Laser/Light Applications in General Surgery

  • Raymond J. Lanzafame


Lasers and light source technologies can be applied to a wide variety of open and laparoscopic surgeries, as well as other procedures encountered by general surgeons and other medical professionals. The ability to produce highly precise and controllable effects on tissues, and the potential to facilitate complex dissection make these devices a welcome addition to the armamentarium of the surgeon, who is skilled in their use. Each laser wavelength has a characteristic effect on tissue. The combination of the laser tissue interaction, the selection of the appropriate delivery systems and laser parameters determines the ultimate effects of laser use on the conduct and outcomes of surgery. This chapter reviews the array of laser technologies available for operative surgical and therapeutic use and discusses the relative merits and disadvantages of each.


Surgery General surgery Laparoscopy Minimally invasive surgery LLLT (Low level laser therapy) Argon laser CO2 laser Diode laser KTP laser Holmium laser Thulium laser Surgical instrumentation Surgical technique Wound Antimicrobial therapy Photobiomodulation Laser physics Safety Complications and complication prevention Lithotripsy Tissue effects Optical fibers Optical waveguides 


  1. 1.
    American National Standard for Safe use of Lasers in Health Care (ANSI Z136.3-2011). Orlando: The Laser Institute of America; 2005. 117 pp.Google Scholar
  2. 2.
    Bakri YN, Sundin T, Mansi M. Ureteral injury secondary to laparoscopic CO2 laser. Acta Obstet Gynecol Scand. 1994;73:665–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Norderlon BM, Hobday KA, Hunter JG. Laser vs. electrosurgery in laparoscopic cholecystectomy. A prospective randomized trail. Arch Surg. 1993;128(2):33–6.Google Scholar
  4. 4.
    Carroll B, Chandra M, Papaioannou T, et al. Biliary lithotripsy as an adjunct to laparoscopic common bile duct stone extraction. Surg Endosc. 1993;7(4):356–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Corbitt JDJR. Laparoscopic cholecystectomy: Laser versus electrocautery. Surg Laparosc Endosc. 1991;1(4):268–9.CrossRefGoogle Scholar
  6. 6.
    Crowgey SR, Adamson GD. Endoscopic energy: laser. In: Adamson GD, Martin DC, editors. Endoscopic management of gynecologic disease. Philadelphia: Lippincott-Raven Publishers; 1996. p. 27–41.Google Scholar
  7. 7.
    Diamond MP, Daniell JF, Feste J, Martin DC, Nezhat C, Evertt R, et al. Initial report of the carbon dioxide laser laparoscopy study group: complications. J Gynecol Surg. 1989;5:269–72.CrossRefGoogle Scholar
  8. 8.
    Grainger DA, Soderstrom RM, Schiff SF, Glickman MD, DeCherney AH, Diamond MP. Ureteral injuries at laparoscopy: insights into diagnosis management, and prevention. Obstet Gynecol. 1990;75:839–43.PubMedGoogle Scholar
  9. 9.
    Hersman MJ, Rosin RD. Laparoscopic laser cholecystectomy: our first 200 patients. Ann R Coll Surg Engl. 1992;74(4):242–7.Google Scholar
  10. 10.
    Hinshaw JR, Daykhovsky L, Glantz G, et al. Current controversies in laparoscopic cholecystectomy: a roundtable discussion. J Laparoendosc Surg. 1990;1(1):17–29.CrossRefPubMedGoogle Scholar
  11. 11.
    Hulka JF, Reich H, editors. Textbook of laparoscopy. 3rd ed. Philadelphia: WB Saunders; 1998. 548ppGoogle Scholar
  12. 12.
    Hunter JG. Exposure, dissection, and laser versus electrosurgery in laparoscopic cholecystectomy. Am J Surg. 1993;165(4):492–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Kim AK, Adamson GH. Laparoscopic laser injury. In: Kavic MS, Levinson CJ, Wetter PA, editors. Prevention and management of laparoscopic surgical complications. Miami: Society of Laparoendoscopic Surgeons; 1999. p. 21–8.Google Scholar
  14. 14.
    Kollmorgan TA, Malek RA, Barrett DM. Laser prostatectomy: two and a half years’ experience with aggressive multifocal therapy. Urology. 1996;48:217–22.CrossRefGoogle Scholar
  15. 15.
    Kuntzman TA, Malek RA, Barrett DM. High-power potassium titanyl phosphate laser vaporization prostatectomy. Mayo Clin Proc. 1998;73:798–801.CrossRefPubMedGoogle Scholar
  16. 16.
    Lanzafame RJ. Applications of lasers in laparoscopic cholecystectomy. J Laparoendosc Surg. 1990;1(1):33–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Lanzafame RJ. Applications of laser in laparoscopic cholecystectomy: technical considerations and future directions. SPIE. 1991;1421:189–96.Google Scholar
  18. 18.
    Lanzafame RJ, Brien T, Rogers DW, et al. Comparison of sapphire contact scalpels for surgery. Lasers Surg Med. 1990;2(Suppl):9.Google Scholar
  19. 19.
    Lanzafame RJ. Laser utilization in minimally invasive surgery: applications and pitfalls. In: Lanzafame RJ, editor. Prevention and management of complications in minimally invasive surgery. New York: Igaku-Shoin; 1996. p. 30–42.Google Scholar
  20. 20.
    Lanzafame RJ. Chapter 12: laser energy and minimally invasive surgery. In: Wetter PA, Kavic MS, Nezhat C, Winfield H, editors. Prevention and management of laparoendoscopic surgical complications, 4.0 edition. Society of Laparoendoscopic Surgeons Press, iBooks,; 2012. p. 285–309.
  21. 21.
    Laycock WS, Hunter JG. Electrosurgery and laser application. In: MacFayden BV, Ponsky JL, editors. Operative laparoscopy and thoracoscopy. Philadelphia: Lippincott-Raven; 1996. p. 79–91.Google Scholar
  22. 22.
    Malek PA, Kuntzman RS, Barrett DM. High power potassium-titanyl phosphate laser vaporization prostatectomy. J Urol. 2000;163:1730–3.CrossRefPubMedGoogle Scholar
  23. 23.
    Reddick EJ, Olsen DO. Laparoscopic laser cholecystectomy. A comparison with mini-lap cholecystectomy. Surg Endosc. 1989;3(3):131–3.CrossRefPubMedGoogle Scholar
  24. 24.
    Reddick EJ, Baird D, Daniel J, et al. Laparoscopic laser cholecystectomy. Ann Chir Gynaecol. 1990;79(4):189–91.PubMedGoogle Scholar
  25. 25.
    Reddick EJ, Olsen D, Alexander W, et al. Laparoscopic laser cholecystectomy and choledocholithiasis. Surg Endosc. 1990;4(3):133–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Schultz LS, Hickok DF, Garber JN, et al. The use of lasers in general surgery. A preliminary assessment. Minn Med. 1987;70(8):439–42.PubMedGoogle Scholar
  27. 27.
    Schwartz RO. Complications of laparoscopic hysterectomy. Obstet Gynecol. 1993;81:1022–4.PubMedGoogle Scholar
  28. 28.
    Smith EB. Complications of laparoscopic cholecystectomy. J Natl Med Assoc. 1992;84(10):880–2.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Soderstrom RM. Bowel injury litigation after laparoscopy. J Am Assoc Gynecol Laparosc. 1993;1:74–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Spaw AT, Reddick EJ, Olsen DO. Laparoscopic laser cholecystectomy: analysis of 500 procedures. Surg Laparosc Endosc. 1991;1(1):2–7.PubMedGoogle Scholar
  31. 31.
    Steger AC, Moore KM, Hira N. Contact laser or conventional cholecystectomy: a controlled trial. Br J Surg. 1988;75(3):223–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Unger SW, Edelman DS, Scott JS, et al. Laparoscopic treatment of acute cholecystitis. Surg Laparosc Endosc. 1991;1(1):14–6.PubMedGoogle Scholar
  33. 33.
    Williams IM, Lewis DK, Shandall AA, et al. Laparoscopic cholecystectomy: laser or electrosurgery. J R Coll Surg Edinb. 1994;39(6):348–9.PubMedGoogle Scholar
  34. 34.
    Apfelberg DB, editor. Evaluation and installation of surgical laser systems. New York: Springer-Verlag; 1986. 324pp.Google Scholar
  35. 35.
    Lanzafame RJ, Rogers DW, Naim JO, DeFranco C, Ochej H, Hinshaw JR. Reduction of local tumor recurrence by excision with the CO2 laser. Lasers Surg Med. 1986;6(5):439–41.CrossRefPubMedGoogle Scholar
  36. 36.
    Lanzafame RJ, Rogers DW, Naim JO, Herrera HR, DeFranco C, Hinshaw JR. The effect of CO2 laser excision on local tumor recurrence. Lasers Surg Med. 1986;6(2):103–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Lanzafame RJ, Hinshaw JR, Pennino RP. Cost effective retractors for laser surgery. AORN J. 1986;43(6):1218–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Lanzafame RJ, McCormack CJ, Rogers DW, Naim JO, Hinshaw JR. Effects of laser sterilization on local recurrence in experimental mammary tumors. Surg Forum. 1986;7:480–1.Google Scholar
  39. 39.
    Hinshaw JR, Herrera HR, Lanzafame RJ, Pennino RP. The use of the carbon dioxide laser permits primary closure of contaminated and purulent lesions and wounds. Lasers Surg Med. 1987;6(6):581–3.CrossRefPubMedGoogle Scholar
  40. 40.
    Lanzafame RJ, Herrera HR, Jobes HM, Naim JO, Pennino P, Porter N, et al. The influence of “hands-on” laser training on usage of the CO2 laser. Lasers Surg Med. 1987;7:61–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Lanzafame RJ, Hinshaw JR, editors. Color atlas of CO2 laser techniques. St. Louis: Ishiyaku EuroAmerica; 1988. 294pp.Google Scholar
  42. 42.
    Lanzafame RJ, McCormack CJ, Rogers DW, Naim JO, Herrera HR, Hinshaw JR. Mechanisms of the reduction of tumor recurrence with the carbon dioxide laser in experimental mammary tumors. Surg Gynecol Obstet. 1988;167:493–6.PubMedGoogle Scholar
  43. 43.
    Lanzafame RJ, Qui K, Rogers DW, Naim JO, Hinshaw JR, Caldwell F, et al. A comparison of local tumor recurrence following excision with the CO2 laser, Nd:YAG laser, and Argon Beam Coagulator. Lasers Surg Med. 1988;8(5):515–20.CrossRefPubMedGoogle Scholar
  44. 44.
    Lanzafame RJ, Naim JO, Rogers DW, Hinshaw JR. A comparison of continuous wave, chop wave, and super pulse laser wounds. Lasers Surg Med. 1988;8(2):119–24.CrossRefPubMedGoogle Scholar
  45. 45.
    Lanzafame RJ. Cholecystectomy with lasers. Laser Med Surg News Adv. 1988;6(6):31–6.CrossRefGoogle Scholar
  46. 46.
    Pennino RP, O'Connor T, Lanzafame RJ, Hinshaw JR. Tissue sculpturing: potential new applications and techniques of CO2 laser surgery. Laser Med Surg News Adv. 1988;6(5):20–3.CrossRefGoogle Scholar
  47. 47.
    Joffe SN, editor. Lasers in general surgery. Baltimore: Williams & Wilkins; 1989. 319pp.Google Scholar
  48. 48.
    Lanzafame RJ, Pennino RP, Herrera HR, Hinshaw JR. Breast surgery with the CO2 laser. In: Joffe SN, editor. Lasers in general surgery. Baltimore: Williams & Wilkins; 1989. p. 25–33.Google Scholar
  49. 49.
    Lanzafame RJ. New instruments for laser surgery. Lasers Surg Med. 1990;10:595–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Lanzafame RJ, Wang MJ, Naim JO, Rogers DW. The effect of preoperative laser hyperthermia and laser excision on local recurrence in mammary tumors. Surg Forum. 1990;41:481–3.Google Scholar
  51. 51.
    Apfelberg DB, editor. Atlas of cutaneous laser surgery. New York: Raven Press; 1992. 483pp.Google Scholar
  52. 52.
    Sliney DH, Trokel SI. Medical lasers and their safe use. New York: Springer-Verlag; 1992. 230pp.Google Scholar
  53. 53.
    Daly CJ, Grundfest WS, Johnson DE, Lanzafame RJ, Steiner RW, Tadir Y, Graham MW. Lasers in urology, gynecology, and general surgery. Proc SPIE. 1879; 1993. 248 pp.Google Scholar
  54. 54.
    Lanzafame RJ. Techniques for the simultaneous management of incarcerated ventral herniae and cholelithiasis via laparoscopy. J. Laparoendosc Surg. 1993;3(2):193–201.CrossRefPubMedGoogle Scholar
  55. 55.
    Lanzafame RJ. Applications of laser technology in breast cancer therapy. Semin Surg Oncol. 1995;11:328–32.CrossRefPubMedGoogle Scholar
  56. 56.
    Lanzafame RJ. Prevention and management of complications in laparoscopic surgery. New York: Igaku-Shoin Medical Publishers; 1996. 368pp.Google Scholar
  57. 57.
    Lanzafame RJ. General surgery. In: Manual for laser biophysics and safety. Professional Medical Education Association. Scholar
  58. 58.
    Tunér J, Hode L. Laser therapy. Clinical practice and scientific background. Sweden, Grangesberg: Prima Books; 2002. 571ppGoogle Scholar
  59. 59.
    Hopkins JT, McLodat TA, Seegmiller JG, Baxter GD. Low-level laser therapy facilitates superficial wound healing in humans: a triple-blind, sham-controlled study. J Athl Train. 2004;39(3):223–9.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Schindl A, Schindl M, Schindl L. Successful treatment of a persistent radiation ulcer by low power laser therapy. J Am Acad Dermatol. 1997;37(4):646–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Schindl M, Kerschan K, Schindl A, Schön H, Heinzl H, Schindl L. Induction of complete wound healing in recalcitrant ulcers by low-intensity laser irradiation depends on ulcer cause and size. Photodermatol Photoimmunol Photomed. 1999;15(1):18–21.CrossRefPubMedGoogle Scholar
  62. 62.
    Kujawa J, Zavodnik L, Zavodnik I, Buko V, Lapshyna A, Bryszewska M. Effect of low-intensity (3.75-25 J/cm2) near-infrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure. J Clin Laser Med Surg. 2004;22(2):111–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Basford JR. The clinical and experimental status of low-energy laser therapy. Crit Rev Phys Rehabil Med. 1989;1:1–9.Google Scholar
  64. 64.
    Mester E, Mester AF, Mester A. The biomedical effects of laser application. Lasers Surg Med. 1985;5(1):31–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ. Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol. 1997;66(6):866–71.CrossRefPubMedGoogle Scholar
  66. 66.
    Lam TS, Abergel RP, Castel JC, Dwyer RM, Lesavoy MA, Uitto J. Laser stimulation of collagen synthesis in human skin fibroblast cultures. Lasers Life Sci. 1986;1:61–77.Google Scholar
  67. 67.
    Passarella S, Casamassima E, Molinari S, Pastore D, Quagliariello E, Catalano IM, et al. Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett. 1984;175(1):95–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Conlan MJ, Rapley JW, Cobb CM. Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol. 1996;23(5):492–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Morimoto Y, Arai T, Kikuchi M, Nakajima S, Nakamura H. Effect of low-intensity argon laser irradiation on mitochondrial respiration. Lasers Surg Med. 1992;15(2):191–9.CrossRefGoogle Scholar
  70. 70.
    Stadler I, Lanzafame RJ, Evans R, Narayan V, Dailey B, Buehner N, et al. 830-nm irradiation increases the wound tensile strength in a diabetic murine model. Lasers Surg Med. 2001;28(3):220–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Karu TI. The science of low power laser therapy. London: Gordon and Breach Sci. Publ.; 1998. p. 14–33. 53–94, 95–121Google Scholar
  72. 72.
    Karu TI. Primary and secondary mechanisms of action of visible to near–ir radiation on cells. J Photochem Photobiol B. 1998;49(1):1–17.CrossRefGoogle Scholar
  73. 73.
    Vladimiorv IA, Klebanov GI, Borisenko GG, Osipov AN. Molecular and cellular mechanisms of the low intensity laser radiation effect. Biofizika. 2004;49(2):339–50.Google Scholar
  74. 74.
    Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004;4(5–6):559–67.CrossRefPubMedGoogle Scholar
  75. 75.
    Silveira PC, Streck EL, Pinho RA. Evaluation of mitochondrial respiratory chain activity in wound healing by low-level laser therapy. J Photochem Photobiol B. 2007;86(3):279–82.CrossRefPubMedGoogle Scholar
  76. 76.
    Prado RP, Liebano RE, Hochman B, Pinfildi CE, Ferreira LM. Experimental model for low level laser therapy on ischemic random skin flap in rats. Acta Cir Bras. 2006;21(4):258–62.CrossRefPubMedGoogle Scholar
  77. 77.
    Hawkins D, Houreld N, Abrahamse H. Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing. Ann N Y Acad Sci. 2005;1056:486–93.CrossRefPubMedGoogle Scholar
  78. 78.
    Stadler I, Lanzafame RJ, Oskoui P, Zhang RY, Coleman J, Whittaker M. Alteration of skin temperature during low level laser irradiation at 830 nm in a mouse model. Photomed Laser Surg. 2004;22(3):227–31.CrossRefPubMedGoogle Scholar
  79. 79.
    Lanzafame RJ, Stadler I, Coleman J, Haerum B, Oskoui P, Whittaker M, et al. Temperature-controlled 830nm LLLT of experimental pressure ulcers. Photomed Laser Surg. 2004;22(6):483–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Brondon P, Stadler I, Lanzafame RJ. A study of the effects of phototherapy dose interval on photobiomodulation of cell cultures. Lasers Surg Med. 2005;36(5):409–13.CrossRefPubMedGoogle Scholar
  81. 81.
    Karu TI. Low power laser therapy. In: Vo-Dinh T, editor. Biomedical photonics handbook, vol. 48. Boca Raton, FL: CRC Press; 2003. p. 1–25.Google Scholar
  82. 82.
    Schindl A, Rosado-Schlosser B, Trautinger F. The reciprocity rule in photobiology—a review. Hautarzt. 2001;52(9):779–85. also at CrossRefPubMedGoogle Scholar
  83. 83.
    Liu TCY, Jiao JL, Xu XY, Liu XG, Deng SX, Liu SH. Photobiomodulation: phenomenology and its mechanism. SPIE Proc. 2004;5632:185–91.Google Scholar
  84. 84.
    Stadler I, Zhang RY, Oskoui P, Whittaker MS, Lanzafame RJ. Development of a simple clinical relevant murine model of pressure ulcer. J Investig Surg. 2004;17:221–7.CrossRefGoogle Scholar
  85. 85.
    Lanzafame RJ, Stadler I, Kurtz AF, Connelly R, Peter TA Sr, Brondon P, et al. Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg Med. 2007;39(6):534–42.CrossRefPubMedGoogle Scholar
  86. 86.
    Tsui C, Klein R, Garabrant M. Minimally invasive surgery: national trends in adoption and future directions for hospital strategy. Surg Endosc. 2013;27:2253–7.CrossRefPubMedGoogle Scholar
  87. 87.
    Lanzafame RJ. Presidential address: issues in the acquisition, development and use of technology in health care. J Soc Laparoendosc Surg. 2006;10(4):401–8.Google Scholar
  88. 88.
    Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Hamblin MR. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg. 2013;32:41–52.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Enwemeka CS. Antimicrobial blue light: an emerging alternative to antibiotics. Photomed Laser Surg. 2013;31(11):509–11.CrossRefPubMedGoogle Scholar
  90. 90.
    Hamblin MR, Demidova TN. Mechanisms of low level light therapy. SPIE Proc. 2006;6140:1–12.Google Scholar
  91. 91.
    Kim SW, Kim JS, Lim WB, Jeon SM, Kim OS, Koh JT, et al. In vitro bactericidal effects of 625, 525, and 425 nm wavelength (Red, Green and Blue) light-emitting diode irradiation. Photomed Laser Surg. 2013;31(11):554–62.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Blue laser irradiation generates intracellular reactive oxygen species in various types of cells. Photomed Laser Surg. 2013;31(3):95–104.CrossRefPubMedGoogle Scholar
  93. 93.
    Lanzafame RJ, Stadler I, Cunningham R, Muhlbauer A, Griggs J, Soltz R, et al. Preliminary assessment of photoactivated antimicrobial collagen on bioburden in a murine pressure ulcer model. Photomed Laser Surg. 2013;31(11):539–46.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Minatel DG, Frade MAC, Franca SC, Enwemeka CS. Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies. Lasers Surg Med. 2009;41(6):433–41.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Raymond J. Lanzafame
    • 1
    • 2
  1. 1.Raymond J. Lanzafame, MD PLLC757 Titus AvenueRochesterUSA
  2. 2.School of Dental MedicineState University of New York at BuffaloBuffaloUSA

Personalised recommendations