the treatment of metastatic spinal cord compression: finals results of a multicenter study. Cancer. 2004;101:2687–92.CrossRefPubMedGoogle Scholar
  13. 13.
    Tong D, Gillick L. The palliation of symptomatic osseous metastases final results of the study by the radiation therapy group. Cancer. 1982;50:893–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Blitzer PH. Reanalysis of the RTOG study of the palliation of symptomatic osseous metastasis. Cancer. 1985;55:1468–72.CrossRefPubMedGoogle Scholar
  15. 15.
    Steenland E, Leer JW, van Houwelingen H, et al. The effect of a single fraction compared to multiple fractions on painful bone metastases: a global analysis of the Dutch Bone Metastasis Study. Radiother Oncol. 1999;52:101–9.CrossRefPubMedGoogle Scholar
  16. 16.
    8 Gy single fraction radiotherapy for the treatment of metastatic skeletal pain: randomized comparison with a multifraction schedule over 12 months of followup. Bone Pain Trial Working Party. Radiother Oncol. 1999;52:111–121.Google Scholar
  17. 17.
    Meeuse JJ, van der Linden YM, van Tienhoven G, et al. Efficacy of radiotherapy for painful bone metastases during the last 12 weeks of life: results from the Dutch Bone Metastasis Study. Cancer. 2010;116:2716–25.PubMedGoogle Scholar
  18. 18.
    Majumder D, Chatterjee D, Bandyopadhyay A, et al. Single fraction versus multiple fraction radiotherapy for palliation of painful vertebral bone metastases: a prospective study. Indian J Palliat Care. 2012;18:202–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Howell DD, James JL, Hartsell WF, et al. Single-fraction radiotherapy versus multifraction radiotherapy for palliation of painful vertebral bone metastases-equivalent efficacy, less toxicity, more convenient: a subset analysis of Radiation Therapy Oncology Group trial 97-14. Cancer. 2013;119:888–96.CrossRefPubMedGoogle Scholar
  20. 20.
    Gutierrez Bayard L, Salas Buzon Mdel C, Angulo Pain E, et al. Radiation therapy for the management of painful bone metastases: results from a randomized trial. Rep Pract Oncol Radiot. 2014;19:405–11.CrossRefGoogle Scholar
  21. 21.
    Lutz S, Balbone T, Jones J, et al. Palliative radiation therapy for bone metastases: update of an ASTRO evidence-based guideline. Pract Radiat Oncol. 2017;7(1):4–12.CrossRefPubMedGoogle Scholar
  22. 22.
    Chow E, van der Linden Y, Roos D, et al. Single versus multiple fractions of repeat radiation for painful bone metastases: a randomized, controlled, non-inferiority trial. Lancet Oncol. 2014;15:164–71.CrossRefPubMedGoogle Scholar
  23. 23.
    Huisman M, van den Bosch MA, Wijlemans JW, et al. Effectiveness of reirradiation for painful bone metastases: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys. 2012;84:8–14.CrossRefPubMedGoogle Scholar
  24. 24.
    Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probably models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76:S10–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sahgal A, Roberge D, Schellenberg D, et al. The Canadian Association of Radiation Oncology Scope of Practice guidelines for lung, liver and spine stereotactic body radiotherapy. Clin Onco (R Coll Radiol). 2012;24:629–39.CrossRefGoogle Scholar
  26. 26.
    Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102:316–9.PubMedGoogle Scholar
  27. 27.
    Flickinger JC, Kondziolka D, Lunsford LD. Radiobiological analysis of tissue responses following radiosurgery. Technol Cancer Res Treat. 2003;2:87–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Jhaveri PM, Teh BS, Paulino AC, et al. A dose-response relationship for time to bone pain resolution after stereotactic body radiotherapy (SBRT) for renal cell carcinoma (RCC) bony metastases. Acta Oncol. 2012;51:584–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Gerszten PC, Burton SA, Ozhasoglu C, et al. Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine (Phila Pa 1976). 2007;32(2):193–9.CrossRefGoogle Scholar
  30. 30.
    Ryu S, Rock J, Jain R, et al. Radiosurgical decompression of metastatic epidural spine metastasis. Cancer. 2010;116:2250–7.PubMedGoogle Scholar
  31. 31.
    Wang XS, Rhines LD, Shiu AS, et al. Stereotactic body radiation therapy for management of spinal metastases in patients without spinal cord compression: a phase 1–2 trial. Lancet Oncol. 2012;13:395–402.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ryu S, Jin JJ, Jin RY, Rock J, Ajlouni M, Movsas B, Kim JH. Partial volume tolerance of spinal cord and complication of single dose radiosurgery. Cancer. 2007;109:628–36.CrossRefPubMedGoogle Scholar
  33. 33.
    Sahgal A, Ames C, Chou D, et al. Stereotactic body radiotherapy is effective salvage therapy for patients with prior radiation of spinal metastases. Int J Radiat Oncol Biol Phys. 2009;74:723–31.CrossRefPubMedGoogle Scholar
  34. 34.
    Ryu S, Jin R, Jin JJ, Qing C, Rock J, Anderson J, Movsas B. Pain control by image-guided radiosurgery for solitary spinal metastasis. J Pain Sympt Manage. 2008;35:292–8.CrossRefGoogle Scholar
  35. 35.
    Amdur RJ, Bennett J, Olivier K, et al. A prospective, phase II study demonstrating the potential value and limitation of radiosurgery for spine metastases. Am J Clin Oncol. 2009;32(5):515–20.CrossRefPubMedGoogle Scholar
  36. 36.
    Ryu S, Pugh SL, Gerszten PC, et al. RTOG 0631 phase 2/3 study of image guided stereotactic radiosurgery for localized (1-3) spinal metastases: phase 2 results. Pract Radiat Oncol. 2014;4:76–81.CrossRefPubMedGoogle Scholar
  37. 37.
    Redmond KJ, Lo SS, Soltys SG, et al. Consensus guidelines for postoperative stereotactic body radiation therapy for spinal metastases: results of an international survey. J Neurosurg Spine. 2016;26(3):299–306.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Laufer I, Iorgulescu JB, Chapman T, et al. Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: outcome analysis in 186 patients. J Neurosurg Spine. 2014;18:207–14.CrossRefGoogle Scholar
  39. 39.
    Al-Omair A, Masucci L, Masson-Cote L, et al. Surgical resection of epidural disease improves local control following postoperative spine stereotactic body radiotherapy. Neuro-Oncology. 2013;15:1413–9.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lo SS, Sahgal A, Wang JZ, et al. Stereotactic body radiation therapy for spinal metastases. Disc Med. 2010;9:289–96.Google Scholar
  41. 41.
    Chang EL, Shiu AS, Lii MF, et al. Phase I clinical evaluation of near-simultaneous computed tomographic image-guided stereotactic body ariotherapy for spinal metastases. Int J Radiat Oncol Biol Phys. 2004;59:1288–94.CrossRefPubMedGoogle Scholar
  42. 42.
    Guckenberger M, Meyer J, Wilbert J, et al. Precision of image-guided radiotherapy (IGRT) in six degrees of freedom and limitations in clinical practice. Strahlenther Onkol. 2007;183:307–13.CrossRefPubMedGoogle Scholar
  43. 43.
    Lo SS, Sahgal A, Teh BS, Gerszten PC, Chang EL. Stereotactic body radiation therapy for spinal metastases. London, UK: Future Medicine; 2014.CrossRefGoogle Scholar
  44. 44.
    Dahele M, Zindler JD, Sanchez E, et al. Imaging for stereotactic spine radiotherapy: clinical considerations. Int J Radiat Oncol Biol Phys. 2011;81:321–30.CrossRefPubMedGoogle Scholar
  45. 45.
    Cox BW, Spratt DE, Lovelock M, et al. International spine radiosurgery consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2012;83:e597–605.CrossRefPubMedGoogle Scholar
  46. 46.
    Boriani S, Weinstein JN, Biagini R. Primary bone tumors of the spine. Terminology and surgical staging. Spine. 1997;22:1036–44.CrossRefPubMedGoogle Scholar
  47. 47.
    Yin FF, Ryu S, Ajlouni M, et al. A technique of intensity-modulated radiosurgery (IMRS) for spinal tumors. Med Phys. 2002;29:2815–22.CrossRefPubMedGoogle Scholar
  48. 48.
    Wu QJ, Yoo S, Kirkpatrick JP, et al. Volumetric arc intensity-modulated therapy for spine body radiotherapy comparison with static intensity-modulated treatment. Int J Radiat Oncol Biol Phys. 2009;75:1596–604.CrossRefPubMedGoogle Scholar
  49. 49.
    Kilby W, Dooley JR, Kuduvalli G, et al. The CyberKnife robotic radiosurgery system in 2010. Technol Cancer Res Treat. 2010;9:433–52.CrossRefPubMedGoogle Scholar
  50. 50.
    Ho AK, Fu D, Cotrutz C, et al. A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery. 2007;60:147–56.Google Scholar
  51. 51.
    Fürweger C, Drexler C, Kufeld M, et al. Patient motion and targeting accuracy in robotic spinal radiosurgery: 260 single-fraction fiducial-free cases. Int J Radiat Oncol Biol Phys. 2010;78:937–45.CrossRefPubMedGoogle Scholar
  52. 52.
    Haley ML, Gerszten PC, Heron DE, et al. Efficacy and cost–effectiveness analysis of external beam and stereotactic body radiation therapy in the treatment of spine metastases: a matched-pair analysis. J Neurosurg Spine. 2011;14:537–42.CrossRefPubMedGoogle Scholar
  53. 53.
    Tatsui CE, Stafford RJ, Li J, et al. Utilization of laser interstitial thermotherapy guided by real-time thermal MRI as an alternative to separation surgery in the management of spinal metastasis. J Neurosurg Spine. 2015;23:400–11.CrossRefPubMedGoogle Scholar
  54. 54.
    Massicotte E, Foote M, Reddy R, Sahgal A. Minimal access spine surgery (MASS) for decompression and stabilization performed as an out-patient procedure for metastatic spinal tumours followed by spine stereotactic body radiotherapy (SBRT): first report of technique and preliminary outcomes. Technol Cancer Res Treat. 2012;11:15–25.CrossRefPubMedGoogle Scholar
  55. 55.
    Gerszten PC, Monaco EA 3rd. Complete percutaneous treatment of vertebral body tumors causing spinal canal compromise using a transpedicular cavitation, cement augmentation, and radiosurgical technique. Neurosurg Focus. 2009;27:E9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Radiation Oncology DepartmentHouston Methodist HospitalHoustonUSA

Personalised recommendations