Advertisement

Laser/Light Application in Dental Procedures

  • Steven Parker
Chapter

Abstract

The oral cavity is a relatively confined anatomical region, with a close approximation of hard and soft tissue structures. The comparatively delicate nature of each tissue structure places demands on surgical techniques using lasers and the maximum power parameters used.

The predictable application of any laser wavelength currently commercially-available may be viewed as an expression of incident power and the targeting of a predominant chromophore in the exposed tissue. By way of exploring laser use in dentistry, this may be summarised as surgical management of oral hard tissue and soft tissue, non-surgical application and anti-bacterial applications.

Laser use in clinical dentistry has spanned 25 years. Although early laser use in general surgery (notably Carbon Dioxide, wavelength 10.6 μm) was applied to soft tissue surgical procedures in the mouth, the first true dental laser was a Neodymium YAG (1.064 μm) which was launched in 1989. From there the next 5 years witnessed the emergence of other major wavelengths, notably the two Erbium wavelengths (Er:YAG and Er,Cr:YSGG) and Diode group of semiconductor based technology. Latterly, the most recent 5–10 years has seen an emergence of technical developments to optimise the interaction of chosen laser photonic emission with target oral tissue; this manipulation of energy and time parameters shows may herald even greater application of lasers in dentistry.

The current commercial developments in wavelength application in dentistry have resulted in lasers whose emissions span the visible, near-, mid- and far-infra-red portions of the electromagnetic spectrum.

Non-surgical, low level laser applications include photo-biomodulation, diagnostics, photo-activated anti-bacterial processes, laser tooth whitening and laser-scanning of tooth cavity preparations.

Keywords

Laser dentistry Oral soft tissue Oral hard tissue Photothermolysis Photobiomodulation Spallation Antibacterial photodynamic therapy 

References

  1. 1.
    Berry DP, Harding KG, Stanton MR, Jasani B, Ehrlich HP. Human wound contraction: collagen organization, fibroblasts, and myofibroblasts. Plast Reconstr Surg. 1998;102(1):124–31.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Yang L, Witten TM, Pidaparti RM. A biomechanical model of wound contraction and scar formation. J Theor Biol. 2013;332:228–48.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Bayat A, Arscott G, Ollier WE, McGrouther DA, Ferguson MW. Keloid disease: clinical relevance of single versus multiple site scars. Br J Plast Surg. 2005;58:28–37.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Romeo U, Palaia G, Tenore G, Del Vecchio A, Nammour S. Excision of oral mucocele by different wavelength lasers. Indian J Dent Res. 2013;24(2):211–5.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Merigo E, Clini F, Fornaini C, et al. Laser-assisted surgery with different wavelengths: a preliminary ex vivo study on thermal increase and histological evaluation. Lasers Med Sci. 2013;28(2):497–504.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ryu SW, Lee SH, Yoon HJ. A comparative histological and immunohistochemical study of wound healing following incision with a scalpel, CO2 laser or Er,Cr:YSGG laser in the guinea pig oral mucosa. Acta Odontol Scand. 2012;70(6):448–54.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    González-Mosquera A, Seoane J, et al. Er,CR:YSGG lasers induce fewer dysplastic-like epithelial artefacts than CO2 lasers: an in vivo experimental study on oral mucosa. Br J Oral Maxillofac Surg. 2012;50(6):508–12.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kaminer R, Liebow C, Margarone JE III, Zambon JJ. Bacteremia following laser and conventional surgery in hamsters. J Oral Maxillofac Surg. 1990;48:45–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    D’Arcangelo C, Di Nardo Di Maio F, Prosperi GD, Conte E, Baldi M, Caputi S. A preliminary study of healing of diode laser versus scalpel incisions in rat oral tissue: a comparison of clinical, histological, and immunohistochemical results. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(6):764–73.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Nanami T, Shiba H, Ikeuchi S, Nagai T, Asanami S, Shibata T. Clinical applications and basic studies of laser in dentistry and oral surgery. Keio J Med. 1993;42:199–201.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Fisher SE, Frame JW, Browne RM, Tranter RM. A comparative histological study of wound healing following CO2 laser and conventional surgical excision of canine buccal mucosa. Arch Oral Biol. 1983;28:287–91.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Amzayyb M, van den Bos RR, Kodach VM, de Bruin DM, Nijsten T, Neumann HA, van Gemert MJ. Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation: thickness and absorption by optical coherence tomography. Lasers Med Sci. 2010;25(3):439–47.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Spencer P, Cobb CM, Wieliczka DM, Glaros AG, Morris PJ. Change in temperature of subjacent bone during soft tissue laser ablation. J Periodontol. 1998;69:1278–82.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Dederich DN. Laser/tissue interaction: what happens to laser light when it strikes tissue? JADA. 1993;124(2):57–61.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Jones T, Fleming C, Llewelyn J. Management of vascular lesions of the mouth and lips using a potassium titanyl phosphate (KTP) laser: review of patient satisfaction. Br J Oral Maxillofac Surg. 2011;49(5):364–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Miyazaki H, Kato J, Watanabe H, Harada H, Kakizaki H, Tetsumura A, Sato A, Omura K. Intralesional laser treatment of voluminous vascular lesions in the oral cavity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(2):164–72.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Angiero F, Benedicenti S, Romanos GE, Crippa R. Treatment of hemangioma of the head and neck with diode laser and forced dehydration with induced photocoagulation. Photomed Laser Surg. 2008;26(2):113–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Genovese WJ, dos Santos MT, Faloppa F, de Souza Merli LA. The use of surgical diode laser in oral hemangioma: a case report. Photomed Laser Surg. 2010;28(1):147–51.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Shankar BS, Ramadevi T, Neetha MS, Reddy PSK, Saritha G, Reddy JM. Chronic inflammatory gingival overgrowths: laser gingivectomy & gingivoplasty. J Int Oral Health. 2013;5(1):83–7.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Polack MA, Mahn DH. Biotype change for the esthetic rehabilitation of the smile. J Esthet Restor Dent. 2013;25(3):177–86.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Boj JR, Poirier C, Hernandez M, Espassa E, Espanya A. Case series: laser treatments for soft tissue problems in children. Eur Arch Paediatr Dent. 2011;12(2):113–7.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Flax HD. Soft and hard tissue management using lasers in esthetic restoration. Dent Clin N Am. 2011;55(2):383–402.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bakaeen L, et al. The biologic width around titanium implants: histometric analysis. Int J Perio Rest. Dent. 2009;29(3):297–305.Google Scholar
  24. 24.
    Jorgic-Srdjak K, Plancak D, et al. Periodontal and prosthetic aspect of biological width. Part I: Violation of biologic width. Acta Stomatol Croat. 2000;34:195–7.Google Scholar
  25. 25.
    Kang Y, Rabie AB, Wong RW. A review of laser applications in orthodontics. Int J Orthod Milwaukee. 2014;25(1):47–56.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Kravitz ND, Kusnoto B. Soft-tissue lasers in orthodontics: an overview. Am J Orthod Dentofacial Orthop. 2008;133(4 Suppl):S110–4.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Burke B, Hamdan AM, Tufekci E, Shroff B, Best AM, Lindauer SJ. Perceptions of soft tissue laser use in orthodontics. Angle Orthod. 2012;82(1):75–83.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Parker S. Lasers and soft tissue: ‘loose’ soft tissue surgery. Br Dent J. 2007;202(4):185–91.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Parwani S, Parwani R. Achieving better esthetics by gingival de-pigmentation: report of three cases with a review of the literature. J Mich Dent Assoc. 2013;95(2):52–8. 78.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Hegde R, Padhye A, Sumanth S, Jain AS, Thukral N. Comparison of surgical stripping; erbium-doped:yttrium, aluminum, and garnet laser; and carbon dioxide laser techniques for gingival depigmentation: a clinical and histologic study. J Periodontol. 2013;84(6):738–48.PubMedCrossRefGoogle Scholar
  31. 31.
    Kishore A, Kathariya R, Deshmukh V, Vaze S, Khalia N, Dandgaval R. Effectiveness of Er:YAG and CO2 lasers in the management of gingival melanin hyperpigmentation. Oral Health Dent Manag. 2014;13(2):486–91.PubMedGoogle Scholar
  32. 32.
    Simşek Kaya G, Yapici Yavuz G, Sümbüllü MA, Dayi E. A comparison of diode laser and Er:YAG lasers in the treatment of gingival melanin pigmentation. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(3):293–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Baraba A, Perhavec T, Chieffi N, Ferrari M, Anić I, Miletić I. Ablative potential of four different pulses of Er:YAG lasers and low-speed hand piece. Photomed Laser Surg. 2012;30(6):301–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Rizcalla N, Bader C, Bortolotto T, Krejci I. Improving the efficiency of an Er:YAG laser on enamel and dentin. Quintessence Int. 2012;43(2):153–60.PubMedGoogle Scholar
  35. 35.
    Borsatto MC, Torres CP, Chinelatti MA, Pécora JD, Corona SA, Palma-Dibb RG. Effect of Er:YAG laser parameters on ablation capacity and morphology of primary enamel. Photomed Laser Surg. 2009;27(2):253–60.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Meister J, Apel C, Franzen R, Gutknecht N. Influence of the spatial beam profile on hard tissue ablation. Part I: Multimode emitting Er:YAG lasers. Lasers Med Sci. 2003;18(2):112–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Al-Batayneh OB, Seow WK, Walsh LJ. Assessment of Er:YAG laser for cavity preparation in primary and permanent teeth: a scanning electron microscopy and thermographic study. Pediatr Dent. 2014;36(3):90–4.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Kuščer L, Diaci J. Measurements of erbium laser-ablation efficiency in hard dental tissues under different water cooling conditions. J Biomed Opt. 2013;18(10):108002.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    De Moor RJ, Delmé KI. Laser-assisted cavity preparation and adhesion to erbium-lased tooth structure: Part 1. Laser-assisted cavity preparation. J Adhes Dent. 2009;11(6):427–38.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Hibst R, Keller U. Mechanism of Er:YAG laser-induced ablation of dental hard substances. Proc SPIE. 1993;1880:156–62.CrossRefGoogle Scholar
  41. 41.
    Jr WJT, Cummings JP. Effect of the dynamic optical properties of water on mid-infrared laser ablation. Lasers Surg Med. 1994;15:295–305.CrossRefGoogle Scholar
  42. 42.
    Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev. 2003;103(2):577–644.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Mir M, Gutknecht N, et al. Visualising the procedures in the influence of water on the ablation of dental hard tissue with erbium:yttrium–aluminium–garnet and erbium, chromium:yttrium–scandium–gallium-garnet laser pulses. Lasers Med Sci. 2009;24:365–74.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Fried DIR. laser ablation of dental enamel. Proc SPIE. 2000;3910:136–48.CrossRefGoogle Scholar
  45. 45.
    Welch AJ, Van Gemert MJC, editors. Data: In Optical-thermal response of laser irradiated tissue. 2nd ed. New York, NY: Springer Science + Business Media; 2011.  https://doi.org/10.1007/978-90-481-8831-4_1.CrossRefGoogle Scholar
  46. 46.
    Apel C, Meister J, Ioana RS, Franzen R, Hering P, Gutknecht N. The ablation threshold of Er:YAG and Er:YSGG laser radiation in dental enamel. Lasers Med Sci. 2002;17:246–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Harashima T, Kinoshita J, Kimura Y, et al. Morphological comparative study on ablation of dental hard tissues at cavity preparation by Er:YAG and Er,Cr:YSGG lasers. Photomed Laser Surg. 2005;23:52–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Shahabi S, Zendedel S. Atomic analysis and hardness measurement of the cavity prepared by laser. Lasers Med Sci. 2010;25(3):379–83.PubMedCrossRefGoogle Scholar
  49. 49.
    Corona SA, de Souza AE, Chinelatti MA, Borsatto MC, Pécora JD, Palma-Dibb RG. Effect of energy and pulse repetition rate of Er: YAG laser on dentin ablation ability and morphological analysis of the laser-irradiated substrate. Photomed Laser Surg. 2007;25(1):26–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Fornaini C. Er:YAG and adhesion in conservative dentistry : clinical overview. Laser Ther. 2013;22(1):31–5.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ghandehari M, Mighani G, Shahabi S, Chiniforush N, Shirmohammadi Z. Comparison of microleakage of glass ionomer restoration in primary teeth prepared by Er: YAG laser and the conventional method. J Dent (Tehran). 2012;9(3):215–20.Google Scholar
  52. 52.
    De Moor RJ, Delme KI. Laser-assisted cavity preparation and adhesion to erbium-lased tooth structure: part 2. present-day adhesion to erbium-lased tooth structure in permanent teeth. J Adhes Dent. 2010;12(2):91–102.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Moldes VL, Capp CI, Navarro RS, Matos AB, Youssef MN, Cassoni A. In vitro microleakage of composite restorations prepared by Er:YAG/Er,Cr:YSGG lasers and conventional drills associated with two adhesive systems. J Adhes Dent. 2009;11(3):221–9.PubMedGoogle Scholar
  54. 54.
    Krmek SJ, Bogdan I, Simeon P, Mehicić GP, Katanec D, Anić I. A three-dimensional evaluation of microleakage of class V cavities prepared by the very short pulse mode of the erbium:yttrium-aluminium-garnet laser. Lasers Med Sci. 2010;25(6):823–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Obeidi A, McCracken MS, Liu PR, Litaker MS, Beck P, Rahemtulla F. Enhancement of bonding to enamel and dentin prepared by Er,Cr:YSGG laser. Lasers Surg Med. 2009;41(6):454–62.PubMedCrossRefGoogle Scholar
  56. 56.
    Delmé KI, Deman PJ, De Bruyne MA, Nammour S, De Moor RJ. Microleakage of glass ionomer formulations after erbium:yttrium-aluminium-garnet laser preparation. Lasers Med Sci. 2010;25(2):171–80.PubMedCrossRefGoogle Scholar
  57. 57.
    Shahabi S, Chiniforush N, Bahramian H, Monzavi A, Baghalian A, Kharazifard MJ. The effect of erbium family laser on tensile bond strength of composite to dentin in comparison with conventional method. Lasers Med Sci. 2013;28(1):139–42.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Geraldo-Martins V, Thome T, Mayer M, Marques M. The use of bur and laser for root caries treatment: a comparative study. Oper Dent. 2013;38(3):290–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Eren F, Altinok B, Ertugral F, Tanboga I. The effect of erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser therapy on pain during cavity preparation in paediatric dental patients: a pilot study. Oral Health Dent Manag. 2013;12(2):80–4.PubMedPubMedCentralGoogle Scholar
  60. 60.
    C F, Riceputi D, Lupi-Pegurier L, Rocca JP. Patient responses to Er:YAG laser when used for conservative dentistry. Lasers Med Sci. 2012;27(6):1143–9.CrossRefGoogle Scholar
  61. 61.
    Genovese MD, Olivi G. Laser in paediatric dentistry: patient acceptance of hard and soft tissue therapy. Eur J Paediatr Dent. 2008;9(1):13–7.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Liu JF, Lai YL, Shu WY, Lee SY. Acceptance and efficiency of Er:YAG laser for cavity preparation in children. Photomed Laser Surg. 2006;24(4):489–93.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Chan KH, Hirasuna K, Fried D. Rapid and selective removal of composite from tooth surfaces with a 9.3 μm CO2 laser using spectral feedback. Lasers Surg Med. 2011;43(8):824–32.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Staninec M, Darling CL, Goodis HE, Pierre D, Cox DP, Fan K, Larson M, Parisi R, Hsu D, Manesh SK, Ho C, Hosseini M, Fried D. Pulpal effects of enamel ablation with a microsecond pulsed lambda = 9.3-microm CO2 laser. Lasers Surg Med. 2009;41(4):256–63.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Schelle F, Polz S, Haloui H, Braun A, Dehn C, Frentzen M, Meister J. Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials. Lasers Med Sci. 2014;29:1775.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    A B, Krillke RF, Frentzen M, Bourauel C, Stark H, Schelle F. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system. Lasers Med Sci. 2015;30:475.CrossRefGoogle Scholar
  67. 67.
    Engelbach C, Dehn C, Bourauel C, Meister J, Frentzen M. Ablation of carious dental tissue using an ultrashort pulsed laser (USPL) system. Lasers Med Sci. 2015;30:1427.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Hibst R. Mechanical effects of erbium:YAG laser bone ablation. Lasers Surg Med. 1992;12:125–30.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Panduric DG, Juric IB, Music S, Molčanov K, Sušic M, Anic I. Morphological and ultrastructural comparative analysis of bone tissue after Er:YAG laser and surgical drill osteotomy. Photomed Laser Surg. 2014;32(7):401–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Gabrić Pandurić D, Bago I, Katanec D, Zabkar J, Miletić I, Anić I. Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study. J Oral Maxillofac Surg. 2012;70(11):2515–21.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kesler G, Shvero DK, Tov YS, Romanos G. Platelet derived growth factor secretion and bone healing after Er:YAG laser bone irradiation. J Oral Implantol. 2011;37:Spec No:195–204.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    de Mello ED, Pagnoncelli RM, Munin E, Filho MS, de Mello GP, Arisawa EA, de Oliveira MG. Comparative histological analysis of bone healing of standardized bone defects performed with the Er:YAG laser and steel burs. Lasers Med Sci. 2008;23(3):253–60.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Yoshino T, Aoki A, Oda S, Takasaki AA, Mizutani K, Sasaki KM, Kinoshita A, Watanabe H, Ishikawa I, Izumi Y. Long-term histologic analysis of bone tissue alteration and healing following Er:YAG laser irradiation compared to electrosurgery. J Periodontol. 2009;80(1):82–92.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Wang X, Zhang C, Matsumoto K. In vivo study of the healing processes that occur in the jaws of rabbits following perforation by an Er,Cr:YSGG laser. Lasers Med Sci. 2005;20:21–7.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Flax H. Maximizing aesthetics and health using a closed-flap Er:YSGG laser technique. Pract Proced Aesthet Dent. 2004;16(3):201–5.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Lowe RA. Clinical use of the Er,Cr: YSGG laser for osseous crown lengthening: redefining the standard of care. Pract Proced Aesthet Dent. 2006;18(4):S2–9.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Flax HD, Radz GM. Closed-flap laser-assisted esthetic dentistry using Er:YSGG technology. Compend Contin Educ Dent. 2004;25(8):622–6. 628-30 passim.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Lowe RA. Cosmetic recontouring of gingival tissues and alveolar bone. Pract Proced Aesthet Dent. 2006;18(5):315–6.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Rossmann JA, Cobb CM. Lasers in periodontal therapy. Periodontol 2000. 1995;9:150–64.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Israel M, Rossmann JA, Froum SJ. Use of the carbon dioxide laser in retarding epithelial migration: a pilot histological human study utilizing case reports. J Periodontol. 1995;66:197–204.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Williams TM, Cobb CM, Rapley JW, Killoy WJ. Histologic evaluation of alveolar bone following CO2 laser removal of connective tissue from periodontal defects. Int J Periodontics Restorative Dent. 1995;15:497–506.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Wilder-Smith P, Arrastia AA, Schell MJ, Liaw LH, Grill G, Berns MW. Effect of Nd:YAG laser irradiation and root planing on the root surface: structural and thermal effects. J Periodontol. 1995;66:1032–9.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Rizoiu IM, Eversole LR, Kimmel AI. Effects of an erbium, chromium:yttrium, scandium, gallium garnet laser on mucocutaneous soft tissues. Oral Surg Oral Med Oral Pathol. 1996;82:386–95.CrossRefGoogle Scholar
  84. 84.
    Yukna RA, Carr RL, Evans GH. Histologic evaluation of an Nd:YAG laser-assisted new attachment procedure in humans. Int J Periodontics Restorative Dent. 2007;27(6):577–87.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Nevins M, Kim SW, et al. A prospective 9-month human clinical evaluation of Laser-Assisted New Attachment Procedure (LANAP) therapy. Int J Periodontics Restorative Dent. 2014;34(1):21–7.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Coffelt DW, Cobb CM, MacNeill S, Rapley JW, Killoy WJ. Determination of energy density threshold for laser ablation of bacteria. An in vitro study. J Clin Periodontol. 1997;24:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Qadri T, Tunér J, Gustafsson A. Significance of scaling and root planing with and without adjunctive use of a water-cooled pulsed Nd:YAG laser for the treatment of periodontal inflammation. Lasers Med Sci. 2015;30:797.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Slot DE, Kranendonk AA, Paraskevas S, Van der Weijden F. The effect of a pulsed Nd:YAG laser in non-surgical periodontal therapy. J Periodontol. 2009;80(7):1041–56.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Gojkov-Vukelic M, Hadzic S, Dedic A, Konjhodzic R, Beslagic E. Application of a diode laser in the reduction of targeted periodontal pathogens. Acta Inform Med. 2013;21(4):237–40.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Slot DE, Jorritsma KH, Cobb CM, Van der Weijden FA. The effect of the thermal diode laser (wavelength 808-980 nm) in non-surgical periodontal therapy: a systematic review and meta-analysis. J Clin Periodontol. 2014;41(7):681–92.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Krohn-Dale I, Bøe OE. Er:YAG laser in the treatment of periodontal sites with recurring chronic inflammation: a 12-month randomized, controlled clinical trial. J Clin Periodontol. 2012;39(8):745–52.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Crespi R, Capparè P. Effects of Er:YAG laser compared to ultrasonic scaler in periodontal treatment: a 2-year follow-up split-mouth clinical study. J Periodontol. 2007;78(7):1195–200.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Mishra MK, Prakash S. A comparative scanning electron microscopy study between hand instrument, ultrasonic scaling and erbium doped:Yttirum aluminum garnet laser on root surface: A morphological and thermal analysis. Contemp Clin Dent. 2013;4(2):198–205.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Krause F, Braun A, Brede O, Eberhard J, Frentzen M, Jepsen S. Evaluation of selective calculus removal by a fluorescence feedback-controlled Er:YAG laser in vitro. J Clin Periodontol. 2007;34(1):66–71.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Hakki SS, Berk G, Dundar N, Saglam M, Berk N. Effects of root planing procedures with hand instrument or erbium, chromium:yttrium-scandium-gallium-garnet laser irradiation on the root surfaces: a comparative scanning electron microscopy study. Lasers Med Sci. 2010;25(3):345–53.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Noori ZT, Fekrazad R, Eslami B, Etemadi A, Khosravi S, Mir M. Comparing the effects of root surface scaling with ultrasound instruments and Er,Cr:YSGG laser. Lasers Med Sci. 2008;23(3):283–7.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Samiei M, Pakdel SM, et al. Scanning electron microscopy comparison of the cleaning efficacy of a root canal system by Nd:YAG laser and rotary instruments. Microsc Microanal. 2014;20:1240.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Parirokh M, Eghbal MJ, et al. Effect of 808nm diode laser irradiation on root canal walls after smear layer removal: A scanning electron microscope study. Iran Endod J. 2007;2(2):37–42.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Guidotti R, Merigo E, Fornaini C, Rocca JP, Medioni E, Vescovi P. Er:YAG 2,940-nm laser fiber in endodontic treatment: a help in removing smear layer. Lasers Med Sci. 2014;29(1):69–75.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Soares F, Varella CH, et al. Impact of Er,Cr:YSGG laser therapy on the cleanliness of the root canal walls of primary teeth. J Endod. 2008;34(4):474–7.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Kuhn K, Rudolph H, Luthardt RG, Stock K, Diebolder R, Hibst R. Er:YAG laser activation of sodium hypochlorite for root canal soft tissue dissolution. Lasers Surg Med. 2013;45(5):339–44.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    DiVito E, Peters OA, Olivi G. Effectiveness of the erbium:YAG laser and new design radial and stripped tips in removing the smear layer after root canal instrumentation. Lasers Med Sci. 2012;27(2):273–80.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Gordon W, Atabakhsh VA, et al. The antimicrobial efficacy of the erbium, chromium:yttrium-scandium-gallium-garnet laser with radial emitting tips on root canal dentin walls infected with Enterococcus faecalis. J Am Dent Assoc. 2007;138(7):992–1002.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    George R, Walsh LJ. Thermal effects from modified endodontic laser tips used in the apical third of root canals with erbium-doped yttrium aluminium garnet and erbium, chromium-doped yttrium scandium gallium garnet lasers. Photomed Laser Surg. 2010;28(2):161–5.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Kaiwar A, Usha HL, Meena N, Ashwini P, Murthy CS. The efficiency of root canal disinfection using a diode laser: in vitro study. Indian J Dent Res. 2013;24(1):14–8.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Romeo U, Palaia G, et al. Effectiveness of KTP laser versus 980 nm diode laser to kill Enterococcus faecalis in biofilms developed in experimentally infected root canals. Aust Endod J. 2015;41:17.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Schoop U, Kluger W, et al. Innovative wavelengths in endodontic treatment. Lasers Surg Med. 2006;38(6):624–30.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Rahimi S, Shahi S, et al. Bactericidal effects of Nd:YAG laser irradiation and sodium hypochlorite solution on Enterococcus faecalis biofilm. Photomed Laser Surg. 2012;30(11):637–41.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Pirnat S, Lukac M, Ihan A. Study of the direct bactericidal effect of Nd:YAG and diode laser parameters used in endodontics on pigmented and nonpigmented bacteria. Lasers Med Sci. 2011;26(6):755–61.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Le Goff A, Dautel-Morazin A, Guigand M, Vulcain JM, Bonnaure-Mallet M. An evaluation of the CO2 laser for endodontic disinfection. J Endod. 1999;25:105–8.PubMedCrossRefGoogle Scholar
  111. 111.
    McKinley I, Ludlow M. Hazards of laser smoke during endodontic therapy. J Endod. 1994;20:558–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Hardee M, Miserendino L, Kos W, Walia H. Evaluation of the antibacterial effects of intracanal Nd:YAG laser irradiation. J Endod. 1994;20:377–80.PubMedCrossRefGoogle Scholar
  113. 113.
    Schoop U, Kluger W, Moritz A, Nedjelik N, Georgopoulos A, Sperr W. Bactericidal effect of different laser systems in the deep layers of dentin. Lasers Surg Med. 2004;35:111–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Jha D, Guerrero A, Ngo T, Helfer A, Hasselgren G. Inability of laser and rotary instrumentation to eliminate root canal infection. J Am Dent Assoc. 2006;137:67–70.PubMedCrossRefGoogle Scholar
  115. 115.
    Mohammadi Z, Soltani MK, Shalavi S. An update on the management of endodontic biofilms using root canal irrigants and medicaments. Iran Endod J. 2014;9(2):89–97.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Sahar-Helft S, Stabholtz A, et al. Effect of Er:YAG laser-activated irrigation solution on Enterococcus Faecalis biofilm in an ex-vivo root canal model. Photomed Laser Surg. 2013;31(7):334–41.PubMedCrossRefGoogle Scholar
  117. 117.
    George R, Chan K, Walsh LJ. Laser-induced agitation and cavitation from proprietary honeycomb tips for endodontic applications. Lasers Med Sci. 2015;30:1203.PubMedCrossRefGoogle Scholar
  118. 118.
    Hmud R, Kahler WA, George R, Walsh LJ. Cavitational effects in aqueous endodontic irrigants generated by near-infrared lasers. J Endod. 2010;36(2):275–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Murray CM, Knight ET, Russell AA, Tawse-Smith A, Leichter JW. Peri-implant disease: current understanding and future direction. N Z Dent J. 2013;109(2):55–62.PubMedGoogle Scholar
  120. 120.
    Singh P. Understanding peri-implantitis: a strategic review. J Oral Implantol. 2011;37(5):622–6.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Algraffee H, Borumandi F, Cascarini L. Peri-implantitis. Br J Oral Maxillofac Surg. 2012;50(8):689–94.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Swierkot K, Lottholz P, Flores-de-Jacoby L, Mengel R. Mucositis, peri-implantitis, implant success, and survival of implants in patients with treated generalized aggressive periodontitis: 3- to 16-year results of a prospective long-term cohort study. J Periodontol. 2012;83(10):1213–25.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Khammissa RA, Feller L, Meyerov R, Lemmer J. Peri-implant mucositis and peri-implantitis: clinical and histopathological characteristics and treatment. SADJ. 2012;67(3):122. 124–6.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Romanos GE, Weitz D. Therapy of peri-implant diseases. Where is the evidence? J Evid Based Dent Pract. 2012;12(3 Suppl):204–8.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Cochran DL, Schou S, Heitz-Mayfield LJ, Bornstein MM, Salvi GE, Martin WC. Consensus statements and recommended clinical procedures regarding risk factors in implant therapy. Int J Oral Maxillofac Implants. 2009;24(Suppl):86–9.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Leonhardt A, Renvert S, Dahlen G. Microbial findings at failing implants. Clin Oral Implants Res. 1999;10:339–45.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Shibli JA, Martins MC, Lotufo RF, Marcantonio E Jr. Microbiologic and radiographic analysis of ligature induced peri-implantitis with different dental implant surfaces. Int J Oral Maxillofac Implants. 2003;18:383–90.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Papaspyridakos P, Chen CJ, Chuang SK, Weber HP, Gallucci GO. A systematic review of biologic and technical complications with fixed implant rehabilitations for edentulous patients. Int J Oral Maxillofac Implants. 2012;27(1):102–10.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Nguyen-Hieu T, Borghetti A, Aboudharam G. Peri-implantitis: from diagnosis to therapeutics. J Investig Clin Dent. 2012;3(2):79–94.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Hallström H, Persson GR, Lindgren S, Olofsson M, Renvert S. Systemic antibiotics and debridement of peri-implant mucositis. A randomized clinical trial. J Clin Periodontol. 2012;39(6):574–81.PubMedCrossRefGoogle Scholar
  131. 131.
    Luterbacher S, Mayfield L, Brägger U, Lang NP. Diagnostic characteristics of clinical and microbiological tests for monitoring periodontal and peri-implant mucosal tissue conditions during supportive periodontal therapy (SPT). Clin Oral Implants Res. 2000;11(6):521–9.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Parker S. Surgical laser use in implantology and endodontics. Br Dent J. 2007;202(7):379.CrossRefGoogle Scholar
  133. 133.
    Mailoa J, Lin GH, Chan HL, Maceachern M, Wang HL. Clinical outcomes of using lasers for peri-implantitis surface detoxification: a systematic review and meta-analysis. J Periodontol. 2014;85:1194.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Mellado-Valero A, Buitrago-Vera P, et al. Decontamination of dental implant surface in peri-implantitis treatment: a literature review. Med Oral Patol Oral Cir Bucal. 2013;18(6):e869.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Kamel MS, Khosa A, Tawse-Smith A, Leichter J. The use of laser therapy for dental implant surface decontamination: a narrative review of in vitro studies. Lasers Med Sci. 2014;29:1977.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Gonçalves F, Zanetti AL, Zanetti RV, Martelli FS, et al. Effectiveness of 980-mm diode and 1064-nm extra-long-pulse neodymium-doped yttrium aluminum garnet lasers in implant disinfection. Photomed Laser Surg. 2010;28(2):273–80.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Shin SI, Min HK, Park BH, et al. The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces: an in vitro study. Lasers Med Sci. 2011;26(6):767–76.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Stubinger S, Etter C, Miskiewicz M, et al. Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants. 2010;25(1):104–11.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Subramani K, Jung RE, Molenberg A, Hammerle CH. Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants. 2009;24(4):616–26.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Schwarz F, Sculean A, Romanos G. Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Investig. 2005;9(2):111–7.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Marotti J, Tortamano P, Cai S, et al. Decontamination of dental implant surfaces by means of photodynamic therapy. Lasers Med Sci. 2013;28(1):303–9.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Schär D, Ramseier CA, Eick S, Arweiler NB, Sculean A, Salvi GE. Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: six-month outcomes of a prospective randomized clinical trial. Clin Oral Implants Res. 2013;24(1):104–10.PubMedCrossRefGoogle Scholar
  143. 143.
    Karu TI. Afanas’eva NI. Cytochrome c oxidase as the primary photoacceptor upon laser exposure of cultured cells to visible and near IR-range light. Dokl Akad Nauk. 1995;342:693–5.PubMedGoogle Scholar
  144. 144.
    Passarella S. Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett. 1984;175:95–9.PubMedCrossRefGoogle Scholar
  145. 145.
    Karu T. Photobiological fundamentals of low powered laser therapy. IEEE J Quantum Electron. 1987;23:1703–17.CrossRefGoogle Scholar
  146. 146.
    Sutherland JC. Biological effects of polychromatic light. Photochem Photobiol. 2002;76:164–70.PubMedCrossRefGoogle Scholar
  147. 147.
    Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol. 1999;B49:1–17.CrossRefGoogle Scholar
  148. 148.
    Kimura Y, Wilder-Smith P, Yonaga K, Matsumoto K. Treatment of dentine hypersensitivity by laser; a review. J Clin Periodontol. 2000;27:715–21.PubMedCrossRefGoogle Scholar
  149. 149.
    Taube S, Piironen J, Ylipaavalniemi P. Helium-neon laser therapy in the prevention of post-operative swelling and pain after wisdom tooth extraction. Proc Finn Dent Soc. 1990;86:23–7.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Schindl A, Neuman R. Low intensity laser therapy is an effective treatment for recurrent herpes simplex infection: results from a randomised double-blind placebo controlled study. J Invest Dermatol. 1999;113:221–3.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Pinheiro AL, Cavalcanti ET, Pinheiro TI, Alves MJ, Manzi CT. Low-level laser therapy in the management of disorders of the maxillofacial region. J Clin Laser Med Surg. 1997;15:181–3.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Howell RM, Cohen DM, Powell GL, Green JG. The use of low energy laser therapy to treat aphthous ulcers. Ann Dent. 1988;47:16–8.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Wong SF, Wilder-Smith P. Pilot study of laser effects on oral mucositis in patients receiving chemotherapy. Cancer J. 2002;8:247–54.PubMedCrossRefGoogle Scholar
  154. 154.
    Dube A, Bansal H, Gupta PK. Modulation of macrophage structure and function by low level He-Ne laser irradiation. Photochem Photobiol Sci. 2003;2:851–5.PubMedCrossRefGoogle Scholar
  155. 155.
    Stadler I, Evans R, Kolb B, et al. In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med. 2000;27:255–61.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Kovacs IB, Mester E, Gorog P. Stimulation of wound healing with laser beam in the rat. Experientia. 1974;30:1275–6.PubMedCrossRefGoogle Scholar
  157. 157.
    Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD. The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg. 2004;22:323–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Laakso EL, Cramond T, Richardson C, Galligan JP. Plasma ACTH and β-endorphin levels in response to low level laser therapy for myofascial trigger points. Laser Ther. 1994;3:133–42.CrossRefGoogle Scholar
  159. 159.
    Montesinos M. Experimental effects of low power laser in encephalon and endorphin synthesis. J Eur Med Laser Assoc. 1988;1:2–7.Google Scholar
  160. 160.
    Bjelkhagen H, Sundström F. A clinically applicable laser luminescence method for the early detection of dental caries. IEEE J Quantum Electron. 1981;17:266–70.CrossRefGoogle Scholar
  161. 161.
    Bjelkhagen H, Sundström F, Angmar-Månsson B, Ryden H. Early detection of enamel caries by the luminescence excited by visible laser light. Swed Dent J. 1982;6:1–7.PubMedGoogle Scholar
  162. 162.
    de Josselin de Jong E, Sundström F, Westerling H, Tranaeus S, ten Bosch JJ, Angmar-Månsson B. A new method for in vivo quantification of changes in initial enamel caries with laser fluorescence. Caries Res. 1995;29:2–7.PubMedCrossRefGoogle Scholar
  163. 163.
    Hibst R, Gall R. Development of a diode laser-based fluorescence detector. Caries Res. 1998;32:294.Google Scholar
  164. 164.
    Lussi A, Megert B, Longbottom C, Reich E, Francescut P. Clinical performance of a laser fluorescence device for detection of occlusal caries lesions. Eur J Oral Sci. 2001;109:14–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Akbari M, Ahrari F, Jafari MA. Comparative evaluation of DIAGNOdent and caries detector dye in detection of residual caries in prepared cavities. J Contemp Dent Pract. 2012;13(4):515–20.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Featherstone JD. The caries balance: the basis for caries management by risk assessment. Oral Health Prev Dent. 2004;2:259–64.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Hariri I, Sadr A. Effects of structural orientation of enamel and dentine on light attenuation and local refractive index: an optical coherence tomography study. J Dent. 2012;40(5):387–96.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Ribeiro A, Rousseau C, Girkin J, et al. A preliminary investigation of a spectroscopic technique for the diagnosis of natural caries lesions. J Dent. 2005;33:73–8.PubMedCrossRefGoogle Scholar
  169. 169.
    Salsone S, Taylor A, Gomez J, Pretty I. Histological validation of near-infrared reflectance multispectral imaging technique for caries detection and quantification. J Biomed Opt. 2012;17(7):076009.PubMedCrossRefGoogle Scholar
  170. 170.
    Zandoná AF, Zero DT. Diagnostic tools for early caries detection. J Am Dent Assoc. 2006;137(12):1675–84.PubMedCrossRefGoogle Scholar
  171. 171.
    Goldstein RE. In-office bleaching: where we came from, where we are today. J Am Dent Assoc. 1997;128(Suppl):11S–5S.PubMedCrossRefGoogle Scholar
  172. 172.
    Zhang C, Wang X, Kinoshita J, Zhao B, Toko T, Kimura Y, Matsumoto K. Effects of KTP laser irradiation, diode laser, and LED on tooth bleaching: a comparative study. Photomed Laser Surg. 2007;25(2):91–5.PubMedCrossRefGoogle Scholar
  173. 173.
    Walsh LJ, Liu JY, Verheyen P. Tooth discolorations and its treatment using KTP laser-assisted tooth whitening. J Oral Laser Appl. 2004;4:7–21.Google Scholar
  174. 174.
    McCance AM, Moss JP, Wright WR, Linney AD, James DR. A three-dimensional soft tissue analysis of 16 skeletal Class III patients following bimaxillary surgery. Br J Oral Maxillofac Surg. 1992;30:221–32.PubMedCrossRefGoogle Scholar
  175. 175.
    McCance AM, Moss JP, Fright WR, James DR, Linney AD. A three dimensional analysis of soft and hard tissue changes following bimaxillary orthognathic surgery in skeletal III patients. Br J Oral Maxillofac Surg. 1992;30:305–12.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Commer P, Bourauel C, Maier K, Jager A. Construction and testing of a computer- based intraoral laser scanner for determining tooth positions. Med Eng Phys. 2000;22:625–35.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Denissen HW, van der Zel JM, van Waas MA. Measurement of the margins of partial-coverage tooth preparations for CAD/CAM. Int J Prosthodont. 1999;12:395–00.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Harrison JA, Nixon MA, Fright WR, Snape L. Use of hand-held laser scanning in the assessment of facial swelling: a preliminary study. Br J Oral Maxillofac Surg. 2004;42:8–17.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Kocabalkan E, Turgut M. Variation in blood flow of supporting tissue during use of mandibular complete dentures with hard acrylic resin base and soft relining: a preliminary study. Int J Prosthodont. 2005;18(3):210–3.PubMedPubMedCentralGoogle Scholar
  180. 180.
    Gleissner C, Kempski O, Peylo S, Glatzel JH, Willershausen B. Local gingival blood flow at healthy and inflamed sites measured by laser Doppler flowmetry. J Periodontol. 2006;77(10):1762–71.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Strobl H, Moschen I, Emshoff I, Emshoff R. Effect of luxation type on pulpal blood flow measurements: a long-term follow-up of luxated permanent maxillary incisors. J Oral Rehabil. 2005;32(4):260–5.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Tarnowski CP, Jr IMA, Wang W, Taboas JM, Goldstein SA, Morris MD. Earliest mineral and matrix changes in force-induced musculoskeletal disease as revealed by Raman microspectroscopic imaging. J Bone Miner Res. 2004;19:64–71.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Maisch T. A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment. Mini Rev Med Chem. 2009;9(8):974–83.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Rajesh S, Koshi E, Philip K, Mohan A. Antimicrobial photodynamic therapy: an overview. J Indian Soc Periodontol. 2011;15(4):323–7.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Campos G, Pimentel S. The adjunctive effect of photodynamic therapy for residual pockets in single-rooted teeth: a randomized controlled clinical trial. Lasers Med Sci. 2013;28(1):317–24.  https://doi.org/10.1007/s10103-012-1159-3.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Eick S, Markauskaite G. Effect of photoactivated disinfection with a light-emitting diode on bacterial species and biofilms associated with periodontitis and peri-implantitis. Photodiagnosis Photodyn Ther. 2013;10(2):156–67.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Boehm TK, Ciancio SG. Diode laser activated indocyanine green selectively kills bacteria. J Int Acad Periodontol. 2011;13(2):58–63.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Plaetzer K, Krammer B, et al. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med Sci. 2009;24:259–68.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Holzer W, Mauerer M, Penzkofer A, et al. Photostability and thermal stability of indocyanine green. J Photochem Photobiol B. 1998;47:155–64.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Hopp M, Biffar R. Photodynamic therapies – Blue versus Green. Laser. 2013;1:1–25.Google Scholar
  191. 191.
    Williams JA, Pearson GJ, Colles MJ, Wilson M. The photo-activated antibacterial action of toluidine blue O in a collagen matrix and in carious dentine. Caries Res. 2004;38:530–6.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Vlacic J, Meyers IA, Walsh LJ. Combined CPP-ACP and photoactivated disinfection (PAD) therapy in arresting root surface caries: a case report. Br Dent J. 2007;203(8):457–9.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Williams JA, Pearson GJ, John Colles M. Antibacterial action of photoactivated disinfection {PAD} used on endodontic bacteria in planktonic suspension and in artificial and human root canals. J Dent. 2006;34:363–71.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Bonsor SJ, Nichol R, Reid TM, Pearson GJ. Microbiological evaluation of photo- activated disinfection in endodontics (an in vivo study). Br Dent J. 2006;200:337–41.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Lee MT, Bird PS, Walsh LJ. Photo-activated disinfection of root canals: a new role for lasers in endodontics. Austr Endod J. 2004;30:93–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Surgical Sciences and Integrated DiagnosticsUniversity of GenoaGenoaItaly
  2. 2.HarrogateUK

Personalised recommendations