Advertisement

Indications and Techniques for Anterior Thoracolumbar Resections and Reconstructions

  • Benjamin D. Elder
  • Wataru Ishida
  • Jean-Paul Wolinsky
Chapter

Abstract

Metastatic spinal tumors are the most common spinal neoplasms and often lead to significant morbidity due to neurological dysfunction and axial pain. Indications for resection and subsequent reconstruction of thoracolumbar spine tumors include intractable pain, impending spinal instability, progressive compression of the spinal cord by bony elements, and symptomatic compression of those neural structures by radio-resistant tumors. When deciding on a surgical approach, the location of the pathology and any neural compression should be considered first. The predicted life expectancy of each patient (Tokuhashi score) should also be strongly considered when considering indications for surgery as well as determining a specific reconstruction method. Although posterior approaches are often used for spinal tumor resection, there are anterior approaches to the cervical spine, cervicothoracic junction, thoracic spine, thoracolumbar junction, and lumbar spine that will be reviewed in detail below. Each surgical approach has its advantages and disadvantages and should be carefully tailored for each patient, with the deciding focus on the location of the pathology within the spinal column.

Keywords

Spinal tumors Spine metastases Transthoracic Retroperitoneal Corpectomy Cage Vertebral body replacement 

References

  1. 1.
    Gokaslan ZL. Spine surgery for cancer. Curr Opin Oncol. 1996;8(3):178–81.CrossRefPubMedGoogle Scholar
  2. 2.
    Byrne TN. Spinal cord compression from epidural metastases. N Engl J Med. 1992;327(9):614–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Fourney DR, Gokaslan ZL. Spinal instability and deformity due to neoplastic conditions. Neurosurg Focus. 2003;14(1):e8.CrossRefPubMedGoogle Scholar
  4. 4.
    Fisher CG, Rhines LD, Bettegowda C, et al. Introduction to focus issue II in spine oncology: evidence-based medicine recommendations for spine oncology. Spine. 2016;41(Suppl 20):S159–s162.CrossRefPubMedGoogle Scholar
  5. 5.
    Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, Phan K. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine. 2017;26(4):513–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Kim D, Lim JY, Shim KW, et al. Sacral reconstruction with a 3D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-year follow-up result. Yonsei Med J. 2017;58(2):453–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Altaf F, Weber M, Dea N, et al. Evidence-based review and survey of expert opinion of reconstruction of metastatic spine tumors. Spine. 2016;41(Suppl 20):S254–s261.CrossRefPubMedGoogle Scholar
  8. 8.
    Glennie RA, Rampersaud YR, Boriani S, et al. A systematic review with consensus expert opinion of best reconstructive techniques after osseous En bloc spinal column tumor resection. Spine. 2016;41(Suppl 20):S205–s211.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang Z, Wang J, Zhuang H, Wang P, Yuan Z. Stereotactic body radiation therapy induces fast tumor control and symptom relief in patients with iliac lymph node metastasis. Sci Rep. 2016;6:37987.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Verma V, Shostrom VK, Kumar SS, et al. Multi-institutional experience of stereotactic body radiotherapy for large (≥5 centimeters) non-small cell lung tumors. Cancer. 2017;123(4):688–96.CrossRefPubMedGoogle Scholar
  11. 11.
    Thibault I, Whyne CM, Zhou S, et al. Volume of lytic vertebral body metastatic disease quantified using computed tomography-based image segmentation predicts fracture risk after spine stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2017;97(1):75–81.CrossRefPubMedGoogle Scholar
  12. 12.
    Tanadini-Lang S, Rieber J, Filippi AR, et al. Nomogram based overall survival prediction in stereotactic body radiotherapy for oligo-metastatic lung disease. Radiother Oncol. 2017;123:182.CrossRefPubMedGoogle Scholar
  13. 13.
    Chang JH, Shin JH, Yamada YJ, et al. Stereotactic body radiotherapy for spinal metastases: what are the risks and how do we minimize them? Spine. 2016;41(Suppl 20):S238–s245.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zairi F, Arikat A, Allaoui M, Marinho P, Assaker R. Minimally invasive decompression and stabilization for the management of thoracolumbar spine metastasis. J Neurosurg Spine. 2012;17(1):19–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Di Martino A, Caldaria A, De Vivo V, Denaro V. Metastatic epidural spinal cord compression. Expert Rev Anticancer Ther. 2016:1–10.Google Scholar
  16. 16.
    Bakar D, Tanenbaum JE, Phan K, et al. Decompression surgery for spinal metastases: a systematic review. Neurosurg Focus. 2016;41(2):E2.CrossRefPubMedGoogle Scholar
  17. 17.
    Fourney DR, Gokaslan ZL. Use of “MAPs” for determining the optimal surgical approach to metastatic disease of the thoracolumbar spine: anterior, posterior, or combined. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine. 2005;2(1):40–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Druschel C, Disch AC, Melcher I, et al. Surgical management of recurrent thoracolumbar spinal sarcoma with 4-level total en bloc spondylectomy: description of technique and report of two cases. Eur Spine J. 2012;21(1):1–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Aoude A, Fortin M, Aldebeyan S, et al. The revised Tokuhashi score; analysis of parameters and assessment of its accuracy in determining survival in patients afflicted with spinal metastasis. Eur Spine J. 2016.Google Scholar
  20. 20.
    Eap C, Tardieux E, Goasgen O, et al. Tokuhashi score and other prognostic factors in 260 patients with surgery for vertebral metastases. Orthop Traumatol Surg Res. 2015;101(4):483–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Tokuhashi Y, Matsuzaki H, Oda H, Oshima M, Ryu J. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine. 2005;30(19):2186–91.CrossRefPubMedGoogle Scholar
  22. 22.
    Laufer I, Zuckerman SL, Bird JE, et al. Predicting neurologic recovery after surgery in patients with deficits secondary to MESCC: systematic review. Spine. 2016;41(Suppl 20):S224–s230.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Payer M, Sottas C. Mini-open anterior approach for corpectomy in the thoracolumbar spine. Surg Neurol. 2008;69(1):25–31; discussion 31-22.CrossRefPubMedGoogle Scholar
  24. 24.
    Faciszewski T, Winter RB, Lonstein JE, Denis F, Johnson L. The surgical and medical perioperative complications of anterior spinal fusion surgery in the thoracic and lumbar spine in adults. A review of 1223 procedures. Spine. 1995;20(14):1592–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Perry TG, Mageswaran P, Colbrunn RW, Bonner TF, Francis T, McLain RF. Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage. J Neurosurg Spine. 2014;21(3):481–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Mannen EM, Anderson JT, Arnold PM, Friis EA. Mechanical analysis of the human cadaveric thoracic spine with intact rib cage. J Biomech. 2015;48(10):2060–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Arana E, Kovacs FM, Royuela A, Asenjo B, Perez-Ramirez U, Zamora J. Spine instability neoplastic score: agreement across different medical and surgical specialties. Spine J. 2016;16(5):591–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Fourney DR, Frangou EM, Ryken TC, et al. Spinal instability neoplastic score: an analysis of reliability and validity from the spine oncology study group. J Clin Oncol. 2011;29(22):3072–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Versteeg AL, Verlaan JJ, Sahgal A, et al. The spinal instability neoplastic score: impact on oncologic decision-making. Spine. 2016;41(Suppl 20):S231–s237.CrossRefPubMedGoogle Scholar
  30. 30.
    Ha KY, Kim YH, Ahn JH, Park HY. Factors affecting survival in patients undergoing palliative spine surgery for metastatic lung and hepatocellular cancer: dose the type of surgery influence the surgical results for metastatic spine disease? Clin Orthop Surg. 2015;7(3):344–50.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zadnik PL, Goodwin CR, Karami KJ, et al. Outcomes following surgical intervention for impending and gross instability caused by multiple myeloma in the spinal column. J Neurosurg Spine. 2015;22(3):301–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Zadnik PL, Hwang L, Ju DG, et al. Prolonged survival following aggressive treatment for metastatic breast cancer in the spine. Clin Exp Metastasis. 2014;31(1):47–55.CrossRefPubMedGoogle Scholar
  33. 33.
    Sahgal A, Atenafu EG, Chao S, et al. Vertebral compression fracture after spine stereotactic body radiotherapy: a multi-institutional analysis with a focus on radiation dose and the spinal instability neoplastic score. J Clin Oncol. 2013;31(27):3426–31.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jawad MS, Fahim DK, Gerszten PC, et al. Vertebral compression fractures after stereotactic body radiation therapy: a large, multi-institutional, multinational evaluation. J Neurosurg Spine. 2016;24(6):928–36.CrossRefPubMedGoogle Scholar
  35. 35.
    Cunha MVR, Al-Omair A, Atenafu EG, et al. Vertebral compression fracture (VCF) after spine stereotactic body radiation therapy (SBRT): analysis of predictive factors. Int J Radiat Oncol Biol Phys. 2012;84(3):e343–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Wilden JA, Moran SL, Dekutosky MB, Bishop AT, Shin AYS. Results of vascularized rib grafts in complex spinal reconstruction. J Bone Joint Surg Am. 2006;88-A(4):832–9.Google Scholar
  37. 37.
    Kaltoft B, Kruse A, Jensen LT, Elberg JJ. Reconstruction of the cervical spine with two osteocutaneous fibular flap after radiotherapy and resection of osteoclastoma: a case report. J Plast Reconstr Aesthet Surg. 2012;65(9):1262–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Elder BD, Ishida W, Goodwin CR, et al. Bone graft options for spinal fusion following resection of spinal column tumors: systematic review and meta-analysis. Neurosurg Focus. 2017;42(1):E16.CrossRefPubMedGoogle Scholar
  39. 39.
    Miller DJ, Lang FF, Walsh GL, Abi-Said D, Wildrick DM, Gokaslan ZL. Coaxial double-lumen methylmethacrylate reconstruction in the anterior cervical and upper thoracic spine after tumor resection. J Neurosurg. 2000;92(2 Suppl):181–90.PubMedGoogle Scholar
  40. 40.
    Hayashi T, Lord EL, Suzuki A, et al. A comparison of commercially available demineralized bone matrices with and without human mesenchymal stem cells in a rodent spinal fusion model. J Neurosurg Spine. 2016;25(1):133–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Skovrlj B, Guzman JZ, Al Maaieh M, Cho SK, Iatridis JC, Qureshi SA. Cellular bone matrices: viable stem cell-containing bone graft substitutes. Spine J. 2014;14(11):2763–72.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    McAnany SJ, Ahn J, Elboghdady IM, et al. Mesenchymal stem cell allograft as a fusion adjunct in one- and two-level anterior cervical discectomy and fusion: a matched cohort analysis. Spine J. 2016;16(2):163–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhou R, Huang Z, Liu X, et al. Kinematics and load-sharing of an anterior thoracolumbar spinal reconstruction construct with PEEK rods: an in vitro biomechanical study. Clin Biomech (Bristol, Avon). 2016;40:1–7.CrossRefGoogle Scholar
  44. 44.
    Li Z-J, Wang Y, Xu G-J, Tian P. Is PEEK cage better than titanium cage in anterior cervical discectomy and fusion surgery? A meta-analysis. BMC Musculoskelet Disord. 2016;17(1):379.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pekmezci M, Tang JA, Cheng L, et al. Comparison of expandable and fixed interbody cages in a human cadaver corpectomy model: fatigue characteristics. Clin Spine Surg. 2016;29(9):387–93.CrossRefPubMedGoogle Scholar
  46. 46.
    Viswanathan A, Abd-El-Barr MM, Doppenberg E, et al. Initial experience with the use of an expandable titanium cage as a vertebral body replacement in patients with tumors of the spinal column: a report of 95 patients. Eur Spine J. 2012;21(1):84–92.CrossRefPubMedGoogle Scholar
  47. 47.
    Ernstberger T, Kogel M, Konig F, Schultz W. Expandable vertebral body replacement in patients with thoracolumbar spine tumors. Arch Orthop Trauma Surg. 2005;125(10):660–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Disch AC, Schaser KD, Melcher I, Luzzati A, Feraboli F, Schmoelz W. En bloc spondylectomy reconstructions in a biomechanical in-vitro study. Eur Spine J. 2008;17(5):715–25.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Eleraky M, Papanastassiou I, Tran ND, Dakwar E, Vrionis FD. Comparison of polymethylmethacrylate versus expandable cage in anterior vertebral column reconstruction after posterior extracavitary corpectomy in lumbar and thoraco-lumbar metastatic spine tumors. Eur Spine J. 2011;20(8):1363–70.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Viljoen SV, DeVries Watson NA, Grosland NM, Torner J, Dalm B, Hitchon PW. Biomechanical analysis of anterior versus posterior instrumentation following a thoracolumbar corpectomy: laboratory investigation. J Neurosurg Spine. 2014;21(4):577–81.CrossRefPubMedGoogle Scholar
  51. 51.
    Liu X, Ma J, Park P, Huang X, Xie N, Ye X. Biomechanical comparison of multilevel lateral interbody fusion with and without supplementary instrumentation: a three-dimensional finite element study. BMC Musculoskelet Disord. 2017;18(1):63.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sundaresan N, Shah J, Foley KM, Rosen G. An anterior surgical approach to the upper thoracic vertebrae. J Neurosurg. 1984;61(4):686–90.CrossRefPubMedGoogle Scholar
  53. 53.
    Sar C, Hamzaoglu A, Talu U, Domanic U. An anterior approach to the cervicothoracic junction of the spine (modified osteotomy of manubrium sterni and clavicle). J Spinal Disord. 1999;12(2):102–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Darling GE, McBroom R, Perrin R. Modified anterior approach to the cervicothoracic junction. Spine. 1995;20(13):1519–21.CrossRefPubMedGoogle Scholar
  55. 55.
    Lehman RM, Grunwerg B, Hall T. Anterior approach to the cervicothoracic junction: an anatomic dissection. J Spinal Disord. 1997;10(1):33–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Kraus DH, Huo J, Burt M. Surgical access to tumors of the cervicothoracic junction. Head Neck. 1995;17(2):131–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Cohen ZR, Fourney DR, Gokaslan ZL, Walsh GL, Rhines LD. Anterior stabilization of the upper thoracic spine via an “interaortocaval subinnominate window”: case report and description of operative technique. J Spinal Disord Tech. 2004;17(6):543–8.CrossRefPubMedGoogle Scholar
  58. 58.
    York JE, Walsh GL, Lang FF, et al. Combined chest wall resection with vertebrectomy and spinal reconstruction for the treatment of Pancoast tumors. J Neurosurg. 1999;91(1 Suppl):74–80.CrossRefPubMedGoogle Scholar
  59. 59.
    Puvanesarajah V, Lina IA, Liauw JA, et al. Systematic approach for anterior corpectomy through a transthoracic exposure. Turk Neurosurg. 2016;26(4):646–52.PubMedGoogle Scholar
  60. 60.
    Baaj AA, Papadimitriou K, Amin AG, Kretzer RM, Wolinsky J-P, Gokaslan ZL. Surgical anatomy of the diaphragm in the anterolateral approach to the spine: a cadaveric study. J Spinal Disord Tech. 2014;27(4):220–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Benjamin D. Elder
    • 1
  • Wataru Ishida
    • 2
  • Jean-Paul Wolinsky
    • 3
  1. 1.Department of NeurosurgeryThe Mayo ClinicRochesterUSA
  2. 2.Department of NeurosurgeryJohns Hopkins HospitalBaltimoreUSA
  3. 3.Department of NeurosurgeryNorthwestern UniversityChicagoUSA

Personalised recommendations