Advertisement

Thermal Analyses of Cyclodextrin Complexes

  • Nicoleta G. Hădărugă
  • Geza N. Bandur
  • Daniel I. HădărugăEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 16)

Abstract

Human health is the most important issue in the society. There are many compounds such as food additives and ingredients or medicinal compounds that can alter human health. Cyclodextrins can protect these compounds against light and oxidative degradation by molecular encapsulation. Moreover, cyclodextrins can also enhance properties of biologically active compounds such as better water solubility and bioavailability, and controlled release. Cyclodextrins are cyclic oligosaccharides comprising of six to eight α-(1→4)-linked d-glucopyranose units corresponding to the natural α-, β- and γ-cyclodextrin, respectively. Cyclodextrins have a truncated cone-like structure, with a hydrophobic inner cavity and highly hydrophilic exterior. This property allows molecular encapsulating of geometrically compatible hydrophobic compounds for obtaining host-guest supramolecular systems. Among many characterization methods that are applicable in both solution and solid state, thermal techniques were widely used for analysis and stability evaluation of cyclodextrin complexes.

We review the use of thermal methods for the analysis of cyclodextrin complexes and non-complexed cyclodextrins. We discuss the applications of thermogravimetry-differential thermogravimetry, differential thermal analysis, differential scanning calorimetry, hot stage microscopy, thermogravimetry-mass spectrometry, gas chromatography-time-of-flight-mass spectrometry, and isothermal titration calorimetry. Cyclodextrin complexes are classified according to the types of biological activity of the guest compound, e.g. drugs, odorants, essential oils and vegetable extracts, antioxidants, fatty acids, oils and fatty acid based derivatives, and other organic, organometallic and inorganic compounds. The formation of cyclodextrin inclusion complexes is evidenced by disappearance of the thermal characteristics of the guest compound after nanoencapsulation. It is the case of melting or boiling points. Information on the nanoencapsulation process is obtained from the behavior of hydration water molecules of complexes, and from the stability of the guest compound during heating up to the decomposition.

Keywords

Cyclodextrins Thermal analyses Thermogravimetry Differential scanning calorimetry Water and moisture content Host-guest inclusion complexes Nanoparticles Nanoencapsulation Molecular encapsulation Supramolecular chemistry 

References

  1. Abarca RL, Rodríguez FJ, Guarda A, Galotto MJ, Bruna JE (2016) Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem 196:968–975.  https://doi.org/10.1016/j.foodchem.2015.10.023 CrossRefGoogle Scholar
  2. Alvarez-Parrilla E, de la Rosa LA, Torres-Rivas F, Rodrigo-Garcia J, González-Aguilar GA (2005) Complexation of apple antioxidants: chlorogenic acid, quercetin and rutin by β-cyclodextrin (β-CD). J Incl Phenom Macrocycl Chem 53:121–129.  https://doi.org/10.1007/s10847-005-1620-z CrossRefGoogle Scholar
  3. Ammar HO, Ghorab M, Mahmoud AA, Makram TS, Noshi SH (2012) Topical liquid crystalline gel containing lornoxicam/cyclodextrin complex. J Incl Phenom Macrocycl Chem 73:161–175.  https://doi.org/10.1007/s10847-011-0039-y CrossRefGoogle Scholar
  4. Andrade TA, Freitas TS, Araújo FO, Menezes PP, Dória GAA, Rabelo AS, Quintans-Júnior LJ, Santos MRV, Bezerra DP, Serafini MR, Menezes IRA, Nunes PS, Araújo AAS, Costa MS, Campina FF, Santos ATL, Silva ARP, Coutinho HDM (2017) Physico-chemical characterization and antibacterial activity of inclusion complexes of Hyptis martiusii Benth essential oil in β -cyclodextrin. Biomed Pharmacother 89:201–207.  https://doi.org/10.1016/j.biopha.2017.01.158 CrossRefGoogle Scholar
  5. Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640.  https://doi.org/10.1016/j.foodhyd.2009.01.001 CrossRefGoogle Scholar
  6. Badr-Eldin SM, Elkheshen SA, Ghorab MM (2008) Inclusion complexes of tadalafil with natural and chemically modified β-cyclodextrins. I: Preparation and in-vitro evaluation. Eur J Pharm Biopharm 70:819–827.  https://doi.org/10.1016/j.ejpb.2008.06.024 CrossRefGoogle Scholar
  7. Bai L, Wyrwalski F, Lamonier J-F, Khodakov AY, Monflier E, Ponchel A (2013) Effects of β-cyclodextrin introduction to zirconia supported-cobalt oxide catalysts: from molecule-ion associations to complete oxidation of formaldehyde. Appl Catal B Environ 138-139:381–390.  https://doi.org/10.1016/j.apcatb.2013.03.015 CrossRefGoogle Scholar
  8. Bertacche V, Lorenzi N, Nava D, Pini E, Sinico C (2006) Host–guest interaction study of resveratrol with natural and modified cyclodextrins. J Incl Phenom Macrocycl Chem 55:279–287.  https://doi.org/10.1007/s10847-006-9047-8 CrossRefGoogle Scholar
  9. Bettinetti GP, Sorrenti M, Rossi S, Ferrari F, Mura P, Faucci MT (2002) Assessment of solid-state interactions of naproxen with amorphous cyclodextrin derivatives by DSC. J Pharm Biomed Anal 30:1173–1179CrossRefGoogle Scholar
  10. Biliaderis CG (1983) Differential scanning calorimetry in food research. A review. Food Chem 10:239–265CrossRefGoogle Scholar
  11. Bocanegra-Diaz A, Mohallem NDS, Sinisterra RD (2003) Preparation of a ferrofluid using cyclodextrin and magnetite. J Braz Chem Soc 14(6):936–941CrossRefGoogle Scholar
  12. Boldescu V, Bratu I, Borodi G, Kacso I, Bende A, Duca G, Macaev F, Pogrebnoi S, Ribkovskaia Z (2012) Study of binary systems of β-cyclodextrin with a highly potential anti-mycobacterial drug. J Incl Phenom Macrocycl Chem 74:129–135.  https://doi.org/10.1007/s10847-011-0091-7 CrossRefGoogle Scholar
  13. Bonetti P, de Moraes FF, Zanin GM, de Cássia Bergamasco R (2016) Thermal behavior study and decomposition kinetics of linalool/β-cyclodextrin inclusion complex. Polym Bull 73:279–291.  https://doi.org/10.1007/s00289-015-1486-1 CrossRefGoogle Scholar
  14. Bouchemal K, Mazzaferro S (2012) How to conduct and interpret ITC experiments accurately for cyclodextrin-guest interactions. Drug Discov Today 17(11/12):623–629.  https://doi.org/10.1016/j.drudis.2012.01.023 CrossRefGoogle Scholar
  15. Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645–666.  https://doi.org/10.1016/j.addr.2007.05.012 CrossRefGoogle Scholar
  16. Cabral Marques HM (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25:313–326.  https://doi.org/10.1002/ffj.2019 CrossRefGoogle Scholar
  17. Cabral Marques HM, Hadgraft J, Kellaway IW (1990) Studies of cyclodextrin inclusion complexes. I. The salbutamol-cyclodextrin complex as studied by phase solubility and DSC. Int J Pharm 63:259–266CrossRefGoogle Scholar
  18. Calabrò ML, Tommasini S, Donato P, Raneri D, Stancanelli R, Ficarra P, Ficarra R, Costa C, Catania S, Rustichelli C, Gamberini G (2004) Effects of α- and β-cyclodextrin complexation on the physico-chemical properties and antioxidant activity of some 3-hydroxyflavones. J Pharm Biomed Anal 35:365–377.  https://doi.org/10.1016/j.jpba.2003.12.005 CrossRefGoogle Scholar
  19. Calsavara LPV, Zanin GM, de Moraes FF (2012) Enrofloxacin inclusion complexes with cyclodextrins. J Incl Phenom Macrocycl Chem 73:219–224.  https://doi.org/10.1007/s10847-011-0045-0 CrossRefGoogle Scholar
  20. Carrier RL, Miller LA, Ahmed I (2007) The utility of cyclodextrins for enhancing oral bioavailability. J Control Release 123:78–99.  https://doi.org/10.1016/j.jconrel.2007.07.018 CrossRefGoogle Scholar
  21. Cavalli R, Trotta F, Trotta M, Pastero L, Aquilano D (2007) Effect of alkylcarbonates of γ-cyclodextrins with different chain lengths on drug complexation and release characteristics. Int J Pharm 339:197–204.  https://doi.org/10.1016/j.ijpharm.2007.03.001 CrossRefGoogle Scholar
  22. Ceborska M, Zimnicka M, Wszelaka-Rylik M, Troć A (2016) Characterization of folic acid/native cyclodextrins host-guest complexes in solution. J Mol Struct 1109:114–118.  https://doi.org/10.1016/j.molstruc.2015.12.082 CrossRefGoogle Scholar
  23. Cerchiara T, Luppi B, Bigucci F, Zecchi V (2003) Effect of chitosan on progesterone release from hydroxypropyl-β-cyclodextrin complexes. Int J Pharm 258:209–215.  https://doi.org/10.1016/S0378-5173(03)00202-3 CrossRefGoogle Scholar
  24. Ciesielski W, Girek T (2011) Study of thermal stability of β-cyclodextrin/metal complexes in the aspect of their future applications. J Incl Phenom Macrocycl Chem 69:461–467.  https://doi.org/10.1007/s10847-010-9803-7 CrossRefGoogle Scholar
  25. Corciova A, Ciobanu C, Poiata A, Mircea C, Nicolescu A, Drobota M, Varganici C-D, Pinteala T, Marangoci N (2015) Antibacterial and antioxidant properties of hesperidin:β -cyclodextrin complexes obtained by different techniques. J Incl Phenom Macrocycl Chem 81(1):71–84.  https://doi.org/10.1007/s10847-014-0434-2 CrossRefGoogle Scholar
  26. Dias K, Nikolaou S, De Giovani WF (2008) Synthesis and spectral investigation of Al(III) catechin/β -cyclodextrin and Al(III) quercetin/β -cyclodextrin inclusion compounds. Spectrochim Acta A 70(1):154–161.  https://doi.org/10.1016/j.saa.2007.07.022 CrossRefGoogle Scholar
  27. Duchêne D, Bochot A (2016) Thirty years with cyclodextrins. Int J Pharm 514:58–72.  https://doi.org/10.1016/j.ijpharm.2016.07.030 CrossRefGoogle Scholar
  28. Durante M, Lenucci MS, Marrese PP, Rizzi V, De Caroli M, Piro G, Fini P, Russo GL, Mita G (2016) α-Cyclodextrin encapsulation of supercritical CO extracted oleoresins from different plant matrices: a stability study. Food Chem 199:684–693.  https://doi.org/10.1016/j.foodchem.2015.12.073 CrossRefGoogle Scholar
  29. Éhen Z, Giordano F, Sztatisz J, Jicsinszky L, Novák C (2005) Thermal characterization of natural and modified cyclodextrins using TG-MS combined technique. J Therm Anal Calorim 80:419–424CrossRefGoogle Scholar
  30. Funk O, Schwabe L, Fromming K-H (1993) Composition and properties of freeze-dried products of nicotinic acid with β -cyclodextrin and heptakis (2,6-O-dimethyl)-β -cyclodextrin. J Incl Phenom Mol Recognit Chem 16:299–314Google Scholar
  31. Galvão JG, Silva VF, Ferreira SG, França FRM, Santos DA, Freitas LS, Alves PB, Antunes de Souza Araújo A, Cavalcanti SCH, Nunes RS (2015) β-Cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: an alternative to control Aedes aegypti larvae. Thermochim Acta 608:14–19.  https://doi.org/10.1016/j.tca.2015.04.001 CrossRefGoogle Scholar
  32. Gatiatulin AK, Ziganshin MA, Gorbatchuk VV (2014) Selective preparation of beta-cyclodextrin clathrates by solid-phase exchange of included tetrahydrofurane for volatile guests in absence of water. J Therm Anal Calorim 118:987–992.  https://doi.org/10.1007/s10973-014-3800-9 CrossRefGoogle Scholar
  33. Giordano F, Novak C, Moyano R (2001) Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim Acta 380:123–151CrossRefGoogle Scholar
  34. Giron D (2002) Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim 68:335–357CrossRefGoogle Scholar
  35. Gomes Rodrigues S, de Souza Chaves I, de Melo NF-S, de Jesus MB, Fraceto LF, Fernandes SA, de Paula E, Puggina de Freitas M, de Matos Alves Pinto L (2011) Computational analysis and physico-chemical characterization of an inclusion compound between praziquantel and methyl-β-cyclodextrin for use as an alternative in the treatment of schistosomiasis. J Incl Phenom Macrocycl Chem 70:19–28.  https://doi.org/10.1007/s10847-010-9852-y CrossRefGoogle Scholar
  36. Guimarães AG, Oliveira MA, dos Santos Alves R, dos Passos Menezes P, Russo Serafini M, Antunes de Souza Araújo A, Bezerra DP, Quintans Júnior LJ (2015) Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chem Biol Interact 227:69–76.  https://doi.org/10.1016/j.cbi.2014.12.020 CrossRefGoogle Scholar
  37. Hădărugă NG, Hădărugă DI, Păunescu V, Tatu C, Ordodi VL, Bandur G, Lupea AX (2006) Thermal stability of the linoleic acid/α- and β-cyclodextrin complexes. Food Chem 99:500–508.  https://doi.org/10.1016/j.foodchem.2005.08.012 CrossRefGoogle Scholar
  38. Hădărugă DI, Hădărugă NG, Butnaru G, Tatu C, Gruia A (2010) Bioactive microparticles (10): thermal and oxidative stability of nicotine and its complex with β-cyclodextrin. J Incl Phenom Macrocycl Chem 68:155–164.  https://doi.org/10.1007/s10847-010-9761-0 CrossRefGoogle Scholar
  39. Hădărugă DI, Hădărugă NG, Bandur GN, Isengard H-D (2012a) Water content of flavonoid/cyclodextrin nanoparticles: relationship with the structural descriptors of biologically active compounds. Food Chem 132:1651–1659.  https://doi.org/10.1016/j.foodchem.2011.06.004 CrossRefGoogle Scholar
  40. Hădărugă NG, Hădărugă DI, Isengard H-D (2012b) Water content of natural cyclodextrins and their essential oil complexes: a comparative study between Karl Fischer titration and thermal methods. Food Chem 132:1741–1748.  https://doi.org/10.1016/j.foodchem.2011.11.003 CrossRefGoogle Scholar
  41. Hădărugă DI, Ünlüsayin M, Gruia AT, Birău (Mitroi) C, Rusu G, Hădărugă NG (2016) Thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) and complexation with β-cyclodextrin. Beilstein J Org Chem 12:179–191.  https://doi.org/10.3762/bjoc.12.20 CrossRefGoogle Scholar
  42. Hădărugă DI, Birău (Mitroi) CL, Gruia AT, Păunescu V, Bandur GN, Hădărugă NG (2017) Moisture evaluation of β-cyclodextrin/fish oils complexes by thermal analyses: a data review on common barbel (Barbus barbus L.), Pontic shad (Alosa immaculata Bennett), European wels catfish (Silurus glanis L.), and common bleak (Alburnus alburnus L.) living in Danube river. Food Chem 236:49–58.  https://doi.org/10.1016/j.foodchem.2017.03.093 CrossRefGoogle Scholar
  43. Haiyun D, Jianbin C, Guomei Z, Shaomin S, Jinhao P (2003) Preparation and spectral investigation on inclusion complex of β-cyclodextrin with rutin. Spectrochim Acta A 59:3421–3429.  https://doi.org/10.1016/S1386-1425(03)00176-8 CrossRefGoogle Scholar
  44. Hanawa T, Yonemochi E, Oguchi T, Nakai Y, Yamamoto K (1993) Thermal behavior of ground mixtures of heptakis (2,6-di-O-methyl)-β-cyclodextrin and benzoic acid. J Incl Phenom Mol Recognit Chem 15:91–101CrossRefGoogle Scholar
  45. He D, Deng P, Yang L, Tan Q, Liu J, Yang M, Zhang J (2013) Molecular encapsulation of rifampicin as an inclusion complex of hydroxypropyl-β-cyclodextrin: design, characterization and in vitro dissolution. Colloids Surf B Biointerfaces 103:580–585.  https://doi.org/10.1016/j.colsurfb.2012.10.062 CrossRefGoogle Scholar
  46. Hegheş A, Hădărugă NG, Fuliaş A-V, Bandur GN, Hădărugă DI, Dehelean C-A (2015) Capsicum annuum extracts/β -cyclodextrin complexes. Thermal analyses - Karl Fischer water titration correlations and antioxidant activity. J Therm Anal Calorim 120:603–615.  https://doi.org/10.1007/s10973-014-4229-x
  47. Hill LE, Gomes C, Taylor TM (2013) Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol 51:86–93.  https://doi.org/10.1016/j.lwt.2012.11.011 CrossRefGoogle Scholar
  48. Ho BT, Joyce DC, Bhandari BR (2011) Encapsulation of ethylene gas into α-cyclodextrin and characterisation of the inclusion complexes. Food Chem 127:572–580.  https://doi.org/10.1016/j.foodchem.2011.01.043 CrossRefGoogle Scholar
  49. Huang Y, Zu Y, Zhao X, Wu M, Feng Z, Deng Y, Zu C, Wang L (2016) Preparation of inclusion complex of apigenin-hydroxypropyl-β-cyclodextrin by using supercritical antisolvent process for dissolution and bioavailability enhancement. Int J Pharm 511:921–930.  https://doi.org/10.1016/j.ijpharm.2016.08.007 CrossRefGoogle Scholar
  50. Ikeda H, Fukushige Y, Matsubara T, Inenaga M, Kawahara M, Yukawa M, Fujisawa M, Yukawa E, Aki H (2016) Improving water solubility of nateglinide by complexation of β-cyclodextrin. J Therm Anal Calorim 123:1847–1850.  https://doi.org/10.1007/s10973-015-4714-x CrossRefGoogle Scholar
  51. Jadhav P, Pore Y (2016) Physicochemical, thermodynamic and analytical studies on binary and ternary inclusion complexes of bosentan with hydroxypropyl-β-cyclodextrin. Bulletin of Faculty of Pharmacy, Cairo University 55:147–154.  https://doi.org/10.1016/j.bfopcu.2016.12.004 CrossRefGoogle Scholar
  52. Jamrógiewicza M, Wielgomas B, Strankowskic M (2014) Evaluation of the photoprotective effect of β-cyclodextrin on the emission of volatile degradation products of ranitidine. J Pharm Biomed Anal 98:113–119.  https://doi.org/10.1016/j.jpba.2014.05.014 CrossRefGoogle Scholar
  53. Jordheim LP, Degobert G, Diab R, Peyrottes S, Périgaud C, Dumontet C, Fessi H (2009) Inclusion complexes of a nucleotide analogue with hydroxypropyl-beta-cyclodextrin. J Incl Phenom Macrocycl Chem 63:11–16.  https://doi.org/10.1007/s10847-008-9483-8 CrossRefGoogle Scholar
  54. Kacso I, Borodi G, Fărcas SI, Bratu I (2009) Inclusion compound of vitamin B13 in β-Cyclodextrin. Structural investigations. J Phys Conf Ser 182:1–5.  https://doi.org/10.1088/1742-6596/182/1/012009 CrossRefGoogle Scholar
  55. Karathanos VT, Mourtzinos I, Yannakopoulou K, Andrikopoulos NK (2007) Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chem 101:652–658.  https://doi.org/10.1016/j.foodchem.2006.01.053 CrossRefGoogle Scholar
  56. Kfoury M, Auezova L, Fourmentin S, Greige-Gerges H (2014) Investigation of monoterpenes complexation with hydroxypropyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem 80(1):51–60.  https://doi.org/10.1007/s10847-014-0385-7 CrossRefGoogle Scholar
  57. Kfoury M, Auezova L, Ruellan S, Greige-Gerges H, Fourmentin S (2015) Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr Polym 118:156–164.  https://doi.org/10.1016/j.carbpol.2014.10.073 CrossRefGoogle Scholar
  58. Kfoury M, Landy D, Ruellan S, Auezova L, Greige-Gerges H, Fourmentin S (2017) Nootkatone encapsulation by cyclodextrins: effect on water solubility and photostability. Food Chem 236:41–48.  https://doi.org/10.1016/j.foodchem.2016.12.086 CrossRefGoogle Scholar
  59. Koontz JL, Marcy JE (2003) Formation of natamycin: cyclodextrin inclusion complexes and their characterization. J Agric Food Chem 51:7106–7110.  https://doi.org/10.1021/jf030332y CrossRefGoogle Scholar
  60. Kreaz RMA, Abu-Eida EY, Erős I, Kata M (1999) Freeze-dried complexes of furosemide with β-cyclodextrin derivatives. J Incl Phenom Macrocycl Chem 34:39–48CrossRefGoogle Scholar
  61. Krishna Mohan PR, Sreelakshmi G, Muraleedharan CV, Joseph R (2012) Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib Spectrosc 62:77–84.  https://doi.org/10.1016/j.vibspec.2012.05.002 CrossRefGoogle Scholar
  62. Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453:167–180.  https://doi.org/10.1016/j.ijpharm.2012.06.055 CrossRefGoogle Scholar
  63. Lelievre J, Liu H (1994) A review of thermal analysis studies of starch gelatinization. Thermochim Acta 246:309–315CrossRefGoogle Scholar
  64. Li J-H, Zhang N, Li X-T, Wang J-Y, Tian S-J (1997) Kinetic studies on the thermal dissociation of the inclusion complex of β-cyclodextrin with cinnamic aldehyde. J Therm Anal 49:1527–1533CrossRefGoogle Scholar
  65. de Lima Petito N, da Silva Dias D, Gonçalves Costa V, Quintanilha Falcão D, Gome de Lima Araujo K (2016) Increasing solubility of red bell pepper carotenoids by complexation with 2-hydroxypropyl-β-cyclodextrin. Food Chem 208:124–131.  https://doi.org/10.1016/j.foodchem.2016.03.122 CrossRefGoogle Scholar
  66. Lima PSS, Lucchese AM, Araújo-Filho HG, Menezes PP, Araújo AAS, Quintans-Júnior LJ, Quintans JSS (2016) Inclusion of terpenes in cyclodextrins: preparation, characterization and pharmacological approaches. Carbohydr Polym 151:965–987.  https://doi.org/10.1016/j.carbpol.2016.06.040 CrossRefGoogle Scholar
  67. Lin-Hui T, Zheng-Zhi P, Ying Y (1995) Inclusion complexes of α-and β-cyclodextrin with α-lipoic acid. J Incl Phenom Mol Recognit Chem 23:119–126CrossRefGoogle Scholar
  68. Liu B, Li W, Zhao J, Liu Y, Zhu X, Liang G (2013a) Physicochemical characterisation of the supramolecular structure of luteolin/cyclodextrin inclusion complex. Food Chem 141:900–906.  https://doi.org/10.1016/j.foodchem.2013.03.097 CrossRefGoogle Scholar
  69. Liu B, Zhu X, Zeng J, Zhao J (2013b) Preparation and physicochemical characterization of the supramolecular inclusion complex of naringin dihydrochalcone and hydroxypropyl-β-cyclodextrin. Food Res Int 54:691–696.  https://doi.org/10.1016/j.foodres.2013.08.007 CrossRefGoogle Scholar
  70. Liu H, Yang G, Tang Y, Cao D, Qi T, Qi Y, Fan G (2013c) Physicochemical characterization and pharmacokinetics evaluation of β-caryophyllene/β-cyclodextrin inclusion complex. Int J Pharm 450:304–310.  https://doi.org/10.1016/j.ijpharm.2013.04.013 CrossRefGoogle Scholar
  71. Liu D-D, Guo Y-F, Zhang J-Q, Yang Z-K, Li X, Yang B, Yang R (2017) Inclusion of lycorine with natural cyclodextrins (α-, β-and γ-CD): experimental and in vitro evaluation. J Mol Struct 1130:669–676.  https://doi.org/10.1016/j.molstruc.2016.11.018 CrossRefGoogle Scholar
  72. Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11.  https://doi.org/10.1016/j.ijpharm.2006.10.044 CrossRefGoogle Scholar
  73. Loh GOK, Tan YTF, Peh K-K (2016) Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian Journal of Pharmaceutical Sciences 11:536–546.  https://doi.org/10.1016/j.ajps.2016.02.009 CrossRefGoogle Scholar
  74. Maestrelli F, Cecchi M, Cirri M, Capasso G, Mennini N, Mura P (2009) Comparative study of oxaprozin complexation with natural and chemically-modified cyclodextrins in solution and in the solid state. J Incl Phenom Macrocycl Chem 63:17–25.  https://doi.org/10.1007/s10847-008-9484-7 CrossRefGoogle Scholar
  75. Maity B, Chatterjee A, Ahmed SA, Seth D (2017) Deciphering the perturbation effect of urea on the supramolecular host-guest interaction of biologically active hydrophobic molecule inside the nanocavity of cyclodextrins. J Lumin 183:238–250.  https://doi.org/10.1016/j.jlumin.2016.11.037 CrossRefGoogle Scholar
  76. Majumdar S, Srirangam R (2009) Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: a natural bioflavonoid. Pharm Res 26(5):1217–1225.  https://doi.org/10.1007/s11095-008-9729-6 CrossRefGoogle Scholar
  77. Makhlof A, Miyazaki Y, Tozuka Y, Takeuchi H (2008) Cyclodextrins as stabilizers for the preparation of drug nanocrystals by the emulsion solvent diffusion method. Int J Pharm 357:280–285.  https://doi.org/10.1016/j.ijpharm.2008.01.025 CrossRefGoogle Scholar
  78. Malaekeh-Nikouei B, Nassirli H, Davies N (2007) Enhancement of cyclosporine aqueous solubility using α- and hydroxypropyl β-cyclodextrin mixtures. J Incl Phenom Macrocycl Chem 59:245–250.  https://doi.org/10.1007/s10847-007-9321-4 CrossRefGoogle Scholar
  79. Manakov AY, Rodionova TV, Aladko LS, Villevald GV, Lipkowski JS, Zelenina LN, Chusova TP, Karpova TD (2016) α-Cyclodextrin - water binary system. New data on dehydration of α-cyclodextrin hexahydrate. J Chem Thermodyn 101:251–259.  https://doi.org/10.1016/j.jct.2016.06.008 CrossRefGoogle Scholar
  80. Marreto RN, Almeida EECV, Alves PB, Niculau ES, Nunes RS, Matos CRS, Antunes de Souza Araújo A (2008) Thermal analysis and gas chromatography coupled mass spectrometry analyses of hydroxypropyl-β-cyclodextrin inclusion complex containing Lippia gracilis essential oil. Thermochim Acta 475:53–58.  https://doi.org/10.1016/j.tca.2008.06.015 CrossRefGoogle Scholar
  81. Martins Mendes Gomes L, Petito N, Gonçalves Costa V, Quintanilha Falcão D, de Lima Araújo KG (2014) Inclusion complexes of red bell pepper pigments with β-cyclodextrin: preparation, characterisation and application as natural colorant in yogurt. Food Chem 148:428–436.  https://doi.org/10.1016/j.foodchem.2012.09.065 CrossRefGoogle Scholar
  82. Martins A d P, Craveiro AA, Machado MIL, Raffin FN, Moura TF, Novák C, Éhen Z (2007) Preparation and characterization of Mentha x villosa Hudson oil-β-cyclodextrin complex. J Therm Anal Calorim 88:363–371CrossRefGoogle Scholar
  83. Mathot VBF, Benoist L (1994) Calorimetry and thermal analysis of polymers. Hanser Publishers, MunichGoogle Scholar
  84. de Matos Jensen CE, Souza dos Santos RA, Denadai AML, Santos CFF, Braga ANG, Sinisterra RD (2010) Pharmaceutical composition of valsartan: β-cyclodextrin: physico-chemical characterization and anti-hypertensive evaluation. Molecules 15:4067–4084.  https://doi.org/10.3390/molecules15064067 CrossRefGoogle Scholar
  85. Mazzobre MF, dos Santos CI, del Pilar Buera M (2011) Solubility and stability of β-cyclodextrin-terpineol inclusion complex as affected by water. Food Biophysics 6:274–280.  https://doi.org/10.1007/s11483-011-9208-1 CrossRefGoogle Scholar
  86. Meier MM, Luiz MTB, Szpoganicz B, Soldi V (2001) Thermal analysis behavior of β- and γ-cyclodextrin inclusion complexes with capric and caprilic acid. Thermochim Acta 375:153–160CrossRefGoogle Scholar
  87. Meisel T (1982) Review on problems, techniques and trends in thermal analysis. Fresen J Anal Chem 312:83–95CrossRefGoogle Scholar
  88. Menczel JD, Bruce Prime R (2009) Thermal analysis of polymers. Fundamentals and applications. John Wiley & Sons, Inc, HobokenCrossRefGoogle Scholar
  89. Menezes PP, Serafini MR, Santana BV, Nunes RS, Quintans LJ Jr, Silva GF, Medeiros IA, Marchioro M, Fraga BP, Santos MRV, Antunes de Souza Araújo A (2012) Solid-state β-cyclodextrin complexes containing geraniol. Thermochim Acta 548:45–50.  https://doi.org/10.1016/j.tca.2012.08.023 CrossRefGoogle Scholar
  90. Menezes PP, Serafini MR, Quintans-Júnior LJ, Silva GF, Oliveira JF, Carvalho FMS, Souza JCC, Matos JR, Alves PB, Matos IL, Hădărugă DI, Antunes de Souza Araújo A (2014) Inclusion complex of (−)-linalool and β-cyclodextrin. J Therm Anal Calorim 115(3):2429–2437.  https://doi.org/10.1007/s10973-013-3367-x CrossRefGoogle Scholar
  91. Menezes PP, Serafini MR, de Carvalho YMBG, Santana DVS, Lima BS, Quintans-Júnior LJ, Marreto RN, de Aquino TM, Sabino AR, Scotti L, Scotti MT, Grangeiro-Júnior S, Araújo AAS (2016) Kinetic and physical-chemical study of the inclusion complex of β -cyclodextrin containing carvacrol. J Mol Struct 1125:323–330.  https://doi.org/10.1016/j.molstruc.2016.06.062 CrossRefGoogle Scholar
  92. Michalska P, Wojnicz A, Ruiz-Nuño A, Abril S, Buendia I, León R (2017) Inclusion complex of ITH12674 with 2-hydroxypropyl-β -cyclodextrin: preparation, physical characterization and pharmacological effect. Carbohydr Polym 157:94–104.  https://doi.org/10.1016/j.carbpol.2016.09.072 CrossRefGoogle Scholar
  93. Mofaddel N, Fourmentin S, Guillen F, Landy D, Gouhier G (2016) Ionic liquids and cyclodextrin inclusion complexes: limitation of the affinity capillary electrophoresis technique. Anal Bioanal Chem 408:8211–8220.  https://doi.org/10.1007/s00216-016-9931-z CrossRefGoogle Scholar
  94. Monteil M, Lecouvey M, Landy D, Ruellan S, Mallard I (2017) Cyclodextrins: a promising drug delivery vehicle for bisphosphonate. Carbohydr Polym 156:285–293.  https://doi.org/10.1016/j.carbpol.2016.09.030 CrossRefGoogle Scholar
  95. Mourtzinos I, Kalogeropoulos N, Papadakis SE, Konstantinou K, Karathanos VT (2008) Encapsulation of nutraceutical monoterpenes in β-cyclodextrin and modified starch. J Food Sci S: Sensory and Food Quality 73(1):S89–S94.  https://doi.org/10.1111/j.1750-3841.2007.00609.x CrossRefGoogle Scholar
  96. Muñoz-Ruiz A, Paronen P (1997) Particle and powder properties of cyclodextrins. Int J Pharm 148:33–39CrossRefGoogle Scholar
  97. Mura P (2015) Analytical techniques for characterization of cyclodextrin complexesin the solid state: a review. J Pharm Biomed Anal 113:226–238.  https://doi.org/10.1016/j.jpba.2015.01.058 CrossRefGoogle Scholar
  98. Mura P, Maestrelli F, Cirri M (2003) Ternary systems of naproxen with hydroxypropyl-β-cyclodextrin and aminoacids. Int J Pharm 260:293–302.  https://doi.org/10.1016/S0378-5173(03)00265-5 CrossRefGoogle Scholar
  99. Neoh TL, Yamauchi K, Yoshii H, Furuta T (2008) Kinetic study of thermally stimulated dissociation of inclusion complex of 1-methylcyclopropene with α-cyclodextrin by thermal analysis. J Phys Chem B 112:15914–15920.  https://doi.org/10.1021/jp806233c CrossRefGoogle Scholar
  100. Nerome H, Machmudah S, Wahyudiono FR, Higashiura T, Youn Y-S, Lee Y-W, Goto M (2013) Nanoparticle formation of lycopene/β–cyclodextrin inclusion complex using supercritical antisolvent precipitation. J Supercrit Fluids 83:97–103.  https://doi.org/10.1016/j.supflu.2013.08.014 CrossRefGoogle Scholar
  101. Nikolić V, Stanković M, Nikolić L, Nikolić G, Ilić-Stojanović S, Popsavin M, Zlatković S, Kundaković T (2013) Inclusion complexes with cyclodextrin and usnic acid. J Incl Phenom Macrocycl Chem 76:173–182.  https://doi.org/10.1007/s10847-012-0187-8 CrossRefGoogle Scholar
  102. Novák C, Éhen Z, Fodor M, Jicsinszky L, Orgoványi J (2006) Application of combined thermoanalytical techniques in the investigation of cyclodextrin inclusion complexes. J Therm Anal Calorim 84:693–701.  https://doi.org/10.1007/s10973-005-7605-8 CrossRefGoogle Scholar
  103. Nuchuchua O, Saesoo S, Sramala I, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Physicochemical investigation and molecular modeling of cyclodextrin complexation mechanism with eugenol. Food Res Int 42:1178–1185.  https://doi.org/10.1016/j.foodres.2009.06.006 CrossRefGoogle Scholar
  104. Ol’khovich MV, Sharapova AV, Blokhina SV, Skachilov SY, Kesarev OG, Perlovich GL (2016) Physicochemical characteristics of the inclusion complexes of biologically active compounds with 2-hydroxypropyl-β-cyclodextrin. Thermochim Acta 639:1–9.  https://doi.org/10.1016/j.tca.2016.07.008 CrossRefGoogle Scholar
  105. Oliveira MGB, Brito RG, Santos PL, Araújo-Filho HG, Quintans JSS, Menezes PP, Serafini MR, Carvalho YMBG, Silva JC, Almeida JRGS, Scotti L, Scotti MT, Shanmugam S, Thangaraj P, Araújo AAS, Quintans-Júnior LJ (2016) α-Terpineol, a monoterpene alcohol, complexed with β-cyclodextrin exerts antihyperalgesic effect in animal model for fibromyalgia aided with docking study. Chem Biol Interact 254:54–62.  https://doi.org/10.1016/j.cbi.2016.05.029 CrossRefGoogle Scholar
  106. Onyeji CO, Omoruyi SI, Oladimeji FA, Soyinka JO (2009) Physicochemical characterization and dissolution properties of binary systems of pyrimethamine and 2-hydroxypropyl-β-cyclodextrin. Afr J Biotechnol 8(8):1651–1659Google Scholar
  107. Ozawa T (2000) Thermal analysis - review and prospect. Thermochim Acta 355:35–42CrossRefGoogle Scholar
  108. Paczkowska M, Mizera M, Szymanowska-Powałowska D, Lewandowska K, Błaszczak W, Gościańska J, Pietrzak R, Cielecka-Piontek J (2016) β-Cyclodextrin complexation as an effective drug delivery system for meropenem. Eur J Pharm Biopharm 99:24–34.  https://doi.org/10.1016/j.ejpb.2015.10.013 CrossRefGoogle Scholar
  109. Partanen R, Ahro M, Hakala M, Kallio H, Forssell P (2002) Microencapsulation of caraway extract in β-cyclodextrin and modified starches. Eur Food Res Technol 214:242–247.  https://doi.org/10.1007/s00217-001-0446-1 CrossRefGoogle Scholar
  110. dos Passos Menezes P, Barbosa Pereira dos Santos P, Azevedo Dória GA, Hipólito de Sousa BM, Russo Serafini M, Santos Nunes P, Quintans-Júnior LJ, Lisboa de Matos I, Alves PB, Bezerra DP, Mendonça Júnior FJB, da Silva GF, de Aquino TM, de Souza Bento E, Scotti MT, Scotti L, Antunes de Souza Araújo A (2017) Molecular modeling and physicochemical properties of supramolecular complexes of limonene with α- and β-cyclodextrins. AAPS PharmSciTech 18(1):49–57.  https://doi.org/10.1208/s12249-016-0516-0 CrossRefGoogle Scholar
  111. Paulik F, Paulik J (1978) Simultaneous techniques in thermal analysis. Analyst 103:417–437CrossRefGoogle Scholar
  112. Pereva S, Sarafska T, Bogdanova S, Spassov Т (2016) Efficiency of “cyclodextrin-ibuprofen” inclusion complex formation. Journal of Drug Delivery Science and Technology 35:34–39.  https://doi.org/10.1016/j.jddst.2016.04.006 CrossRefGoogle Scholar
  113. Ponce Cevallos PA, del Pilar Buera M, Elizalde BE (2010) Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: effect of interactions with water on complex stability. J Food Eng 99:70–75.  https://doi.org/10.1016/j.jfoodeng.2010.01.039 CrossRefGoogle Scholar
  114. Popat A, Karmakar S, Jambhrunkar S, Xu C, Yu C (2014) Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf B: Biointerfaces 117:520–527.  https://doi.org/10.1016/j.colsurfb.2014.03.005 CrossRefGoogle Scholar
  115. Pralhad T, Rajendrakumar K (2004) Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharm Biomed Anal 34:333–339.  https://doi.org/10.1016/S0731-7085(03)00529-6 CrossRefGoogle Scholar
  116. Reddy MN, Rehana T, Ramakrishna S, Chowdary KPR, Diwan PV (2004) β-Cyclodextrin complexes of celecoxib: molecular-modeling, characterization, and dissolution studies. AAPS PharmSci 6(1):1–9. Article 7CrossRefGoogle Scholar
  117. Ren Y, Liu Y, Niu R, Liao X, Zhang J, Yang B (2016) Host-guest inclusion system of oleanolic acid with methyl-β-cyclodextrin: preparation, characterization and anticancer activity. J Mol Struct 1117:1–7.  https://doi.org/10.1016/j.molstruc.2016.03.071 CrossRefGoogle Scholar
  118. da Rocha Ferreira F, Valentim IB, Ramones ELC, Salles Trevisan MT, Olea-Azar C, Perez-Cruz F, de Abreu FC, Fonseca Goulart MO (2013) Antioxidant activity of the mangiferin inclusion complex with β-cyclodextrin. LWT Food Sci Technol 51:129–134.  https://doi.org/10.1016/j.lwt.2012.09.032 CrossRefGoogle Scholar
  119. Rocha BA, Rodrigues MR, Pires Bueno PC, de Mello Costa-Machado AR, de Oliveira Lima Leite Vaz MM, Nascimento AP, Barud HS, Berretta-Silva AA (2012) Preparation and thermal characterization of inclusion complex of Brazilian green propolis and hydroxypropyl-β-cyclodextrin. Increased water solubility of the chemical constituents and antioxidant activity. J Therm Anal Calorim 108:87–94.  https://doi.org/10.1007/s10973-011-1713-4 CrossRefGoogle Scholar
  120. Rossel CP, Carreño JS, Rodríguez-Baeza M, Alderete JB (2000) Inclusion complex of the antiviral drug acyclovir with cyclodextrin in aqueous solution and in solid phase. Quím Nova 23(6):749–752CrossRefGoogle Scholar
  121. Rudrangi SRS, Kaialy W, Ghori MU, Trivedi V, Snowden MJ, Alexander BD (2016) Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process. Eur J Pharm Biopharm 104:164–170.  https://doi.org/10.1016/j.ejpb.2016.04.024 CrossRefGoogle Scholar
  122. Şamlı M, Bayraktar O, Korel F (2014) Characterization of silk fibroin based films loaded with rutin–β-cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem 80(1):37–49.  https://doi.org/10.1007/s10847-014-0396-4 CrossRefGoogle Scholar
  123. dos Santos C, del Pilar Buera M, Mazzobre MF (2011) Phase solubility studies of terpineol with β-cyclodextrins and stability of the freeze-dried inclusion complex. Procedia Food Science 1:355–362.  https://doi.org/10.1016/j.profoo.2011.09.055 CrossRefGoogle Scholar
  124. dos Santos C, del Pilar Buera M, Mazzobre MF (2012) Influence of ligand structure and water interactions on the physical properties of β-cyclodextrins complexes. Food Chem 132:2030–2036.  https://doi.org/10.1016/j.foodchem.2011.12.044 CrossRefGoogle Scholar
  125. Santos EH, Kamimura JA, Hill LE, Gomes CL (2015) Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT Food Sci Technol 60:583–592.  https://doi.org/10.1016/j.lwt.2014.08.046 CrossRefGoogle Scholar
  126. Santos PL, Brito RG, Oliveira MA, Quintans JSS, Guimarães AG, Santos MRV, Menezes PP, Serafini MR, Menezes IRA, Coutinho HDM, Araújo AAS, Quintans-Júnior LJ (2016) Docking, characterization and investigation of β-cyclodextrin complexed with citronellal, a monoterpene present in the essential oil of Cymbopogon species, as an anti-hyperalgesic agent in chronic muscle pain model. Phytomedicine 23:948–957.  https://doi.org/10.1016/j.phymed.2016.06.007 CrossRefGoogle Scholar
  127. Sapino S, Carlotti ME, Caron G, Ugazio E, Cavalli R (2009) In silico design, photostability and biological properties of the complex resveratrol/hydroxypropyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem 63:171–180.  https://doi.org/10.1007/s10847-008-9504-7 CrossRefGoogle Scholar
  128. Sapte S, Pore Y (2016) Inclusion complexes of cefuroxime axetil with β-cyclodextrin: physicochemical characterization, molecular modeling and effect of L-arginine on complexation. J Pharm Anal 6:300–306.  https://doi.org/10.1016/j.jpha.2016.03.004 CrossRefGoogle Scholar
  129. Sasako H, Kihara F, Koyama K, Higashi K, Yamamoto K, Moribe K (2016) A novel capsule-like structure of micro-sized particles formed by phytosterol ester and γ-cyclodextrin in water. Food Chem 210:269–275.  https://doi.org/10.1016/j.foodchem.2016.04.103 CrossRefGoogle Scholar
  130. Sathigari S, Chadha G, Lee Y-HP, Wright N, Parsons DL, Rangari VK, Fasina O, Babu RJ (2009) Physicochemical characterization of efavirenz–cyclodextrin inclusion complexes. AAPS PharmSciTech 10(1):81–87.  https://doi.org/10.1208/s12249-008-9180-3 CrossRefGoogle Scholar
  131. Sbârcea L, Ledeţi I, Drăgan L, Kurunczi L, Fuliaş A, Udrescu L (2015) Fosinopril sodium–hydroxypropyl-β-cyclodextrin inclusion complex. Thermal decomposition kinetics and compatibility studies. J Therm Anal Calorim 120:981–990.  https://doi.org/10.1007/s10973-015-4450-2 CrossRefGoogle Scholar
  132. Sbârcea L, Udrescu L, Ledeţi I, Szabadai Z, Fuliaş A, Sbârcea C (2016) β-Cyclodextrin inclusion complexes of lisinopril and zofenopril. Physicochemical characterization and compatibility study of lisinopril-β-cyclodextrin with lactose. J Therm Anal Calorim 123:2377–2390.  https://doi.org/10.1007/s10973-015-5045-7 CrossRefGoogle Scholar
  133. Serafini MR, Menezes PP, Costa LP, Lima CM, Quintans LJ Jr, Cardoso JC, Matos JR, Soares-Sobrinho JL, Grangeiro S Jr, Nunes PS, Bonjadim LR, Antunes de Souza Araújo A (2012) Interaction of p-cymene with β-cyclodextrin. J Therm Anal Calorim 109:951–955.  https://doi.org/10.1007/s10973-011-1736-x CrossRefGoogle Scholar
  134. Serri C, Argirò M, Piras L, Mita DG, Saija A, Mita L, Forte M, Giarra S, Biondi M, Crispi S, Mayol L (2017) Nano-precipitated curcumin loaded particles: effect of carrier size and drug complexation with (2-hydroxypropyl)-β-cyclodextrin on their biological performances. Int J Pharm 520:21–28.  https://doi.org/10.1016/j.ijpharm.2017.01.049 CrossRefGoogle Scholar
  135. Siró I, Fenyvesi É, Szente L, De Meulenaer B, Devlieghere F, Orgoványi J, Sényi J, Barta J (2006) Release of alpha-tocopherol from antioxidative low-density polyethylene film into fatty food simulant: influence of complexation in beta-cyclodextrin. Food Addit Contam 23(8):845–853.  https://doi.org/10.1080/02652030600699064 CrossRefGoogle Scholar
  136. Skiba M, Bounoure F, Barbot C, Arnaud P, Skiba M (2005) Development of cyclodextrin microspheres for pulmonary drug delivery. J Pharm Pharm Sci 8(3):409–418Google Scholar
  137. Song LX, Teng CF, Yang Y (2006) Preparation and characterization of the solid inclusion compounds of α-, β-cyclodextrin with phenylalanine (D-, L- and DL-Phe) and tryptophan (D-, L- and DL-Trp). J Incl Phenom Macrocycl Chem 54:221–232.  https://doi.org/10.1007/s10847-005-7970-8 CrossRefGoogle Scholar
  138. Song LX, Teng CF, Xu P, Wang HM, Zhang ZQ, Liu QQ (2008) Thermal decomposition behaviors of β-cyclodextrin, its inclusion complexes of alkyl amines, and complexed β-cyclodextrin at different heating rates. J Incl Phenom Macrocycl Chem 60:223–233.  https://doi.org/10.1007/s10847-007-9369-1 CrossRefGoogle Scholar
  139. Songkro S, Hayook N, Jaisawang J, Maneenuan D, Chuchome T, Kaewnopparat N (2012) Investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent. J Incl Phenom Macrocycl Chem 72:339–355.  https://doi.org/10.1007/s10847-011-9985-7 CrossRefGoogle Scholar
  140. Sreenivasan K (2001) Use of differential scanning calorimetry to study the replacement of a guest molecule from cyclodextrin-guest inclusion complexes. Anal Lett 34(2):307–311CrossRefGoogle Scholar
  141. Szafranek A, Szafranek J (1993) Thermogravimetric properties of inclusion complexes of β-cyclodextrin with benzene, acetylsalicylic acid and methyl salicylate. J Incl Phenom Mol Recognit Chem 15:351–358CrossRefGoogle Scholar
  142. Szejtli J (2004) Past, present, and future of cyclodextrin research. Pure Appl Chem 76(10):1825–1845CrossRefGoogle Scholar
  143. Szente L, Szejtli J, Szemán J, Kató L (1993) Fatty acid-cyclodextrin complexes: properties and applications. J Incl Phenom Mol Recognit Chem 16:339–354CrossRefGoogle Scholar
  144. Tan J, Meng N, Fan Y, Su Y, Zhang M, Xiao Y, Zhou N (2016) Hydroxypropyl-β-cyclodextrin-graphene oxide conjugates: carriers for anti-cancer drugs. Mater Sci Eng C 61:681–687.  https://doi.org/10.1016/j.msec.2015.12.098 CrossRefGoogle Scholar
  145. Tao F, Hill LE, Peng Y, Gomes CL (2014) Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. LWT Food Sci Technol 59:247–255.  https://doi.org/10.1016/j.lwt.2014.05.037 CrossRefGoogle Scholar
  146. Teramoto Y (1990) Thermal analysis - as a method of material characterization. A review. Anal Sci 6:635–643CrossRefGoogle Scholar
  147. Thiry J, Krier F, Ratwatte S, Thomassin J-M, Jerome C, Evrard B (2017) Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes. Eur J Pharm Sci 96:590–597.  https://doi.org/10.1016/j.ejps.2016.09.032 CrossRefGoogle Scholar
  148. Todorova NA, Schwarz FP (2007) The role of water in the thermodynamics of drug binding to cyclodextrin. J Chem Thermodyn 39:1038–1048.  https://doi.org/10.1016/j.jct.2006.12.019 CrossRefGoogle Scholar
  149. Ünlüsayin M, Hădărugă NG, Rusu G, Gruia AT, Păunescu V, Hădărugă DI (2016) Nano-encapsulation competitiveness of omega-3 fatty acids and correlations of thermal analysis and Karl Fischer water titration for European anchovy (Engraulis encrasicolus L.) oil/β-cyclodextrin complexes. LWT Food Sci Technol 68:135–144.  https://doi.org/10.1016/j.lwt.2015.12.017 CrossRefGoogle Scholar
  150. Uyar T, Hunt MA, Gracz HS, Tonelli AE (2006) Crystalline cyclodextrin inclusion compounds formed with aromatic guests: guest-dependent stoichiometries and hydration-sensitive crystal structures. Cryst Growth Des 6(5):1113–1119.  https://doi.org/10.1021/cg050500+ CrossRefGoogle Scholar
  151. Veiga MD, Merino M (2002) Interactions of oxyphenbutazone with different cyclodextrins in aqueous medium and in the solid state. J Pharm Biomed Anal 28:973–982CrossRefGoogle Scholar
  152. Veiga MD, Merino M, Fernández D, Lozano R (2002) Characterization of some cyclodextrin derivatives by thermal analysis. J Therm Anal Calorim 68:511–516CrossRefGoogle Scholar
  153. Wang Z, Zhang X, Deng Y, Wang T (2007) Complexation of hydrophobic drugs with hydroxypropyl-β-cyclodextrin by lyophilization using a tertiary butyl alcohol system. J Incl Phenom Macrocycl Chem 57:349–354.  https://doi.org/10.1007/s10847-006-9261-4 CrossRefGoogle Scholar
  154. Wang J, Cao Y, Sun B, Wang C (2011a) Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem 127:1680–1685.  https://doi.org/10.1016/j.foodchem.2011.02.036 CrossRefGoogle Scholar
  155. Wang T, Li B, Si H, Lin L, Chen L (2011b) Release characteristics and antibacterial activity of solid state eugenol/β-cyclodextrin inclusion complex. J Incl Phenom Macrocycl Chem 71:207–213.  https://doi.org/10.1007/s10847-011-9928-3 CrossRefGoogle Scholar
  156. Wang X, Luo Z, Xiao Z (2014) Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex. Carbohydr Polym 101:1027–1032.  https://doi.org/10.1016/j.carbpol.2013.10.042 CrossRefGoogle Scholar
  157. Wang L, Yan J, Li Y, Xu K, Li S, Tang P, Li H (2016) The influence of hydroxypropyl-β-cyclodextrin on the solubility, dissolution, cytotoxicity, and binding of riluzole with human serum albumin. J Pharm Biomed Anal 117:453–463.  https://doi.org/10.1016/j.jpba.2015.09.033 CrossRefGoogle Scholar
  158. Wszelaka-Rylik M (2017) Thermodynamics of β-cyclodextrin–ephedrine inclusion complex formation and covering of nanometric calcite with these substances. J Therm Anal Calorim 127:1825–1834.  https://doi.org/10.1007/s10973-016-5467-x CrossRefGoogle Scholar
  159. Wszelaka-Rylik M, Gierycz P (2013) Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with drugs. J Therm Anal Calorim 111:2029–2035.  https://doi.org/10.1007/s10973-012-2251-4 CrossRefGoogle Scholar
  160. Wunderlich B (2007) Thermal analysis of macromolecules. A personal review. J Therm Anal Calorim 89(2):321–356CrossRefGoogle Scholar
  161. Xu P, Song LX, Wang HM (2008) Study on thermal decomposition behavior of survived β-cyclodextrin in its inclusion complex of clove oil by nonisothermal thermogravimetry and gas chromatography coupled to time-of-flight mass spectrometry analyses. Thermochim Acta 469:36–42.  https://doi.org/10.1016/j.tca.2007.12.009 CrossRefGoogle Scholar
  162. Yang Y, Li X, Chen J, Chen H, Bao X (2003) ZnO nanoparticles prepared by thermal decomposition of β-cyclodextrin coated zinc acetate. Chem Phys Lett 373:22–27.  https://doi.org/10.1016/S0009-2614(03)00562-1 CrossRefGoogle Scholar
  163. Yang B, Zhao Y-L, Yang X, Liao X-L, Yang J, Zhang J-H, Gao C-Z (2013a) Scutellarin-cyclodextrin conjugates: synthesis, characterization and anticancer activity. Carbohydr Polym 92:1308–1314.  https://doi.org/10.1016/j.carbpol.2012.10.012 CrossRefGoogle Scholar
  164. Yang X, Zhao Y, Chen Y, Liao X, Gao C, Xiao D, Qin Q, Yi D, Yang B (2013b) Host–guest inclusion system of mangiferin with β-cyclodextrin and its derivatives. Mater Sci Eng C 33:2386–2391.  https://doi.org/10.1016/j.msec.2013.02.002 CrossRefGoogle Scholar
  165. Yang Y, Gao J, Ma X, Huang G (2017) Inclusion complex of tamibarotene with hydroxypropyl-β -cyclodextrin: preparation, characterization, invitro and in-vivo evaluation. Asian J Pharm Sci 12:187–192.  https://doi.org/10.1016/j.ajps.2016.08.009 CrossRefGoogle Scholar
  166. Yatsu FKJ, Koester LS, Lula I, Passos JJ, Sinisterra R, Bassani VL (2013) Multiple complexation of cyclodextrin with soy isoflavones present in an enriched fraction. Carbohydr Polym 98:726–735.  https://doi.org/10.1016/j.carbpol.2013.06.062 CrossRefGoogle Scholar
  167. Yu S-Z, Li X-T, Li J-H, Wang J-Y, Tian S-J (1997) Kinetic studies on the thermal dissociation of β-cyclodextrin-cinnamyl alcohol inclusion complex. J Therm Anal 49:1517–1525CrossRefGoogle Scholar
  168. Yuan C, Jin Z, Xu X, Zhuang H, Shen W (2008) Preparation and stability of the inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Food Chem 109:264–268.  https://doi.org/10.1016/j.foodchem.2007.07.051 CrossRefGoogle Scholar
  169. Yuan C, Liu B, Liu H (2015) Characterization of hydroxypropyl-β -cyclodextrins with different substitution patterns via FTIR, GC-MS, and TG-DTA. Carbohydr Polym 118:36–40.  https://doi.org/10.1016/j.carbpol.2014.10.070 CrossRefGoogle Scholar
  170. Zhang W, Chen M, Diao G (2011) Preparation and electrochemical behavior of water-soluble inclusion complex of ferrocene with β-cyclodextrin polymer. Electrochim Acta 56:5129–5136.  https://doi.org/10.1016/j.electacta.2011.03.062 CrossRefGoogle Scholar
  171. Zhang W, Li X, Yu T, Yuan L, Rao G, Li D, Mu C (2015) Preparation, physicochemical characterization and release behavior of the inclusion complex of trans-anethole and β-cyclodextrin. Food Res Int 74:55–62.  https://doi.org/10.1016/j.foodres.2015.04.029 CrossRefGoogle Scholar
  172. Zhang J-Q, Jiang K-M, Xie X-G, Jin Y, Lin J (2016) Water-soluble inclusion complexes of trans-polydatin by cyclodextrin complexation: preparation, characterization and bioactivity evaluation. J Mol Liq 219:592–598.  https://doi.org/10.1016/j.molliq.2016.03.054 CrossRefGoogle Scholar
  173. Zhang C-L, Liu J-C, Yang W-B, Chen D-L, Jiao Z-G (2017) Experimental and molecular docking investigations on the inclusion mechanism of the complex of phloridzin and hydroxypropyl-β-cyclodextrin. Food Chem 215:124–128.  https://doi.org/10.1016/j.foodchem.2016.07.155 CrossRefGoogle Scholar
  174. Zhou Q, Wei X, Dou W, Chou G, Wang Z (2013) Preparation and characterization of inclusion complexes formed between baicalein and cyclodextrins. Carbohydr Polym 95:733–739.  https://doi.org/10.1016/j.carbpol.2013.02.038 CrossRefGoogle Scholar
  175. Zhu LH, Song LX, Guo XQ, Dang Z (2010) Comparison in thermal behaviors of homologues, derivatives and adducts of β-cyclodextrin. Thermochim Acta 507-508:77–83.  https://doi.org/10.1016/j.tca.2010.04.031 CrossRefGoogle Scholar
  176. Zhu G, Feng N, Xiao Z, Zhou R, Niu Y (2015) Production and pyrolysis characteristics of citral-monochlorotriazinyl-β-cyclodextrin inclusion complex. J Therm Anal Calorim 120:1811–1817.  https://doi.org/10.1007/s10973-015-4498-z CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nicoleta G. Hădărugă
    • 1
  • Geza N. Bandur
    • 2
  • Daniel I. Hădărugă
    • 2
    Email author
  1. 1.Department of Food ScienceBanat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from TimişoaraTimişoaraRomania
  2. 2.Department of Applied Chemistry, Organic and Natural Compounds EngineeringPolytechnic University of TimişoaraTimişoaraRomania

Personalised recommendations