Light/Laser Applications in Gynecology

  • Cornelia Selma de RieseEmail author
  • Roger B. Yandell


The use of CO2 laser in the treatment of uterine cervical intraepithelial lesions is well established and indications, as well as techniques, have changed very little for over 30 years. The Cochrane Systematic Review from 2000 suggests no obviously superior technique. CO2 laser ablation of the vagina is also established as a safe treatment modality for VAIN (Vaginal Intraepithelial Neoplasia), and has been used extensively in the treatment of VIN (Vulvar Intraepithelial Neoplasia) and lower genital tract condylomata acuminata. CO2 laser permits treatment of lesions with excellent cosmetic and functional results. The treatment of heavy menstrual bleeding by destruction of the endometrial lining using various techniques, including Nd:YAG laser ablation, has been the subject of a 2002 Cochran Database Review. Among the compared treatment modalities are modified laser techniques. The conclusion by reviewers is that outcomes and complication profiles of newer techniques compare favorably with the gold standard of endometrial resection. Myoma coagulation or myolysis with Nd:YAG laser through the laparoscope or hysteroscope is a conservative treatment option for women who wish to preserve their child bearing potential.


LASER Vulva Vagina Cervix Dysplasia HPV Gynecology 


  1. 1.
    Martin-Hirsch PPL, et al. Surgery for cervical intraepithelial neoplasia. Cochrane Database Syst Rev. 2013;12:CD010409.Google Scholar
  2. 2.
    Lethaby A, et al. Endometrial resection and ablation techniques for heavy menstrual bleeding. Cochrane Database Syst Rev. 2013;8:CD001501.Google Scholar
  3. 3.
    Yandell RB et al. Evaluation of the KTP-532 nm laser for excisional cone biopsy of the cervix. Abstract presented at the Proceedings of the Combined Clinical Meeting of the American Society for Colposcopy and Cervical Pathology, and Gynecology Laser Society; April l998.Google Scholar
  4. 4.
  5. 5.
    Schawlow AL. Advances in Optical Masers. Sci Am. 1963;209:36.Google Scholar
  6. 6.
    Schawlow AL, Townes CH. Infrared and Optical Masers. Physiol Rev. 1985;112:1940.Google Scholar
  7. 7.
    Patel CKN. High-power carbon dioxide lasers. Sci Am. 1968;219:23.CrossRefGoogle Scholar
  8. 8.
    Dorsey J. Application of laser in gynecology. In: TeLinde’s operative gynecology. 7th ed. Philadelphia: Lippincott; 1992:499.Google Scholar
  9. 9.
    Kaplan I, et al. The treatment of erosions of the uterine cervix by means of the CO2 laser. Obstet Gynecol. 1973;41(5):795–6.PubMedGoogle Scholar
  10. 10.
    Bellina JH. Gynecology and the laser. Contrib Gynecol Obstet. 1974;5Google Scholar
  11. 11.
    Bruhat MA, et al. Use of the CO2 laser via laparoscopy. In: Kaplan I, editor. Proceedings of the 3rd International Society for Laser Surgery. Tel Aviv: International Society for Laser Surgery; 1979. p. 275.Google Scholar
  12. 12.
    Keye WR, Dixon J. Photocoagulation of endometriosis by the argon laser through the laparoscope. Obstet Gynecol. 1983;62:383.CrossRefPubMedGoogle Scholar
  13. 13.
    Goldrath M, et al. Laser photo-vaporization of endometriosis for the treatment of menorrhagia. Am J Obstet Gynecol. 1981;140:14.CrossRefPubMedGoogle Scholar
  14. 14.
    Rettenmaier MA, et al. Photoradiation therapy of gynecologic malignancies. Gynecol Oncol. 1984;17:206.CrossRefGoogle Scholar
  15. 15.
    Insinga RP, et al. The healthcare costs of cervical human papillomavirus-related disease. Am J Obstet Gynecol. 2004;191(1):114–20.CrossRefPubMedGoogle Scholar
  16. 16.
    Chesson HW, et al. Estimates of the annual direct medical costs of the prevention and treatment of disease associated with human papillomavirus in the United States. Vaccine. 2012;30(42):6016–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Ho GY. Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med. 1998;338:423.CrossRefPubMedGoogle Scholar
  18. 18.
    Munoz N, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518.CrossRefPubMedGoogle Scholar
  19. 19.
    Bosch FX, et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) study group. J Natl Cancer Inst. 1995;87:796.CrossRefPubMedGoogle Scholar
  20. 20.
    Bonnez W, Reichman R. Papillomaviruses. In: Mandell D, editor. Bennett’s principles and practice of infectious diseases. 6th ed. Philadelphia, PA: Churchill Livingstone; 2005. p. 1841–56.Google Scholar
  21. 21.
    Franco EL, et al. Cervical cancer: epidemiology, prevention and the role of human papillomavirus infection. CMAJ. 2001;164:1017.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Burk RD, et al. Declining prevalence of cervicovaginal human papillomavirus infection with age is independent of other risk factors. Sex Transm Dis. 1996;23(4):333–41.CrossRefPubMedGoogle Scholar
  23. 23.
    Winer RL, et al. Genital human papillomavirus infect ion: incidence and risk factors in a cohort of female university students. Am J Epidemiol. 2003;157:218.CrossRefPubMedGoogle Scholar
  24. 24.
    Tarkowski TA, et al. Epidemiology of human papillomavirus infection and abnormal cytological test results in an urban adolescent population. J lnfect Dis. 2004;189:46.CrossRefGoogle Scholar
  25. 25.
    Koutsky L. Epidemiology of genital human papillomavirus infection. Am J Med. l997;102:3.Google Scholar
  26. 26.
    Baseman JG, Koutsky LA. The epidemiology of human papillomavirus infections. J Clin Virol. 2005;32(suppl 1):Sl6–24.Google Scholar
  27. 27.
    Centers for Disease Control and Prevention Fact Sheet. Genital HPV Infection. www.eclc.govlhvpl.
  28. 28.
    Dunne EF, et al. Prevalence of HPV infection among females in the United States. JAMA. 2007;297:813.CrossRefPubMedGoogle Scholar
  29. 29.
    Dunne EF, et al. Prevalence of HPV infection among men: a systematic review of the literature. J lnfect Dis. 2006;194:1044.CrossRefGoogle Scholar
  30. 30.
    Castellsague X, et al. Male circumcision, penile human papillomavirus infection, and cervical cancer in female partners. N Engl J Med. 2002;346(15):1105–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Clifford GM, et al. Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet. 2005;366:991.CrossRefPubMedGoogle Scholar
  32. 32.
    Carr J, Gyorfi T. Human papillomavirus. Epidemiology, transmission, and pathogenesis. Clin Lab Med. 2000;20:235.CrossRefPubMedGoogle Scholar
  33. 33.
    Bonnez W, Reichman RC. Papillomaviruses. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. 5th ed. Philadelphia: Churchill Livingston; 2000. p. 1630.Google Scholar
  34. 34.
    Mackenzie-Wood A, et al. Imiquimod 5% cream in the treatment of Bowen’s disease. J Am Acad Dermatol. 2001;44:462.CrossRefPubMedGoogle Scholar
  35. 35.
    Fazel N, et al. Clinical, histopathologic, and molecular aspects of cutaneous human papillomavirus infections. Dermatol Clin. 1999;17:521.CrossRefPubMedGoogle Scholar
  36. 36.
    Llewellyn CD, et al. Risk factors for squamous cell carcinoma of the oral cavity in young people—a comprehensive literature review. Oral Oncol. 2001;37:401.CrossRefPubMedGoogle Scholar
  37. 37.
    Uobe K, et al. Detection of HPV in Japanese and Chinese oral carcinomas by in situ PCR. Oral Oncol. 2001;37:146.CrossRefPubMedGoogle Scholar
  38. 38.
    Sonnex C. Human papillomavirus infection with particular reference to genital disease. J Clin Pathol. 1998;51:643.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sedlacek TV. Advances in the diagnosis and treatment of human papillomavirus infections. Clin Obstet Gy11ecol. 1999;42:206.CrossRefGoogle Scholar
  40. 40.
    Chatterjee A. The next generation of HPV vaccines: nonavalent vaccine V503 on the horizon. Expert Rev Vaccines. 2014;13(11):1279–90.CrossRefGoogle Scholar
  41. 41.
    Centers for Disease Control and Prevention (CDC). FDA licensure of quadrivalent human papillomavirus vaccine for use in males and guidance from the Advisory Committee on Immunization Practices. MMWR Morb Mortal Wkly Rep 2010; 59(20):630–2. Available at: Accessed February 24, 2014.
  42. 42.
    Hariri S, et al. Reduction in HPV 16/18-associated high grade cervical lesions following HPV vaccine introduction in the United States—2008-2012. Vaccine. 2015;33(13):1608–13.CrossRefPubMedGoogle Scholar
  43. 43.
    Baggish MS. Management of cervical intraepithelial neoplasia by carbon dioxide laser. Obstet Gynecol. 1982;60:378–84.PubMedGoogle Scholar
  44. 44.
    Martin-Hirsch PL, et al. Surgery for cervical intraepithelial neoplasia. Cochrane Database Syst Rev. 2000;2:CD 001318.Google Scholar
  45. 45.
    Bar-Am A, et al. Combined colposcopy, loop conization, and laser vaporization reduces recurrent abnormal cytology and residual disease in cervical dysplasia. Gynecol Oncol. 2000;78(1):47–51.CrossRefPubMedGoogle Scholar
  46. 46.
    Hullberg L, et al. Menstrual blood loss: a population study. Acta Obstet Gynecol Scand. 1966;45:320–51.CrossRefGoogle Scholar
  47. 47.
    Martel P, et al. Utilization of CO2 lasers in continuous or pulsed mode for conizations: apropos of 230 cases. Gynecol Obstet Fertil. 2000;28(7–8):537–46.PubMedGoogle Scholar
  48. 48.
    Metal M. CO2 laser conization for cervical intraepithelial neoplasia: a comparison with cold knife conization during pregnancy. Clin Laser Med Surg. 1991;9(2):115–20.CrossRefGoogle Scholar
  49. 49.
    Van Rooijen M, et al. Pregnancy outcome after laser vaporization of the cervix. Acta Obstet Gynecol Scand. 1999;78(4):346–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Townsend DE, et al. Treatment of vaginal carcinoma in situ with the carbon dioxide laser. Am J Obstet Gynecol. 1982;143:565–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Campagnutta E, et al. Treatment of vaginal intraepithelial neoplasia (VAIN) with the carbon dioxide laser. Clin Exp Obstet Gynecol. 1999;26(2):127–30.PubMedGoogle Scholar
  52. 52.
    Curtin JP, et al. Treatment of vaginal intraepithelial neoplasia with the CO2 laser. J Reprod Med. 1985;30:942–4.PubMedGoogle Scholar
  53. 53.
    Diakomanolis E, et al. Vaginal intraepithelial neoplasia: report of 102 cases. Eur J Gynaecol Oncol. 2002;23(5):457–9.PubMedGoogle Scholar
  54. 54.
    Diakomanolis E, et al. Treatment of vaginal intraepithelial neoplasia with laser ablation and upper vaginectomy. Gynecol Obstet Investig. 2002;54(1):17–20.CrossRefGoogle Scholar
  55. 55.
    Diakomanolis E, et al. Conservative management of vaginal intraepithelial neoplasia (VAIN) by laser CO2. Eur J Gynaecol Oncol. 1996;17(5):389–92.Google Scholar
  56. 56.
    Hoffman MS, et al. Laser vaporization of grade 3 vaginal intraepithelial neoplasia. Am J Obstet Gynecol. 1991;165:1342–4.CrossRefPubMedGoogle Scholar
  57. 57.
    Woodman CB, et al. The management of vaginal intraepithelial neoplasia after hysterectomy. BJOG. 1984;91:707–11.CrossRefGoogle Scholar
  58. 58.
    Yalcin OT, et al. Vaginal intraepithelial neoplasia: treatment by carbon dioxide laser and risk factors for failure. Eur J Obstet Gynecol Reprod Biol. 2003;106(1):64–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Benedet JL. Epidermal thickness measurements in vaginal intraepithelial neoplasia. J Reprod Med. 1992;37:809–12.PubMedGoogle Scholar
  60. 60.
    Baggish MS, Dorsey JH. CO2 laser for the treatment of vulvar carcinoma in situ. Obstet Gynecol. 1981;57:371–5.PubMedGoogle Scholar
  61. 61.
    Baggish MS. Treating viral venereal infections with the CO2 laser. Reprod Med. 1982;27(12):737–74.Google Scholar
  62. 62.
    Hoffman MS, et al. Laser vaporization for vulvar intraepithelial neoplasia III. J Reprod Med. 1992;37:135–7.PubMedGoogle Scholar
  63. 63.
    Sideri Metal. Evaluation of CO2 laser excision or vaporization for the treatment of vulva intraepithelial neoplasia. Gynecol Oncol. 1999;75:277–81.CrossRefGoogle Scholar
  64. 64.
    Vessey MP, et al. The epidemiology of hysterectomy: findings in a large cohort study. Br J Obstet Gynaecol. 1992;99:402–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Marjoribanks J, et al. Long term hormone therapy for perimenopausal and postmenopausal women. Cochrane Database Syst Rev. 2012;7:CD004143.Google Scholar
  66. 66.
    Rahn DD, et al. Vaginal estrogen for genitourinary syndrome of menopause: a systematic review. Society of Gynecologic Surgeons Systematic Review Group. Obstet Gynecol. 2014;124(6):1147–56.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Salvatore S, et al. Histological study on the effects of microablative fractional CO2 laser on atrophic vaginal tissue: an ex vivo study. Menopause. 2015 Jan;20. [Epub ahead of print].Google Scholar
  68. 68.
    Salvatore S, et al. Sexual function after fractional microablative CO2 laser in women with vulvovaginal atrophy. Climacteric. 2015;18(2):219–25.CrossRefGoogle Scholar
  69. 69.
    Lee MS. Treatment of vaginal relaxation syndrome with an erbium:YAG laser using 90° and 360° scanning scopes: a pilot study & short-term results. Laser Ther. 2014;23(2):129–38.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Goldfarb HA. Myoma coagulation (myolysis). Obstet Gynecol Clin N Am. 2000;27(2):421–30.CrossRefGoogle Scholar
  71. 71.
    Nisolle M, et al. Laparoscopic myolysis with the Nd:YAG laser. J Gynecol Surg. 1993;9:95.CrossRefPubMedGoogle Scholar
  72. 72.
    Chapman R. Low power interstitial photocoagulation of uterine leiomyomas by KTP/YAG laser. Lasers Med Sci. 1994;9:37–46.CrossRefGoogle Scholar
  73. 73.
    Chapman R. Low power interstitial photocoagulation of uterine leiomyomas by KTP/YAG laser: a review of 50 consecutive cases. SPIE Proc Med Appl Lasers II. 1994;2327:304–12.Google Scholar
  74. 74.
    Chapman R. Treatment of uterine leiomyomas by interstitial hyperthermia. Gynaecol Endosc. 1993;2:227–34.Google Scholar
  75. 75.
    Penna C, et al. CO2 laser surgery for vulvar intraepithelial neoplasia. J Reprod Med. 2002;47:913–8.PubMedGoogle Scholar
  76. 76.
    Phillips DR, et al. Experience with laparoscopic leiomyoma coagulation and concomitant operative hysteroscopy. J Am Assoc Gynecol Laparosc. 1997;4(4):425–33.CrossRefPubMedGoogle Scholar
  77. 77.
    Goldfarb HA. Laparoscopic coagulation of myoma (myolysis). Obstet Gynecol Clin N Am. 1995;22(4):807–19.Google Scholar
  78. 78.
    Chapman R. Treatment of large uterine fibroids. Br J Obstet Gynaecol. 1997;104:867–71.CrossRefPubMedGoogle Scholar
  79. 79.
    Hindley JT, et al. Clinical outcomes following percutaneous magnetic resonance image guided laser ablation of symptomatic uterine fibroids. Hum Reprod. 2002;17(10):2737–41.CrossRefPubMedGoogle Scholar
  80. 80.
    Law P, et al. Magnetic resonance-guided percutaneous laser ablation of uterine fibroids. J Magn Reson Imaging. 2000;12(4):565–70.CrossRefPubMedGoogle Scholar
  81. 81.
    Visvanathan D, et al. Interstitial laser photocoagulation for uterine myomas. Am J Obstet Gynecol. 2002;187(2):382–4.CrossRefPubMedGoogle Scholar
  82. 82.
    Keckstein J. Laser techniques in gynaecology. Endosc Surg Allied Technol. 1994;2(3–4):176–80.PubMedGoogle Scholar
  83. 83.
    Donnez J. CO2 laser laparoscopy in infertile women with adhesions or endometriosis. Fertil Steril. 1987;48:390–4.CrossRefPubMedGoogle Scholar
  84. 84.
    Nezhat C, et al. Surgical treatment of endometriosis via laser laparoscopy. Fertil Steril. 1986;45:778–83.CrossRefPubMedGoogle Scholar
  85. 85.
    Donnez J, Nisolle M. An atlas of operative laparoscopy and hysteroscopy. 2nd ed. New York/London: Parthenon Publishing; 2001.Google Scholar
  86. 86.
    Vercellini P, et al. Coagulation or excision of ovarian endometriomas? Am J Obstet Gynecol. 2003;188(3):606–10.CrossRefPubMedGoogle Scholar
  87. 87.
    Jones K, et al. Endometrial laser intrauterine thermotherapy for the treatment of dysfunctional uterine bleeding: the first British experience. Br J Obstet Gynaecol. 2001;108:749–53.Google Scholar
  88. 88.
    Jacobson TZ, et al. Laparoscopic surgery for pelvic pain associated with endometriosis. Cochrane Database Syst Rev. 2001;4:CD 001300.Google Scholar
  89. 89.
    Divaris D, et al. Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of 5-aminolevulinic acid correlates with localized protoporphyrin-IX fluorescence. Am J Pathol. 1990;136:891–7.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Kennedy JC, et al. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B. 1990;1-2:143–8.CrossRefGoogle Scholar
  91. 91.
    Kennedy JC, Pottier RH. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol B. 1992;4:275–92.CrossRefGoogle Scholar
  92. 92.
    Peng Q, et al. 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem Photobiol. 1997;65:235–51.CrossRefPubMedGoogle Scholar
  93. 93.
    Hillemanns P, et al. Photodynamic therapy in women with cervical intra-epithelial neoplasia using topically applied 5-aminolevulinic acid. Int J Cancer. 1999;81:34–8.CrossRefPubMedGoogle Scholar
  94. 94.
    Tromberg BJ, et al. In vivo tumor oxygen tension measurements for the evaluation of the efficiency of photodynamic therapy. Photochem Photobiol. 1990;2:375–85.CrossRefGoogle Scholar
  95. 95.
    Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol. 1991;5:659.CrossRefGoogle Scholar
  96. 96.
    Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. Photochem Photobiol. 1997;39:1–18.CrossRefGoogle Scholar
  97. 97.
    Fan KFM, et al. Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant lesions of the oral cavity. Cancer. 1996;78:1374–83.CrossRefPubMedGoogle Scholar
  98. 98.
    Wolf P, et al. Topical photodynamic therapy with endogenous porphyrins after application of 5-aminolevulinic acid. An alternative treatment modality for solar keratoses, superficial squamous cell carcinomas, and basal cell carcinomas? J Am Acad Dermatol. 1993;1:17–21.CrossRefGoogle Scholar
  99. 99.
    Scholefield JH. Treatment of grade III anal intraepithelial neoplasia with photodynamic therapy: report of a case. Tech Coloproctol. 2004;8(3):200.Google Scholar
  100. 100.
    Webber J, Fromm D. Photodynamic therapy for carcinoma in situ of the anus. Arch Surg. 2004;139:259–61.CrossRefPubMedGoogle Scholar
  101. 101.
    Hamdan KA, et al. Treatment of grade III anal intraepithelial neoplasia with photodynamic therapy: report of a case. Dis Colon Rectum. 2003;46:1555–9.CrossRefPubMedGoogle Scholar
  102. 102.
    Hillemanns P, et al. Photodynamic therapy of vulvar intraepithelial neoplasia using 5-aminolevulinic acid. Int J Cancer. 2000;85:649–53.CrossRefPubMedGoogle Scholar
  103. 103.
    Fehr MK, et al. Photodynamic therapy of vulvar intraepithelial neoplasia III using topically applied 5-aminolevulinic acid. Gynecol Oncol. 2001;80:62–6.CrossRefPubMedGoogle Scholar
  104. 104.
    Morton CA, et al. Comparison of photodynamic therapy with cryotherapy; in the treatment of Bowen's disease. Br J Dematol. 1996;5:766–71.CrossRefGoogle Scholar
  105. 105.
    Martin-Hirsch PL. Photodynamic treatment for lower genital tract intraepithelial neoplasia [letter]. Lancet. 1998;351:1403.CrossRefPubMedGoogle Scholar
  106. 106.
    Lobraico RV, Grossweiner LI. Clinical experiences with photodynamic therapy for recurrent malignancies of the lower female genital tract. J Gynecol Surg. 1993;9:29–34.CrossRefPubMedGoogle Scholar
  107. 107.
    Fehr MK, et al. Photodynamic therapy of vulvar and vaginal condyloma and intraepithelial neoplasia using topically applied5-aminolevulinic acid. Lasers Surg Med. 2002;30:273–9.CrossRefPubMedGoogle Scholar
  108. 108.
    Wierrani F, et al. 5-Aminolevulinic acid-mediated photodynamic therapy of intraepithelial neoplasia and human papillomavirus of the uterine cervix—a new experimental approach. Cancer Detect Prev. 1999;23:351–5.CrossRefPubMedGoogle Scholar
  109. 109.
    Hillemanns P, et al. Photodynamic therapy of vulvar lichen sclerosus with 5-aminolevulinic acid. Obstet Gynecol. 1999;93:71–4.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyTexas Tech University Health Sciences CenterLubbockUSA

Personalised recommendations