Advertisement

Oncology

  • Abdelhamid H. Elgazzar
  • Ismet Sarikaya
Chapter

Abstract

Indications of whole body F-18 fluorodeoxyglucose (F-18 FDG) PET/CT include differentiation of benign from malignant lesions, staging in patients with known malignancies, monitoring the effect of therapy, detecting tumor recurrence, selecting regions for biopsy and guiding radiation therapy planning, and searching for an unknown primary tumor in patients with metastatic disease or paraneoplastic syndrome.

References

  1. 1.
    Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K et al (2014) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Surasi DS, Bhambhvani P, Baldwin JA, Almodovar SE, O'Malley JP (2014) 18F-FDG PET and PET/CT patient preparation: a review of the literature. J Nucl Med Technol 42:5–13PubMedCrossRefGoogle Scholar
  3. 3.
    Cheebsumon P, van Velden FH, Yaqub M, Hoekstra CJ, Velasquez LM et al (2011) Measurement of metabolic tumor volume: static versus dynamic FDG scans. EJNMMI Res 1:35PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Akhurst T, Ng VV, Larson SM, O’Donoghue JA, O’Neel J et al (2000) Tumor burden assessment with positron emission tomography with. Clin Positron Imaging 3:57–65PubMedCrossRefGoogle Scholar
  5. 5.
    Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662PubMedCrossRefGoogle Scholar
  6. 6.
    Barrington SF, Maisey MN (1996) Skeletal muscle uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med 37:1127–1129PubMedGoogle Scholar
  7. 7.
    Söderlund V, Larsson SA, Jacobsson H (2007) Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging 34:1018–1022PubMedCrossRefGoogle Scholar
  8. 8.
    Osman MM, Muzaffar R, Altinyay ME, Teymouri C (2011) FDG dose extravasations in PET/CT: frequency and impact on SUV measurements. Front Oncol 1:41PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Adams MC, Turkington TG, Wilson JM, Wong TZ (2010) A systematic review of the factors affecting accuracy of SUV measurements. AJR Am J Roentgenol 195:310–320PubMedCrossRefGoogle Scholar
  10. 10.
    Osman MM, Chaar BT, Muzaffar R, Oliver D, Reimers HJ et al (2010) 18F-FDG PET/CT of patients with cancer: comparison of whole-body and limited whole-body technique. AJR Am J Roentgenol 195:1397–1403PubMedCrossRefGoogle Scholar
  11. 11.
    Huellner MW, Appenzeller P, Kuhn FP, Husmann L, Pietsch CM et al (2014) Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: preliminary observations. Radiology 273:859–869PubMedCrossRefGoogle Scholar
  12. 12.
    Society of Nuclear Medicine Procedure Guideline for Breast Scintigraphy Version 2.0, approved June 2, 2004Google Scholar
  13. 13.
    Palmedo H, Schomburg A, Grunwald F, Mallmann P, Boldt I et al (1996) Scintimammography with Tc-99m MIBI in patients with suspicion of primary breast cancer. Nucl Med Biol 23:681–684PubMedCrossRefGoogle Scholar
  14. 14.
    Peller P, Khedkar N, Martinez C (1996) Breast tumor scintigraphy. J Nuc Med Technol 24:198–203Google Scholar
  15. 15.
    Scopinaro F, Schillaci O, Scarpini M, Mingazzini PL, Di Macio L et al (1994) Technetium-99m Sestamibi: an indicator of breast cancer invasiveness. Eur J Nucl Med 21:984–987PubMedCrossRefGoogle Scholar
  16. 16.
    Goldsmith SJ, Parsons W, Guiberteau MJ, Stern LH, Lanzkowsky L et al (2010) SNM practice guideline for breast scintigraphy with breast-specific gamma-cameras 1.0. J Nucl Med Technol 38:219–224PubMedCrossRefGoogle Scholar
  17. 17.
    Giammarile F, Alazraki N, Aarsvold JN, Audisio RA, Glass E et al (2013) The EANM and SNMMI practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer. Eur J Nucl Med Mol Imaging 40:1932–1947PubMedCrossRefGoogle Scholar
  18. 18.
    Giammarile F, Bozkurt MF, Cibula D, Pahisa J, Oyen WJ et al (2014) The EANM clinical and technical guidelines for lymphoscintigraphy and sentinel node localization in gynaecological cancers. Eur J Nucl Med Mol Imaging 41:1463–1477PubMedCrossRefGoogle Scholar
  19. 19.
    Krasnow AZ, Hellman RS (1999) Lymphoscintigraphy revisited: 1999. In: Freeman LM (ed) Nuclear medicine annual. Mosby, St Louis, pp 17–97Google Scholar
  20. 20.
    De Cicco C, Cremonesi M, Luini A, Bartolomei M, Grana C et al (1998) Lymphoscintigraphy and radioguided biopsy of the sentinel axillary node in breast cancer. J Nucl Med 39:2080–2084PubMedGoogle Scholar
  21. 21.
    Kaufmann M, Morrow M, von Minckwitz G, Harris JR, Biedenkopf Expert Panel Members (2010) Locoregional treatment of primary breast cancer: consensus recommendations from an international expert panel. Cancer 116:1184–1191PubMedCrossRefGoogle Scholar
  22. 22.
    Schwartz GF, Giuliano AE, Veronesi U, Consensus Conference Committee (2002) Proceedings of the consensus conference on the role of sentinel lymph node biopsy in carcinoma of the breast. Breast 11:362–373CrossRefGoogle Scholar
  23. 23.
    Buck AK, Nekolla S, Ziegler S, Beer A, Krause BJ et al (2008) SPECT/CT. J Nucl Med 49:1305–1319PubMedCrossRefGoogle Scholar
  24. 24.
    Lymphoseek prescribing information. Lymphoseek website. http://lymphoseek.com/assets/pdfs/Lymphoseek%20Package%20Insert%20-%20October%202014.pdf. Published 2013. Revised September 2014. Accessed 23 April 2015
  25. 25.
    Baker JL, Pu M, Tokin CA, Hoh CK, Vera DR et al (2015) Comparison of [(99m)Tc]tilmanocept and filtered [(99m)Tc]sulfur colloid for identification of SLNs in breast cancer patients. Ann Surg Oncol 22:40–45PubMedCrossRefGoogle Scholar
  26. 26.
    Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F et al (2017) (68)Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging 44:1014–1024PubMedCrossRefGoogle Scholar
  27. 27.
    Maurer T, Gschwend JE, Rauscher I, Souvatzoglou M, Haller B et al (2016) Diagnostic efficacy of gallium-PSMA positron emission tomography compared to conventional imaging in lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol 195:1436–1443PubMedCrossRefGoogle Scholar
  28. 28.
    Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A et al (2015) Evaluation of hybrid Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med 56:668–674PubMedCrossRefGoogle Scholar
  29. 29.
    Parimi V, Goyal R, Poropatich K, Yang XJ (2014) Neuroendocrine differentiation of prostate cancer: a review. Am J Clin Exp Urol 2:273–285PubMedPubMedCentralGoogle Scholar
  30. 30.
    Uliel L, Royal HD, Darcy MD, Zuckerman DA, Sharma A et al (2012) From the angio suite to the γ-camera: vascular mapping and 99mTc-MAA hepatic perfusion imaging before liver radioembolization—a comprehensive pictorial review. J Nucl Med 53:1736–1747PubMedCrossRefGoogle Scholar
  31. 31.
    Society of Nuclear Medicine Procedure Guideline for Hepatic and Splenic Imaging version 3.0, approved July 20, 2003Google Scholar
  32. 32.
    Yang PJ, Thrall JH, Ensminger WD, Niederhuber JE, Gyves JW et al (1982) Perfusion scintigraphy (Tc-99m MAA) during surgery for placement of chemotherapy catheter in hepatic artery: concise communication. J Nucl Med 23:1066–1069PubMedGoogle Scholar
  33. 33.
    Denecke T, Hildebrandt B, Lehmkuhl L, Peters N, Nicolaou A et al (2005) Fusion imaging using a hybrid SPECT-CT camera improves port perfusion scintigraphy for control of hepatic arterial infusion of chemotherapy in colorectal cancer patients. Eur J Nucl Med Mol Imaging 32:1003–1010PubMedCrossRefGoogle Scholar
  34. 34.
    Carril JM, Quirce R, Serrano J, Banzo I, Jiménez-Bonilla JF et al (1997) Total-body scintigraphy with thallium-201 and iodine-131 in the follow-up of differentiated thyroid cancer. J Nucl Med 38:686–692PubMedGoogle Scholar
  35. 35.
    Kessler LS, Ruiz A, Donovan Post MJ, Ganz WI, Brandon AH et al (1998) Thallium-201 brain SPECT of lymphoma in AIDS patients: pitfalls and technique optimization. AJNR Am J Neuroradiol 19:1105–1159PubMedGoogle Scholar
  36. 36.
    Otsuka H, Shinbata H, Hieda M, Yamashita K, Kitamura H et al (2002) The retention indices of 201Tl-SPECT in brain tumors. Ann Nucl Med 16:455–459PubMedCrossRefGoogle Scholar
  37. 37.
    Bartold SP, Donohoe KJ, Fletcher JW, Haynie TP, Henkin RE, Silberstein EB, Royal HD, Van den Abbeele A (1997) Procedure guideline for gallium scintigraphy in the evaluation of malignant disease. Society of Nuclear Medicine. J Nucl Med 38:990–994PubMedGoogle Scholar
  38. 38.
    Morton KA, Jarboe J, Burke EM (2000) Gallium-67 imaging in lymphoma: tricks of the trade. J Nucl Med Technol 28:221–232PubMedGoogle Scholar
  39. 39.
    Donahue DM, Leonard JC, Basmadjian GP, Nitschke RM, Hinkle GH et al (1981) Thymic gallium-67 localization in pediatric patients on chemotherapy: concise communication. J Nucl Med 22:1043–1048PubMedGoogle Scholar
  40. 40.
    Small EJ, Venook AP, Damon LE (1993) Gallium-avid thymic hyperplasia in an adult after chemotherapy for Hodgkin disease. Cancer 72:905–908PubMedCrossRefGoogle Scholar
  41. 41.
    Seabold JE, Palestro CJ, Brown ML, Datz FL, Forstrom LA et al (1997) Procedure guideline for gallium scintigraphy in inflammation. Society of Nuclear Medicine. J Nucl Med 38:994–997PubMedPubMedCentralGoogle Scholar
  42. 42.
    Johnson PM, Berdon WE, Baker DH, Fawwaz RA (1978) Thymic uptake of gallium-67 citrate in a healthy 4 year old boy. Pediatr Radiol 7:243–244PubMedCrossRefGoogle Scholar
  43. 43.
    Bénard F, Romsa J, Hustinx R (2003) Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med 33:148–162PubMedCrossRefGoogle Scholar
  44. 44.
    Fulham MJ, Melisi JW, Nishimiya J, Dwyer AJ, Di Chiro G (1993) Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology 189:221–225PubMedCrossRefGoogle Scholar
  45. 45.
    Meyer PT, Spetzger U, Mueller HD, Zeggel T, Sabri O et al (2000) High F-18 FDG uptake in a low-grade supratentorial ganglioma: a positron emission tomography case report. Clin Nucl Med 25:694–697PubMedCrossRefGoogle Scholar
  46. 46.
    Spence AM, Muzi M, Mankoff DA, O'Sullivan SF, Link JM et al (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45:1653–1659PubMedGoogle Scholar
  47. 47.
    Nihashi T, Dahabreh IJ, Terasawa T (2013) Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol 34:944–950PubMedCrossRefGoogle Scholar
  48. 48.
    Wong TZ, Turkington TG, Hawk TC, Coleman RE (2004) PET and brain tumor image fusion. Cancer J 10:234–242PubMedCrossRefGoogle Scholar
  49. 49.
    Barker FG 2nd, Chang SM, Valk PE, Pounds TR, Prados MD (1997) 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79:115–126PubMedCrossRefGoogle Scholar
  50. 50.
    De Witte O, Levivier M, Violon P, Salmon I, Damhaut P et al (1996) Prognostic value of positron emission tomography with [18F]fluoro-2-D-glucose in the low-grade glioma. J Neurosurg 39:470–477Google Scholar
  51. 51.
    Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911PubMedGoogle Scholar
  52. 52.
    Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952PubMedGoogle Scholar
  53. 53.
    Kwee SA, Ko JP, Jiang CS, Watters MR, Coel MN (2007) Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18 fluorocholine PET. Radiology 244:557–565PubMedCrossRefGoogle Scholar
  54. 54.
    Rohren EM, Provenzale JM, Barboriak DP, Coleman RE (2003) Screening for cerebral metastases with FDG PET in patients undergoing whole-body staging of noncentral nervous system malignancy. Radiology 226:181–187PubMedCrossRefGoogle Scholar
  55. 55.
    Pieterman RM, Que TH, Elsinga PH, Pruim J, van Putten JW et al (2002) Comparison of (11)C-choline and (18)F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med 43:167–172PubMedGoogle Scholar
  56. 56.
    Schoder H, Yeung HW (2004) Positron emission imaging of head and neck cancer, including thyroid carcinoma. Semin Nucl Med 34:180–197PubMedCrossRefGoogle Scholar
  57. 57.
    Schwartz DL, Rajendran J, Yueh B, Coltrera M, Anzai Y et al (2003) Staging of head and neck squamous cell cancer with extended-field FDG-PET. Arch Otolaryngol Head Neck Surg 129:1173–1178PubMedCrossRefGoogle Scholar
  58. 58.
    Strobel K, Haerle SK, Stoeckli SJ, Schrank M, Soyka JD et al (2009) Head and neck squamous cell carcinoma (HNSCC)—detection of synchronous primaries with (18)F-FDG-PET/CT. Eur J Nucl Med Mol Imaging 36:919–927PubMedCrossRefGoogle Scholar
  59. 59.
    Fischbein NJ, Aassar OS, Caputo GR, Kaplan MJ, Singer MI et al (1998) Clinical utility of positron emission tomography with 18F-fluorodeoxyglucose in detecting residual/recurrent squamous cell carcinoma of the head and neck. AJNR 19:1189–1196PubMedGoogle Scholar
  60. 60.
    Li P, Zhuang H, Mozley PD, Denittis A, Yeh D et al (2001) Evaluation of recurrent squamous cell carcinoma of the head and neck with FDG positron emission tomography. Clin Nucl Med 26:131–135PubMedCrossRefGoogle Scholar
  61. 61.
    Platzek I (2016) 18F-fluorodeoxyglucose PET/MR imaging in head and neck cancer. PET Clin 11:375–386PubMedCrossRefGoogle Scholar
  62. 62.
  63. 63.
    Choi JY, Lee KS, Kim HJ, Shim YM, Kwon OJ et al (2006) Focal thyroid lesions incidentally identified by integrated 18F-FDG PET/CT: clinical significance and improved characterization. J Nucl Med 47:609–615PubMedGoogle Scholar
  64. 64.
    Chadwick JL, Khalid A, Wagner H, Stack BC Jr (2007) Teflon granuloma results in a false-positive “second primary” on 18F-2-deoxyglucose positron emission tomography in a patient with a history of nasopharyngeal cancer. Am J Otolaryngol 28:251–253PubMedCrossRefGoogle Scholar
  65. 65.
    Johnson BE, Grayson J, Makuch RW, Linnoila RI, Anderson MJ et al (1990) Ten-year survival of patients with small-cell lung cancer treated with combination chemotherapy with or without irradiation. J Clin Oncol 3:396–401CrossRefGoogle Scholar
  66. 66.
    MacMahon H, Naidich DP, Goo JM, Lee KS, Leung ANC et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images: from the fleischner society 2017. Radiology 284:228–243PubMedCrossRefGoogle Scholar
  67. 67.
    Lowe VJ, Hoffman JM, DeLong DM, Patz EF Jr, Coleman ER (1994) Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities. J Nucl Med 35:1771–1776PubMedGoogle Scholar
  68. 68.
    Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M et al (2001) Dual-time-point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 42:1412–1417PubMedGoogle Scholar
  69. 69.
    Nestle U, Walter K, Schmidt S, Licht N, Nieder C et al (1999) 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597PubMedCrossRefGoogle Scholar
  70. 70.
    Marom EM, McAdams HP, Erasmus JJ, Goodman PC, Culhane DK et al (1999) Staging non-small cell lung cancer with whole-body PET. Radiology 212:803–809PubMedCrossRefGoogle Scholar
  71. 71.
    Lu YY, Chen JH, Liang JA, Chu S, Lin WY et al (2014) 18F-FDG PET or PET/CT for detecting extensive disease in small-cell lung cancer: a systematic review and meta-analysis. Nucl Med Commun 35:697–703PubMedCrossRefGoogle Scholar
  72. 72.
    Erasmus JJ, McAdams HP, Rossi SE, Goodman PC, Coleman RE et al (2000) FDG PET of pleural effusions in patients with non-small cell lung cancer. AJR Am J Roentgenol 175:245–249PubMedCrossRefGoogle Scholar
  73. 73.
    Kwek BH, Aquino SL, Fischman AJ (2004) Fluorodeoxyglucose positron emission tomography and CT after talc pleurodesis. Chest 125:2356–2360PubMedCrossRefGoogle Scholar
  74. 74.
    Bénard F, Sterman D, Smith RJ, Kaiser LR, Albelda SM et al (1998) Metabolic imaging of malignant pleural mesothelioma with fluorodeoxyglucose positron emission tomography. Chest 114:713–722PubMedCrossRefGoogle Scholar
  75. 75.
    Schneider DB, Clary-Macy C, Challa S, Sasse KC, Merrick SH et al (2000) Positron emission tomography with f18-fluorodeoxyglucose in the staging and preoperative evaluation of malignant pleural mesothelioma. J Thorac Cardiovasc Surg 120:128–133PubMedCrossRefGoogle Scholar
  76. 76.
    Weiler-Sagie M, Bushelev O, Epelbaum R, Dann EJ, Haim N et al (2010) (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51:25–30PubMedCrossRefGoogle Scholar
  77. 77.
    Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J Clin Oncol 25:571–578PubMedCrossRefGoogle Scholar
  78. 78.
    Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C (2009) Report on the first international workshop on interim-PET-scan in lymphoma. Leuk Lymphoma 50:1257–1260PubMedCrossRefGoogle Scholar
  79. 79.
    Moghbel MC, Kostakoglu L, Zukotynski K, Chen DL, Nadel H et al (2016) Response assessment criteria and their applications in lymphoma: part 1. J Nucl Med 57:928–935PubMedCrossRefGoogle Scholar
  80. 80.
    Bodet-Milin C, Kraeber-Bodéré F, Moreau P, Campion L, Dupas B et al (2008) Investigation of FDG-PET/CT imaging to guide biopsies in the detection of histological transformation of indolent lymphoma. Haematologica 93:471–472PubMedCrossRefGoogle Scholar
  81. 81.
    Atkinson W, Catana C, Abramson JS, Arabasz G, McDermott S et al (2016) Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients. Abdom Radiol (NY) 41:1338–1348CrossRefGoogle Scholar
  82. 82.
    Mena E, Lindenberg ML, Turkbey BI, Shih J, Logan J et al (2014) A pilot study of the value of 18F-fluoro-deoxy-thymidine PET/CT in predicting viable lymphoma in residual 18F-FDG avid masses after completion of therapy. Clin Nucl Med 39:874–881PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Minamimoto R, Fayad L, Advani R, Vose J, Macapinlac H et al (2016) Diffuse large B-cell lymphoma: prospective multicenter comparison of early interim FLT PET/CT versus FDG PET/CT with IHP,EORTC, Deauville, and PERCIST criteria for early therapeutic monitoring. Radiology 280:220–229PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Dierickx D, Tousseyn T, Requile A, Verscuren R, Sagaert X et al (2013) The accuracy of positron emission tomography in the detection of posttransplant lymphoproliferative disorder. Haematologica 98:771–775PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ludwig H, Kumpan W, Sinzinger H (1982) Radiography and bone scintigraphy in multiple myeloma: a comparative analysis. Br J Radiol 55:173–181PubMedCrossRefGoogle Scholar
  86. 86.
    Shortt CP, Gleeson TG, Breen KA, McHugh J, O’Connell MJ et al (2009) Whole-body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol 192:980–986PubMedCrossRefGoogle Scholar
  87. 87.
    Lu YY, Chen JH, Lin WY, Liang JA, Wang HY et al (2012) FDG PET/CT for detecting intramedullary and extramedullary lesions in multiple myeloma. Clin Nucl Med 37:833–837PubMedCrossRefGoogle Scholar
  88. 88.
    Durie BG, Waxman AD, D’Agnolo A, Williams CM (2002) Whole-body (18)F-FDG PET identifies high-risk myeloma. J Nucl Med 43:1457–1463PubMedGoogle Scholar
  89. 89.
    Sachpekidis C, Goldschmidt H, Hose D, Pan L, Cheng C et al (2014) PET/CT studies of multiple myeloma using (18) F-FDG and (18) F-NaF: comparison of distribution patterns and tracers’ pharmacokinetics. Eur J Nucl Med Mol Imaging 41:1343–1353PubMedCrossRefGoogle Scholar
  90. 90.
    Mihailovic J, Goldsmith SJ (2015) Multiple myeloma: 18F-FDG-PET/CT and diagnostic imaging. Semin Nucl Med 45:16–31PubMedCrossRefGoogle Scholar
  91. 91.
    Harmon CM, Brown N (2015) Langerhans cell histiocytosis: a clinicopathologic review and molecular pathogenetic update. Arch Pathol Lab Med 139:1211–1214PubMedCrossRefGoogle Scholar
  92. 92.
    Blum R, Seymour JF, Hicks RJ (2002) Role of 18FDG-positron emission tomography scanning in the management of histiocytosis. Leuk Lymphoma 43:2155–2157PubMedCrossRefGoogle Scholar
  93. 93.
    Michallet AS, Sesques P, Rabe KG, Itti E, Tordot J et al (2016) An 18F-FDG-PET maximum standardized uptake value >10 represents a novel valid marker for discerning Richter’s syndrome. Leuk Lymphoma 57:1474–1477PubMedCrossRefGoogle Scholar
  94. 94.
    Krug B, Crott R, Lonneux M, Baurain JF, Pirson AS et al (2008) Role of PET in the initial staging of cutaneous malignant melanoma: systematic review. Radiology 249:836–844PubMedCrossRefGoogle Scholar
  95. 95.
    Gershenwald JE, Tseng CH, Thompson W, Mansfield PF, Lee JE et al (1998) Improved sentinel lymph node localization in patients with primary melanoma with the use of radiolabeled colloid. Surgery 124:203–210PubMedCrossRefGoogle Scholar
  96. 96.
  97. 97.
    Concannon R, Larcos GS, Veness M (2010) The impact of 18F-FDG PET-CT scanning for staging and management of Merkel cell carcinoma: results from Westmead Hospital, Sydney, Australia. J Am Acad Dermatol 62:76–84PubMedCrossRefGoogle Scholar
  98. 98.
    Ibrahim SF, Ahronowitz I, McCalmont TH, Hernandez Pampaloni M, Ryan JL et al (2013) 18F-fluorodeoxyglucose positron emission tomography-computed tomography imaging in the management of Merkel cell carcinoma: a single-institution retrospective study. Dermatol Surg 39:1323–1333PubMedCrossRefGoogle Scholar
  99. 99.
    Siva S, Byrne K, Seel M, Bressel M, Jacobs D et al (2013) 18F-FDG PET provides high-impact and powerful prognostic stratification in the staging of Merkel cell carcinoma: a 15-year institutional experience. J Nucl Med 54:1223–1229PubMedCrossRefGoogle Scholar
  100. 100.
    Epstude M, Tornquist K, Riklin C, di Lenardo F, Winterhalder R et al (2013) Comparison of (18)F-FDG PET/CT and (68)Ga-DOTATATE PET/CT imaging in metastasized Merkel cell carcinoma. Clin Nucl Med 38:283–284PubMedCrossRefGoogle Scholar
  101. 101.
    Beer K, Waibel J (2008) Recurrent basal cell carcinoma discovered using positron emission tomography (PET) scanning. J Drugs Dermatol 7:879–881PubMedGoogle Scholar
  102. 102.
    Cho SB, Chung WG, Yun M, Lee JD, Lee MG et al (2005) Fluorodeoxyglucose positron emission tomography in cutaneous squamous cell carcinoma: retrospective analysis of 12 patients. Dermatol Surg 31:442–446PubMedCrossRefGoogle Scholar
  103. 103.
    Nieder C, Grosu AL (2005) Response monitoring by positron emission tomography during radiotherapy of a squamous cell skin carcinoma. Onkologie 28:505–507PubMedGoogle Scholar
  104. 104.
    Murakami R, Uozumi H, Hirai T, Nishimura R, Shiraishi S et al (2007) Impact of FDG-PET/CT imaging on nodal staging for head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 68:377–382PubMedCrossRefGoogle Scholar
  105. 105.
    Yamazaki Y, Saitoh M, Notani K, Tei K, Totsuka Y et al (2008) Assessment of cervical lymph node metastases using FDG-PET in patients with head and neck cancer. Ann Nucl Med 22:177–184PubMedCrossRefGoogle Scholar
  106. 106.
    Gil-Rendo A, Martínez-Regueira F, Zornoza G, García-Velloso MJ, Beorlegui C et al (2009) Association between [18F]fluorodeoxyglucose uptake and prognostic parameters in breast cancer. Br J Surg 96:166–170PubMedCrossRefGoogle Scholar
  107. 107.
    Groheux D, Giacchetti S, Moretti J-L, Porcher R, Espié M et al (2011) Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging 38:426–435PubMedCrossRefGoogle Scholar
  108. 108.
    Yoon HJ, Kang KW, Chun IK, Cho N, Im SA et al (2014) Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from 68Ga-RGD PET/CT and 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 41:1534–1543PubMedCrossRefGoogle Scholar
  109. 109.
    Basu S, Chen W, Tchou J, Mavi A, Cermik T et al (2008) Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer 112:995–1000PubMedCrossRefGoogle Scholar
  110. 110.
    Veronesi U, De Cicco C, Galimberti VE, Fernandez JR, Rotmensz N et al (2007) A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol 18:473–478PubMedCrossRefGoogle Scholar
  111. 111.
    Groheux D, Moretti J-L, Baillet G, Espie M, Giacchetti S et al (2008) Effect of 18F-FDG PET/CT imaging in patients with clinical stage II and III breast cancer. Int J Radiat Oncol Biol Phys 71:695–704PubMedCrossRefGoogle Scholar
  112. 112.
    Segaert I, Mottaghy F, Ceyssens S, De Wever W, Stroobants S et al (2010) Additional value of PET-CT in staging of clinical stage IIB and III breast cancer. Breast J 16:617–624PubMedCrossRefGoogle Scholar
  113. 113.
    Schilling K, Narayanan D, Kalinyak JE, The J, Velasquez MV et al (2011) Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging. Eur J Nucl Med Mol Imaging 38:23–36PubMedCrossRefGoogle Scholar
  114. 114.
    Radan L, Ben-Haim S, Bar-Shalom R, Guralnik L, Israel O (2006) The role of FDG PET/CT in suspected recurrence of breast cancer. Cancer 107:2545–2551PubMedCrossRefGoogle Scholar
  115. 115.
    Champion L, Brain E, Giraudet A-L, Le Stanc E, Wartski M et al (2011) Breast cancer recurrence diagnosis suspected on tumor marker rising: value of whole-body 18FDG-PET/CT imaging and impact on patient management. Cancer 117:1621–1629PubMedCrossRefGoogle Scholar
  116. 116.
    Cuellar SL, Carter BW, Macapinlac HA, Ajani JA, Komaki R et al (2014) Clinical staging of patients with early esophageal adenocarcinoma: does FDG-PET/CT have a role? J Thorac Oncol 9:1202–1206PubMedCrossRefGoogle Scholar
  117. 117.
    Räsänen JV, Sihvo EI, Knuuti MJ, Minn HR, Luostarinen ME et al (2003) Prospective analysis of accuracy of positron emission tomography, computed tomography, and endoscopic ultrasonography in staging of adenocarcinoma of the esophagus and the esophagogastric junction. Ann Surg Oncol 10:954–960PubMedCrossRefGoogle Scholar
  118. 118.
    Kato H, Miyazaki T, Nakajima M, Fukuchi M, Manda R et al (2004) Value of positron emission tomography in the diagnosis of recurrent oesophageal carcinoma. Br J Surg 91:1004–1009PubMedCrossRefGoogle Scholar
  119. 119.
    Wieder HA, Brücher BL, Zimmermann F, Becker K, Lordick F et al (2004) Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol 22:900–908PubMedCrossRefGoogle Scholar
  120. 120.
    Goense L, van Rossum PS, Reitsma JB, Lam MG, Meijer GJ et al (2015) Diagnostic performance of 18F-FDG PET and PET/CT for the detection of recurrent esophageal cancer after treatment with curative intent: a systematic review and meta-analysis. J Nucl Med 56:995–1002PubMedCrossRefGoogle Scholar
  121. 121.
    Serrano OK, Love C, Goldman I, Huang K, Ng N, Et al (2016) The value of FDG-PET in the staging of gastric adenocarcinoma: a single institution retrospective review. J Surg Oncol 113:640–646PubMedCrossRefGoogle Scholar
  122. 122.
    Yun M, Lim JS, Noh SH, Hyung WJ, Cheong JH et al (2005) Lymph node staging of gastric cancer using 18F-FDG PET: a comparison study with CT. J Nucl Med 46:1582–1588PubMedGoogle Scholar
  123. 123.
    Ott K, Fink U, Becker K, Stahl A, Dittler HJ et al (2003) Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol 21:4604–4610PubMedCrossRefGoogle Scholar
  124. 124.
    Fong Y, Saldinger PF, Akhurst T, Macapinlac H, Yeung H et al (1999) Utility of 18F-FDG positron emission tomography scanning on selection of patients for resection of hepatic colorectal metastases. Am J Surg 178:282–287PubMedCrossRefGoogle Scholar
  125. 125.
    Sahani DV, Kalva SP, Fischman AJ, Kadavigere R, Blake M et al (2005) Detection of liver metastases from adenocarcinoma of the colon and pancreas: comparison of mangafodipir trisodium-enhanced liver MRI and whole-body FDG PET. AJR Am J Roentgenol 185:239–246PubMedCrossRefGoogle Scholar
  126. 126.
    Flanagan FL, Dehdashti F, Ogunbiyi OA, Siegel BA (1998) Utility of FDG PET for investigating unexplained plasma CEA elevation inpatients with colorectal cancer. Ann Surg 227:319–323PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Valk PE, Abella-Columna E, Haseman MK, Pounds TR, Tesar RD et al (1999) Whole-body PET imaging with F-18-fluorodeoxyglucose in management of recurrent colorectal cancer. Arch Surg 134:503–511PubMedCrossRefGoogle Scholar
  128. 128.
    Yasuda S, Fujii H, Nakahara T, Nishumi N, Takahashi W et al (2001) 18F-FDG PET detection of colonic adenomas. J Nucl Med 42:989–992PubMedGoogle Scholar
  129. 129.
    Koyama K, Okamura T, Kawabe J, Nakata B, Chung KH et al (2001) Diagnostic usefulness of FDG PET for pancreatic mass lesions. Ann Nucl Med 15:217–224PubMedCrossRefGoogle Scholar
  130. 130.
    Bares R, Dohmen BM, Cremerius U, Fass J, Teusch M et al (1996) Results of positron emission tomography with fluorine-18 labeled fluorodeoxyglucose in differential diagnosis and staging of pancreatic carcinoma. Radiologe 36:435–440PubMedCrossRefGoogle Scholar
  131. 131.
    Diederichs CG, Staib L, Vogel J, Glasbrenner B, Glatting G et al (2000) Values and limitations of 18F-fluorodeoxyglucose-positron-emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas 20:109–116PubMedCrossRefGoogle Scholar
  132. 132.
    Kauhanen SP, Komar G, Seppanen MP, Dean KI, Minn HR et al (2009) A prospective diagnostic accuracy study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann Surg 250:957–963PubMedCrossRefGoogle Scholar
  133. 133.
    Ruf J, Lopez Hänninen E, Oettle H, Plotkin M, Pelzer U et al (2005) Detection of recurrent pancreatic cancer: comparison of FDG-PET with CT/MRI. Pancreatology 5:266–272PubMedCrossRefGoogle Scholar
  134. 134.
    Rose DM, Delbeke D, Beauchamp RD, Chapman WC, Sandler MP et al (1999) 18Fluorodeoxyglucose-positronemission tomography in the management of patients with suspected pancreatic cancer. Ann Surg 229:729–737PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Sugiyama M, Sakahara H, Torizuka T, Kanno T, Nakamura F et al (2004) 18F-FDG PET in the detection of extrahepatic metastases from hepatocellular carcinoma. J Gastroenterol 39:961–968PubMedCrossRefGoogle Scholar
  136. 136.
    Petrowsky H, Wildbrett P, Husarik DB, Hany TF, Tam S et al (2006) Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J Hepatol 45:43–50PubMedCrossRefGoogle Scholar
  137. 137.
    Anderson CD, Rice MH, Pinson CW, Chapman WC, Chari RS et al (2004) Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg 8:90–97PubMedCrossRefGoogle Scholar
  138. 138.
    Goodfellow H, Viney Z, Hughes P, Rankin S, Rottenberg G et al (2014) Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int 114:389–395PubMedGoogle Scholar
  139. 139.
    Chakraborty D, Bhattacharya A, Mete UK, Mittal BR (2013) Comparison of 18F fluoride PET/CT and 99mTc-MDP bone scan in the detection of skeletal metastases in urinary bladder carcinoma. Clin Nucl Med 38:616–621PubMedCrossRefGoogle Scholar
  140. 140.
    Maurer T, Souvatzoglou M, Kubler H, Opercan K, Schmidt S et al (2012) Diagnostic efficacy of [11C]choline positron emission tomography/computed tomography compared with conventional computed tomography in lymph node staging of patients with bladder cancer prior to radical cystectomy. Eur Urol 61:1031–1038PubMedCrossRefGoogle Scholar
  141. 141.
    Kang DE, White RL Jr, Zuger JH, Sasser HC, Teigland CM (2004) Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol 171:1806–1809PubMedCrossRefGoogle Scholar
  142. 142.
    Nakatani K, Nakamoto Y, Saga T, Higashi T, Togashi K (2011) The potential clinical value of FDG-PET for recurrent renal cell carcinoma. Eur J Radiol 79:29–35PubMedCrossRefGoogle Scholar
  143. 143.
    Lin WC, Hung YC, Yeh LS, Kao CH, Yen RF et al (2003) Usefulness of 18F-fluorodeoxyglucose positron emission tomography to detect para-aortic lymph nodal metastasis in advanced cervical cancer with negative computed tomography findings. Gynecol Oncol 89:73–76PubMedCrossRefGoogle Scholar
  144. 144.
    Sironi S, Buda A, Picchio M, Perego P, Moreni R et al (2006) Lymph node metastasis in patients with clinical early-stage cervical cancer: detection with integrated FDG PET/CT. Radiology 238:272–279PubMedCrossRefGoogle Scholar
  145. 145.
    Kim SK, Choi HJ, Park SY, Lee HY, Seo SS et al (2009) Additional value of MR/PET fusion compared with PET/CT in the detection of lymph node metastases in cervical cancer patients. Eur J Cancer 45:2103–2109PubMedCrossRefGoogle Scholar
  146. 146.
    Signorelli M, Guerra L, Buda A, Picchio M, Mangili G et al (2009) Role of the integrated FDG PET/CT in the surgical management of patients with high risk clinical early stage endometrial cancer: detection of pelvic nodal metastases. Gynecol Oncol 115:231–235PubMedCrossRefGoogle Scholar
  147. 147.
    Picchio M, Mangili G, Samanes Gajate AM, De Marzi P, Spinapolice EG et al (2010) High-grade endometrial cancer: value of [18F]FDG PET/CT in preoperative staging. Nucl Med Commun 31:506–512PubMedGoogle Scholar
  148. 148.
    Kitajima K, Murakami K, Yamasaki E, Hagiwara S, Fukasawa I et al (2008) Performance of FDG-PET/CT in the diagnosis of recurrent endometrial cancer. Ann Nucl Med 22:103–109PubMedCrossRefGoogle Scholar
  149. 149.
    Risum S, Høgdall C, Loft A, Berthelsen AK, Høgdall E et al (2007) The diagnostic value of PET/CT for primary ovarian cancer—a prospective study. Gynecol Oncol 105:145–149PubMedCrossRefGoogle Scholar
  150. 150.
    Nam EJ, Yun MJ, Oh YT, Kim JW, Kim JH et al (2010) Diagnosis and staging of primary ovarian cancer: correlation between PET/CT, Doppler US, and CT or MRI. Gynecol Oncol 116:389–394PubMedCrossRefGoogle Scholar
  151. 151.
    Chang WC, Hung YC, Kao CH, Yen RF, Shen YY et al (2002) Usefulness of whole body positron emission tomography (PET) with 18F-fluoro-2-deoxyglucose (FDG) to detect recurrent ovarian cancer based on asymptomatically elevated serum levels of tumor marker. Neoplasma 49:329–333PubMedGoogle Scholar
  152. 152.
    Kim CK, Park BK, Choi JY, Kim BG, Han H (2007) Detection of recurrent ovarian cancer at MRI: comparison with integrated PET/CT. J Comput Assist Tomogr 31:868–875PubMedCrossRefGoogle Scholar
  153. 153.
    Robertson NL, Hricak H, Sonoda Y, Sosa RE, Benz M et al (2016) The impact of FDG-PET/CT in the management of patients with vulvar and vaginal cancer. Gynecol Oncol 140:420–424PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    European Association of Urology Guidelines on prostate cancer. uroweb.org [online], http://uroweb.org/wp-content/uploads/EAU-Guidelines-Prostate-Cancer-2015-v2.pdf
  155. 155.
    Prostate cancer guideline for the management of clinically localized prostate. cancer: 2007 update. aua.org [online], http://www.auanet.org/common/pdf/education/clinical-guidance/Prostate-Cancer.pdf
  156. 156.
    Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297PubMedGoogle Scholar
  157. 157.
    Oyama N, Akino H, Suzuki Y, Kanamaru H, Sadato N et al (1999) The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol 29:623–629PubMedCrossRefGoogle Scholar
  158. 158.
    Sung J, Espiritu JI, Segall GM, Terris MK (2003) Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cancer. BJU Int 92:24–27PubMedCrossRefGoogle Scholar
  159. 159.
    Kao PF, Chou YH, Lai CW (2008) Diffuse FDG uptake in acute prostatitis. Clin Nucl Med 33:308–310PubMedCrossRefGoogle Scholar
  160. 160.
    Lin KH, Chen YS, Hu G, Tsay DG, Peng NJ (2010) Chronic bacterial prostatitis detected by FDG PET/CT in a patient presented with fever of unknown origin. Clin Nucl Med 35:894–895PubMedCrossRefGoogle Scholar
  161. 161.
    Hofer C, Laubenbacher C, Block T, Breul J, Hartung R et al (1999) Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36:31–35PubMedCrossRefGoogle Scholar
  162. 162.
    Schwarz T, Seidl C, Schiemann M, Senekowitsch-Schmidtke R, Krause BJ (2016) Increased choline uptake in macrophages and prostate cancer cells does not allow for differentiation between benign and malignant prostate pathologies. Nucl Med Biol 43:355–359PubMedCrossRefGoogle Scholar
  163. 163.
    Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M et al (2014) Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41:11–20PubMedCrossRefGoogle Scholar
  164. 164.
    Uprimny C, Kroiss A, Nilica B, Buxbaum S, Decristoforo C et al (2015) (68)Ga-PSMA ligand PET versus (18)F-NaF PET: evaluation of response to (223)Ra therapy in a prostate cancer patient. Eur J Nucl Med Mol Imaging 42:362–363PubMedCrossRefGoogle Scholar
  165. 165.
    Hope TA, Aggarwal R, Chee B, Tao D, Greene KL et al (2017) Impact of Ga-68 PSMA-11 PET on management in patients with biochemically recurrent prostate cancer. J Nucl Med 58(12):1956–1961.  https://doi.org/10.2967/jnumed.117.192476 CrossRefPubMedGoogle Scholar
  166. 166.
    Ambrosini V, Zucchini G, Nicolini S, Berselli A, Nanni C et al (2014) 18F-FDG PET/CT impact on testicular tumours clinical management. Eur J Nucl Med Mol Imaging 41:668–673PubMedCrossRefGoogle Scholar
  167. 167.
    De Santis M, Becherer A, Bokemeyer C, Stoiber F, Oechsle K et al (2004) 2-18fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J Clin Oncol 22:1034–1039PubMedCrossRefGoogle Scholar
  168. 168.
    Cook GJ, Sohaib A, Huddart RA, Dearnaley DP, Horwich A et al (2015) The role of 18F-FDG PET/CT in the management of testicular cancers. Nucl Med Commun 36:702–708PubMedCrossRefGoogle Scholar
  169. 169.
    Baum SH, Frühwald M, Rahbar K, Wessling J, Schober O et al (2011) Contribution of PET/CT to prediction of outcome in children and young adults with rhabdomyosarcoma. J Nucl Med 52:1535–1540PubMedCrossRefGoogle Scholar
  170. 170.
    Völker T, Denecke T, Steffen I, Misch D, Schönberger S et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25:5435–5441PubMedCrossRefGoogle Scholar
  171. 171.
    Joensuu H, Roberts PJ, Sarlomo-Rikala M, Andersson LC, Tervahartiala P et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344:1052–1056PubMedCrossRefGoogle Scholar
  172. 172.
    Van den Abbeele AD (2008) The lessons of GIST—PET and PET/CT: a new paradigm for imaging. Oncologist 2:8–13CrossRefGoogle Scholar
  173. 173.
    Suc A, Lumbroso J, Rubie H, Hattchouel JM, Boneu A et al (1996) Metastatic neuroblastoma in children older than one year: prognostic significance of the initial metaiodobenzylguanidine scan and proposal for a scoring system. Cancer 77:805–811PubMedCrossRefGoogle Scholar
  174. 174.
    Paltiel HJ, Gelfand MJ, Elgazzar AH, Washburn LC, Harris RE et al (1994) Neural crest tumors: I123 MIBG imaging in children. Radiology 190:117–121PubMedCrossRefGoogle Scholar
  175. 175.
    Gelfand MJ, Elgazzar AH, Kriss VM, Masters PR, Golsch GJ (1994) Iodine 123 MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucl Med 35:1753–1757PubMedGoogle Scholar
  176. 176.
    Sharp SE, Gelfand MJ, Shulkin BL (2011) Pediatrics: diagnosis of neuroblastoma. Semin Nucl Med 41:345–353PubMedCrossRefGoogle Scholar
  177. 177.
    Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL (2009) 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 50:1237–1243CrossRefPubMedGoogle Scholar
  178. 178.
    Giammarile F, Chiti A, Lassmann M, Brans B, Flux G (2008) EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging 35:1039–1047PubMedCrossRefGoogle Scholar
  179. 179.
    Pelosof LC, Gerber DE (2010) Paraneoplastic syndromes: an approach to diagnosis and treatment. Mayo Clin Proc 85:838–854PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Sheikhbahaei S, Marcus CV, Fragomeni RS, Rowe SP, Javadi MS et al (2017) Whole-body (18)F-FDG PET and (18)F-FDG PET/CT in patients with suspected paraneoplastic syndrome: a systematic review and meta-analysis of diagnostic accuracy. J Nucl Med 58(7):1031–1036PubMedCrossRefGoogle Scholar
  181. 181.
    Basu S, Alavi A (2008) Role of FDG-PET in the clinical management of paraneoplastic neurological syndrome: detection of the underlying malignancy and the brain PET-MRI correlates. Mol Imaging Biol 10:131–137PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abdelhamid H. Elgazzar
    • 1
  • Ismet Sarikaya
    • 1
  1. 1.Department of Nuclear MedicineKuwait UniversitySafatKuwait

Personalised recommendations