Advertisement

Laser/Light Applications in Ophthalmology: Posterior Segment Applications

  • Victor M. Villegas
  • Timothy G. Murray
  • Amy C. Schefler
  • Charles C. Wykoff
Chapter

Abstract

Among medical fields, ophthalmology has perhaps the richest history with regard to the widespread application of laser technologies. The first experimental use of laser in ophthalmology was that of the German ophthalmologist Gerd Meyer-Schwickerath, who began using the Beck arc in 1949 (Abramson. Acta Ophthalmol Suppl, 194:3–63, 1989; Neubauer and Ulbig. Ophthalmologica 221(2):95–102, 2007). By 1954, Meyer-Schwickerath had treated 41 patients with the xenon arc photocoagulator and by 1957, he reported that he was able to close 82 macular holes with this technology (Abramson. Acta Ophthalmol Suppl, 194:3–63, 1989). Working together with Littmann from the Carl Zeiss Company, he created a similar xenon arc photocoagulator which became available for widespread ophthalmic applications in the late 1960s and was used more frequently in the 1970s. Since then, lasers have been used with notable success for a wide variety of ophthalmic conditions including refractive error, glaucoma, lens-related conditions such as posterior capsular opacification, and retinal conditions including diabetic retinopathy and age-related macular degeneration.

Keywords

Ophthalmology Laser therapy Refractive error Glaucoma Posterior capsular opacification Diabetic retinopathy Age-related macular degeneration Uveal melanoma Retinoblastoma 

Notes

Disclaimer

No conflict of interest or financial interest exists for any author.

References

  1. 1.
    Abramson DH. The focal treatment of retinoblastoma with emphasis on xenon arc photocoagulation. Acta Ophthalmol Suppl. 1989;194:3–63.PubMedGoogle Scholar
  2. 2.
    Neubauer AS, Ulbig MW. Laser treatment in diabetic retinopathy. Ophthalmologica. 2007;221(2):95–102.CrossRefPubMedGoogle Scholar
  3. 3.
    Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy: the second report of diabetic retinopathy study findings. Ophthalmology. 1978;85(1):82–106.CrossRefGoogle Scholar
  4. 4.
    Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Ophthalmology. 1991;98(5 Suppl):766–85.Google Scholar
  5. 5.
    The Diabetic Retinopathy Study Research Group. Preliminary report on effects of photocoagulation therapy. Am J Ophthalmol. 1976;81(4):383–96.CrossRefGoogle Scholar
  6. 6.
    The Diabetic Retinopathy Study Research Group. Indications for photocoagulation treatment of diabetic retinopathy: diabetic retinopathy study report no. 14. Int Ophthalmol Clin. 1987;27(4):239–53.CrossRefGoogle Scholar
  7. 7.
    Early Treatment Diabetic Retinopathy Study Research Group. Focal photocoagulation treatment of diabetic macular edema. Relationship of treatment effect to fluorescein angiographic and other retinal characteristics at baseline: ETDRS report no. 19. Arch Ophthalmol. 1995;113(9):1144–55.CrossRefGoogle Scholar
  8. 8.
    Ferris FL III, Davis MD, Aiello LM. Treatment of diabetic retinopathy. N Engl J Med. 1999;341(9):667–78.CrossRefPubMedGoogle Scholar
  9. 9.
    Macular Photocoagulation Study Group. Laser photocoagulation for juxtafoveal choroidal neovascularization. Five-year results from randomized clinical trials. Arch Ophthalmol. 1994;112(4):500–9.CrossRefGoogle Scholar
  10. 10.
    Moutray T, Evans JR, Lois N, Armstrong DJ, Peto T, Azuara-Blanco A. Different lasers and techniques for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2018;3:CD012314.PubMedGoogle Scholar
  11. 11.
    Fong DS, Strauber SF, Aiello LP, et al. Comparison of the modified Early Treatment Diabetic Retinopathy Study and mild macular grid laser photocoagulation strategies for diabetic macular edema. Arch Ophthalmol. 2007;125(4):469–80.CrossRefPubMedGoogle Scholar
  12. 12.
    The Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS report number 8. Ophthalmology. 1981;88(7):583–600.CrossRefGoogle Scholar
  13. 13.
    Macular Photocoagulation Study (MPS) Group. Evaluation of argon green vs krypton red laser for photocoagulation of subfoveal choroidal neovascularization in the macular photocoagulation study. Arch Ophthalmol. 1994;112(9):1176–84.CrossRefGoogle Scholar
  14. 14.
    Macular Photocoagulation Study Group. Persistent and recurrent neovascularization after laser photocoagulation for subfoveal choroidal neovascularization of age-related macular degeneration. Arch Ophthalmol. 1994;112(4):489–99.CrossRefGoogle Scholar
  15. 15.
    Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy. Five-year results from randomized clinical trials. Arch Ophthalmol. 1991;109(8):1109–14.CrossRefGoogle Scholar
  16. 16.
    Mason JO III, Colagross CT, Vail R. Diabetic vitrectomy: risks, prognosis, future trends. Curr Opin Ophthalmol. 2006;17(3):281–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Scott IU, Edwards AR, Beck RW, et al. A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology. 2007;114(10):1860–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Ahmadieh H, Ramezani A, Shoeibi N. Intravitreal bevacizumab with or without triamcinolone for refractory diabetic macular edema; a placebo-controlled, randomized clinical trial. Graefes Arch Clin Exp Ophthalmol. 2008;246(4):483–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Avery RL, Pearlman J, Pieramici DJ, et al. Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology. 2006;113(10):1695.e1–e15.CrossRefGoogle Scholar
  20. 20.
    Wu L, Martinez-Castellanos MA, Quiroz-Mercado H. Twelve-month safety of intravitreal injections of bevacizumab (Avastin(R)): results of the Pan-American Collaborative Retina Study Group (PACORES). Graefes Arch Clin Exp Ophthalmol. 2007;246(1):81–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Martidis A, Tennant MT. Age-related macular degeneration. In: Yanoff M, Duker JS, editors. Ophthalmology. 2nd ed. St. Louis, MO: Mosby; 2004. p. 925–33.Google Scholar
  22. 22.
    Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials – TAP report. Arch Ophthalmol. 1999;117(10):1329–45.CrossRefGoogle Scholar
  23. 23.
    Verteporfin in Photodynamic Therapy Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in pathologic myopia with verteporfin. 1-year results of a randomized clinical trial – VIP report no. 1. Ophthalmology. 2001;108(5):841–52.CrossRefGoogle Scholar
  24. 24.
    Mennel S, Barbazetto I, Meyer CH, et al. Ocular photodynamic therapy – standard applications and new indications (part 1). Review of the literature and personal experience. Ophthalmologica. 2007;221(4):216–26.CrossRefPubMedGoogle Scholar
  25. 25.
    Blasi MA, Pagliara MM, Lanza A, Sammarco MG, Caputo CG, Grimaldi G, Scupola A. Photodynamic therapy in ocular oncology. Biomedicine. 2018;6(1):17.CrossRefGoogle Scholar
  26. 26.
    Barbazetto I, Schmidt-Erfurth U. Photodynamic therapy of choroidal hemangioma: two case reports. Graefes Arch Clin Exp Ophthalmol. 2000;238(3):214–21.CrossRefPubMedGoogle Scholar
  27. 27.
    Jurklies B, Anastassiou G, Ortmans S, et al. Photodynamic therapy using verteporfin in circumscribed choroidal haemangioma. Br J Ophthalmol. 2003;87(1):84–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bressler NM. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Arch Ophthalmol. 2001;119(2):198–207.PubMedGoogle Scholar
  29. 29.
    Shields CL, Santos MC, Diniz W, et al. Thermotherapy for retinoblastoma. Arch Ophthalmol. 1999;117(7):885–93.CrossRefPubMedGoogle Scholar
  30. 30.
    Abramson DH, Schefler AC. Transpupillary thermotherapy as initial treatment for small intraocular retinoblastoma: technique and predictors of success. Ophthalmology. 2004;111(5):984–91.CrossRefPubMedGoogle Scholar
  31. 31.
    Shields CL, Cater J, Shields JA, et al. Combined plaque radiotherapy and transpupillary thermotherapy for choroidal melanoma: tumor control and treatment complications in 270 consecutive patients. Arch Ophthalmol. 2002;120(7):933–40.CrossRefPubMedGoogle Scholar
  32. 32.
    Augsburger JJ, Kleineidam M, Mullen D. Combined iodine-125 plaque irradiation and indirect ophthalmoscope laser therapy of choroidal malignant melanomas: comparison with iodine-125 and cobalt-60 plaque radiotherapy alone. Graefes Arch Clin Exp Ophthalmol. 1993;231(9):500–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Dogrusöz M, Jager MJ, Damato B. Uveal melanoma treatment and prognostication. Asia Pac J Ophthalmol (Phila). 2017;6(2):186–96.CrossRefGoogle Scholar
  34. 34.
    Seregard S, Landau I. Transpupillary thermotherapy as an adjunct to ruthenium plaque radiotherapy for choroidal melanoma. Acta Ophthalmol Scand. 2001;79(1):19–22.CrossRefPubMedGoogle Scholar
  35. 35.
    Fabian ID, Stacey AW, Harby LA, Arora AK, Sagoo MS, Cohen VML. Primary photodynamic therapy with verteporfin for pigmented posterior pole cT1a choroidal melanoma: a 3-year retrospective analysis. Br J Ophthalmol. 2018.Google Scholar
  36. 36.
    Abramson DH, Schefler AC. Update on retinoblastoma. Retina. 2004;24(6):828–48.CrossRefPubMedGoogle Scholar
  37. 37.
    Shields CL, Mashayekhi A, Cater J, et al. Macular retinoblastoma managed with chemoreduction. Arch Ophthalmol. 2005;123:765–73.CrossRefPubMedGoogle Scholar
  38. 38.
    Rodriguez-Galindo C, Wilson MW, Haik BG, et al. Treatment of intraocular retinoblstoma with vincristine and carboplatin. J Clin Oncol. 2003;21:2019–25.CrossRefPubMedGoogle Scholar
  39. 39.
    Schefler AC, Cicciarelli N, Feuer W, et al. Macular retinoblastoma: evaluation of tumor control, local complications, and visual outcomes for eyes treated with chemotherapy and repetitive foveal laser ablation. Ophthalmology. 2007;114(1):162–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Charles S. Endophotocoagulation. Retina. 1981;1(2):117–20.CrossRefPubMedGoogle Scholar
  41. 41.
    Peyman GA, Grisolano JM, Palacio MN. Intraocular photocoagulation with the argon-krypton laser. Arch Ophthalmol. 1980;98(11):2062–4.CrossRefPubMedGoogle Scholar
  42. 42.
    Peyman GA, D’Amico DJ, Alturki WA. An endolaser probe with aspiration capability. Arch Ophthalmol. 1992;110(5):718.CrossRefPubMedGoogle Scholar
  43. 43.
    Peyman GA, Lee KJ. Multifunction endolaser probe. Am J Ophthalmol. 1992;114(1):103–4.CrossRefPubMedGoogle Scholar
  44. 44.
    Awh CC, Schallen EH, De Juan E Jr. An illuminating laser probe for vitreoretinal surgery. Arch Ophthalmol. 1994;112(4):553–4.CrossRefPubMedGoogle Scholar
  45. 45.
    Parikh R, Ross JS, Sangaralingham LR, Adelman RA, Shah ND, Barkmeier AJ. Trends of Anti-Vascular Endothelial Growth Factor Use in Ophthalmology Among Privately Insured and Medicare Advantage Patients. Ophthalmology. 2017;124(3):352–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Wells JA, Glassman AR, Ayala AR, Jampol LM, Bressler NM, Bressler SB, Brucker AJ, Ferris FL, Hampton GR, Jhaveri C, Melia M. Beck RW; Diabetic retinopathy clinical research network. aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology. 2016;123(6):1351–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Glassman AR. Results of a randomized clinical trial of aflibercept vs panretinal photocoagulation for proliferative diabetic retinopathy: is it time to retire your laser? JAMA Ophthalmol. 2017;135(7):685–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Gross JG, Glassman AR, Jampol LM, et al. Writing Committee for the Diabetic Retinopathy Clinical Research Network. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA. 2015;314(20):2137–46.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gallemore RP, Wallsh J, Hudson HL, Ho AC, Chace R, Pearlman J. Combination verteporfin photodynamic therapy ranibizumab-dexamethasone in choroidal neovascularization due to age-related macular degeneration: results of a phase II randomized trial. Clin Ophthalmol. 2017;11:223–31.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dong Y, Wan G, Yan P, Chen Y, Wang W, Peng G. Effect of anti-VEGF drugs combined with photodynamic therapy in the treatment of age-related macular degeneration. Exp Ther Med. 2016;12(6):3923–6.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Villegas VM, Gold AS, Berrocal AM, Murray TG. Advanced Coats’ disease treated with intravitreal bevacizumab combined with laser vascular ablation. Clin Ophthalmol. 2014;8:973–6.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Villegas VM, Hess DJ, Wildner A, Gold AS, Murray TG. Retinoblastoma. Curr Opin Ophthalmol. 2013;24(6):581–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Walter SD, Chao DL, Feuer W, Schiffman J, Char DH, Harbour JW. Prognostic implications of tumor diameter in association with gene expression profile for uveal melanoma. JAMA Ophthalmol. 2016;134(7):734–40.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Field MG, Durante MA, Decatur CL, et al. Epigenetic reprogramming and aberrant expression of PRAME are associated with increased metastatic risk in Class 1 and Class 2 uveal melanomas. Oncotarget. 2016;7:59209.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Villegas VM, Gold AS, Latiff A, Wildner AC, Ehlies FJ, Murray TG. Phacovitrectomy. Dev Ophthalmol. 2014;54:102–7.  https://doi.org/10.1159/000360455.CrossRefPubMedGoogle Scholar
  56. 56.
    de Alba MA, Villegas VM, Gold AS, Wildner A, Ehlies FJ, Latiff A, Murray TG. Clinical findings and genetic expression profiling of three pigmented lesions of the optic nerve. Case Rep Ophthalmol Med. 2015;2015:590659.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Huang C, Tian Z, Lai K, Zhong X, Zhou L, Xu F, Yang H, Lu L, Jin C. Long-term therapeutic outcomes of photodynamic therapy-based or photocoagulation-based treatments on retinal capillary hemangioma. Photomed Laser Surg. 2018;36(1):10–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Kim JW, Jacobsen B, Zolfaghari E, Ferrario A, Chevez-Barrios P, Berry JL, Lee DK, Rico G, Madi I, Rao N, Stachelek K, Wang LC, Gomer C. Rabbit model of ocular indirect photodynamic therapy using a retinoblastoma xenograft. Graefes Arch Clin Exp Ophthalmol. 2017;255(12):2363–73.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Victor M. Villegas
    • 1
  • Timothy G. Murray
    • 2
  • Amy C. Schefler
    • 3
  • Charles C. Wykoff
    • 4
  1. 1.Bascom Palmer Eye InstituteMiamiUSA
  2. 2.Murray Ocular Oncology and Retina, Medical Arts Surgery Center Baptist, Department of Ophthalmology/Ocular Oncology, Retina Vitreous Diseases/Pediatric OphthalmologyNicklaus Children’s HospitalMiamiUSA
  3. 3.Department of OphthalmologyBascom Palmer Eye InstituteMiamiUSA
  4. 4.Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations