Advertisement

Paleogene Magmatism of the Maracaibo Block and Its Tectonic Significance

  • José F. Duque-Trujillo
  • Teresa Orozco-Esquivel
  • Carlos Javier Sánchez
  • Andrés L. Cárdenas-Rozo
Chapter
Part of the Frontiers in Earth Sciences book series (FRONTIERS)

Abstract

One of the main northern South American geological conundrums has been to establish the tectonic relationship between Caribbean and South American plates during Mesozoic and Cenozoic times. Based on the petrogenetic interpretation of magmatic bodies within the Maracaibo block, we suggest an interplay between subduction and overthrusting tectonics in the northern part of South America during the Cenozoic. Our data show that the subduction of the Caribbean Plate beneath the South American Plate started around 65 million years ago, as is evidenced by the presence of trondhjemitic intrusions in the Santa Marta Province. Then, after a ca. 5-million-year magmatic gap, the evolution of this subduction system allowed the formation of a magmatic arc represented by the calc-alkaline Santa Marta Batholith (~56–49 Ma) and Parashi Pluton (51–47 Ma). For the interval between 50 and 25 million years, our data and compiled data point to a reduction in the tectonic activity, which is supported by relatively slow rates of cooling and uplifting in the Maracaibo block. Finally, for the period since the early Miocene, the reported uplift data, subsidence rates, and stratigraphic discordances indicate a differential uplift of the Maracaibo block, decreasing from the northwestern tip (Sierra Nevada de Santa Marta) toward the southeast (Merida Andes) and suggesting that this tectonic “reactivation” is the result of dominant overthrusting tectonics.

Keywords

Sierra Nevada de Santa Marta Caribbean Plate Subduction Santa Marta Batholith Trondhjemite 

Notes

Acknowledgments

This research was partially supported by IGCP, geophysics commission graduate scholarship program (2008) to Duque-Trujillo, J.; Project #2289 from Fundación para la promoción de la Investigación y la Tecnología del Banco de la Republica (BANREP), and PAPIIT project #IN-114508. Authors would like to thank Susana María Hoyos Muñoz for assistance in the editing with text and figure edition.

References

  1. Altamira A, Burke K (2015) The ribbon continent of South America in Ecuador, Colombia, and Venezuela. ​AAPG Special Volumes. Memoir 108: ​Petroleum Geology and Potential of the Colombian Caribbean Margin, pp ​39–84Google Scholar
  2. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochimica et Cosmochimica Acta 53:197–214CrossRefGoogle Scholar
  3. Argus DF, Gordon RG, Demets C (2010) GEODVEL, MORVEL, and the velocity of Earth’s center. In AGU Fall Meeting AbstractsGoogle Scholar
  4. Audemard FE, Audemard FA (2002) Structure of the Mérida Andes, Venezuela: relations with the South America-Caribbean geodynamic interaction. Tectonophysics 345:299–327.  https://doi.org/10.1016/S0040-1951(01)00218-9 CrossRefGoogle Scholar
  5. Ave’lallemant HG, Gordon MB (1999) Deformation history of Roatán Island: implications for the origin of the Tela basin (Honduras). Sedimentary Basins of the World, 4, pp 197–218Google Scholar
  6. Ayala RC (2009) Análisis tectonoestratigráfico y de procedencia en la subcuenca de cesar: relación con los sistemas petroleros [Master of Science]. Universidad Simón Bolívar, pp 183–198Google Scholar
  7. Ayala RC, Bayona G, Cardona A, Ojeda C, Montenegro OC, Montes C, Valencia V, Jaramillo C (2012) The paleogene synorogenic succession in the northwestern Maracaibo block: tracking intraplate uplifts and changes in sediment delivery systems. J S Am Earth Sci 39:93–111.  https://doi.org/10.1016/j.jsames.2012.04.005 CrossRefGoogle Scholar
  8. Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626.  https://doi.org/10.1016/S0024-4937(98)00085-1 CrossRefGoogle Scholar
  9. Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80:155–177.  https://doi.org/10.1016/j.lithos.2004.05.010 CrossRefGoogle Scholar
  10. Barker F (1979) Trondhjemites: definition, environment and hypotheses of origin. In: Barker F (ed) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, pp 1–12Google Scholar
  11. Bayona G, Lamus-Ochoa F, Cardona A, Jaramillo CA, Montes C, Tchegliakova N (2007) Provenance analysis and paleocene orogenic processes in the Rancheria Basin (Guajira, Colombia) and surrounding areas. Geologia Colombiana 32:21–46Google Scholar
  12. Bayona G, Montes C, Cardona A, Jaramillo C, Ojeda G, Valencia V, Ayala-Calvo C (2011) Intraplate subsidence and basin filling adjacent to an oceanic arc-continent collision: a case from the southern Caribbean-South America plate margin. Basin Res 23:403–422.  https://doi.org/10.1111/j.1365-2117.2010.00495.x CrossRefGoogle Scholar
  13. Bayona G, Cardona A, Jaramillo C, Mora A, Montes C, Valencia V, Ayala C, Montenegro O, Ibañez-Mejia M (2012) Early paleogene magmatism in the northern Andes: insights on the effects of oceanic plateau-continent convergence. Earth Planet Sci Lett 331–332:97–111.  https://doi.org/10.1016/j.epsl.2012.03.015 CrossRefGoogle Scholar
  14. Beardsley AG, Avé Lallemant HG (2007) Oblique collision and accretion of the Netherlands leeward antilles to South America. Tectonics.  https://doi.org/10.1029/2006TC002028
  15. Benthem S, Govers R, Spakman W, Wortel R (2013) Tectonic evolution and mantle structure of the Caribbean. J Geophys Res Solid Earth 118(6):3019–3036CrossRefGoogle Scholar
  16. Bernal-Olaya R, Mann P, Vargas CA (2015) Earthquake, Tomographic, Seismic Reflection, and Gravity Evidence for a Shallowly Dipping Subduction Zone beneath the Caribbean Margin of Northwestern Colombia. In: Memoir 108: Petroleum Geology and Potential of the Colombian Caribbean Margin, pp 247–270Google Scholar
  17. Bezada MJ, Schmitz M, Jácome MI, Rodríguez J, Audemard F, Izarra C, BOLIVAR Active Seismic Working Group (2008) Crustal structure in the Falcón Basin area, northwestern Venezuela, from seismic and gravimetric evidence. J Geodyn 45(4):191–200CrossRefGoogle Scholar
  18. Blanco JM, Mann P, Nguyen L (2015) Location of the suture zone separating the great arc of the Caribbean from continental crust of northwestern South America inferred from regional gravity and magnetic dataGoogle Scholar
  19. Burke K (1988) Tectonic evolution of the Caribbean. Annu Rev Earth Planet Sci 16:201–230.  https://doi.org/10.1146/annurev.earth.16.1.201 CrossRefGoogle Scholar
  20. Bustamante C, Cardona A, Saldarriaga M, García-Casco A, Valencia V, Weber M (2009) Metamorfismo de los esquistos verdes y anfibolitas pertenecientes a los Esquistos de Santa Marta, Sierra Nevada de Santa Marta (Colombia): ¿registro de la colisión entre el Arco Caribe y la margen Suramericana? Boletín de Ciencias de la Tierra, Universidad Nacional de ColombiaGoogle Scholar
  21. Bustamante C, Archanjo CJ, Cardona A, Vervoort JD (2016) Late jurassic to early cretaceous plutonism in the Colombian Andes: a record of long-term arc maturity. Bull Geol Soc Am 128:1762–1779.  https://doi.org/10.1130/B31307.1 CrossRefGoogle Scholar
  22. Cáceres H, Camacho R, Reyes J (1980) The Geology of the Rancheria Basin. In: Geotec (ed) Geological Field-Trips, Colombia 1980–1989. Asociación Colombiana de Geólogos y Geofísicos del Petróleo, Bogotá, pp 1–31Google Scholar
  23. Campbell CJ (1965) The Santa Marta wrench fault of Colombia and its regional setting. Transactions of the Caribbean Geology Conference, 4, pp 247–261Google Scholar
  24. Cardona A, Valencia V, Bayona G, Jaramillo C, Ojeda G, Ruiz J (2009) U/Pb LA-MC-ICP-MS zircon geochronology and geochemistry from a post-collisional biotite granite of the Baja Guajira Basin, Colombia: implications for late cretaceous and neogene Caribbean–South American Tectonics. J Geol 117(6):685–692CrossRefGoogle Scholar
  25. Cardona A, Valencia V, Garzón A, Montes C, Ojeda G, Ruiz J, Weber M (2010a) Permian to triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: tectonic setting and implications within Pangea paleogeography. J S Am Earth Sci 29:772–783.  https://doi.org/10.1016/j.jsames.2009.12.005 CrossRefGoogle Scholar
  26. Cardona A, Valencia V, Bustamante C, Garcia-Casco A, Ojeda G, Ruiz J, Saldarriaga M, Weber M (2010b) Tectonomagmatic setting and provenance of the Santa Marta Schists, northern Colombia: insights on the growth and approach of cretaceous Caribbean oceanic terranes to the South American continent. J S Am Earth Sci 29:784–804.  https://doi.org/10.1016/j.jsames.2009.08.012 CrossRefGoogle Scholar
  27. Cardona A, Valencia VA, Bayona G, Duque J, Ducea M, Gehrels G, Jaramillo C, Montes C, Ojeda G, Ruiz J (2011a) Early-subduction-related orogeny in the northern Andes: turonian to eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nov 23:26–34.  https://doi.org/10.1111/j.1365-3121.2010.00979.x CrossRefGoogle Scholar
  28. Cardona A, Valencia V, Weber M, Duque J, Montes C, Ojeda G, Villagomez D (2011b) Transient Cenozoic tectonic stages in the southern margin of the Caribbean plate: U-Th/He thermochronological constraints from eocene plutonic rocks in the Santa Marta massif and Serranía de Jarara, northern Colombia. Geol Acta 9(3–4):445–469Google Scholar
  29. Cardona A, Weber M, Valencia V, Bustamante C, Montes C, Cordani U, Muñoz CM (2014) Geochronology and geochemistry of the Parashi granitoid, NE Colombia: tectonic implication of short-lived early eocene plutonism along the SE Caribbean margin. J S Am Earth Sci 50:75–92.  https://doi.org/10.1016/j.jsames.2013.12.006 CrossRefGoogle Scholar
  30. Cediel F (2018) Phanerozoic orogens of Northwestern South America: cordilleran-type orogens, taphrogenic tectonics and orogenic float. Springer, Cham, pp. 3–89Google Scholar
  31. Cediel F, Shaw RP, Caceres C (2003) Tectonic assembly of the Northern Andean Block. AAPG Mem 79:815–848Google Scholar
  32. Cerón JF, Kellogg JN, Ojeda GY (2007) Basement configuration of the Northwestern South America – Caribbean margin from recent geophysical data. Ciencia, Tecnol y Futur 3:25–49Google Scholar
  33. Cherniak D, Watson E (2001) Pb diffusion in zircon. Chemical Geology 172(1–2):5–24CrossRefGoogle Scholar
  34. Chiarabba C, De Gori P, Mele FM (2015) Recent seismicity of Italy: active tectonics of the central Mediterranean region and seismicity rate changes after the Mw 6.3 L’Aquila earthquake. Tectonophysics 638:82–93.  https://doi.org/10.1016/j.tecto.2014.10.016 CrossRefGoogle Scholar
  35. Colmenares L, Zoback MD (2003) Stress field and seismotectonics of northern South America. Geology 31:721–724.  https://doi.org/10.1130/G19409.1 CrossRefGoogle Scholar
  36. Condie K (2005) TTGs and adakites: are they both slab melts? Lithos 80:33–44CrossRefGoogle Scholar
  37. Corredor J, Morell J, Armstrong R et al (2003) Remote continental forcing of phytoplankton biogeochemistry: observations across the “Caribbean-Atlantic front”. Geophys Res Lett 30:1–4.  https://doi.org/10.1029/2003GL018193 CrossRefGoogle Scholar
  38. De La Roche H, Leterrier J, Grandclaude P, Marchal M (1980) A classification of volcanic and plutonic rocks using R1-R2. Diagrams and major elements analysis – its relationships whit current nomenclature. Chem Geol 29:183–210CrossRefGoogle Scholar
  39. Duque J (2009) Geocronología (U-Pb y 40Ar/39Ar) y geoquímica de los intrusivos paleogenos de la Sierra Nevada de Santa Marta y sus relaciones con la tectonica del Caribe y el arco magmatico circun-Caibe~no. Universidad Nacional Autonoma de Mexico, p 189, MSc DissertationGoogle Scholar
  40. Duque-Caro H (1979) Major structural elements and evolution of northwestern Colombia. Geological and geophysical investigations of continental margins: AAPG Memoir, 29, pp 329–351Google Scholar
  41. Duque-Trujillo J, Orozco-Esquivel T, Cardona A, Ferrari L, López-Martinez M, Solaro L, Valencia V (2010) The Paleogene intrusive of the Sierra Nevada de Santa Marta, Colombia: short-lived magmatism related to the collision of the caribbean plate with South América. In 2010 GSA Denver Annual MeetingGoogle Scholar
  42. Escalona A, Mann P (2011) Tectonics, basin subsidence mechanisms, and paleogeography of the Caribbean-South American plate boundary zone. Mar Pet Geol 28:8–39.  https://doi.org/10.1016/j.marpetgeo.2010.01.016 CrossRefGoogle Scholar
  43. Etayo-Serna F (1979) Moluscos de una capa del Paleoceno de Manantial (Guajira). Bol Geol Univ Ind Santander 13(27):5–55Google Scholar
  44. Farley KA (2002) (U-Th)/He dating: techniques, calibrations, and applications. Rev Mineral Geochem 47(1):819–844CrossRefGoogle Scholar
  45. Flinch J, Amaral J, Doulcet A, et al (2003) Structure of the offshore sinu accretionary wedge. Northern Colombia VIII Simp Boliv Cuencas Subandinas, pp 76–83Google Scholar
  46. Florez-Niño J (2001) Elastic geomechanical model of Bucaramanga and Oca faults and the origin of the Sierra Nevada de Santa Marta, Northern Andes, Colombia. In: Proceedings AGU Fall Meeting Abstracts Volume 1, p 834Google Scholar
  47. Forero A (1970) Estartigrafia del Pre-Cretacico en el flanco occidental de la Serrania de Perijá. Geologia Colombiana 7:7–78Google Scholar
  48. French C, Schenk C (2004) Map showing geology, oli and gas fields, and geologic provinces of the Caribbean region. U.S. Geological Survey. Open file report 97–470- kGoogle Scholar
  49. Freymueller JT, Kellogg JN, Vega V (1993) Plate motions in the north Andean region. J Geophys Res 98:21853.  https://doi.org/10.1029/93JB00520 CrossRefGoogle Scholar
  50. Galindo P, Lonergan L (2013) Evolution of the Bahia Basin: evidence for vertical-Axis block rotation and basin inversion at the Caribbean plate margin offshore northern Colombia. In AAPG International Conference and Exhibition, p 11Google Scholar
  51. García M, Mier R, Cruz G (2010) Reconstrucción de la historia paleo-thermal de la subcuenca de la baja Guajira, Colombia. Boletín de Geología 32(2):55–71Google Scholar
  52. Garcia-Casco A (2009) Subduction complex associated with the Caribbean Plate migration from late Cretaceous. http://www.ugr.es/~agcasco/personal/. Accessed 20 March of 2017
  53. Garcia-Casco A, Lazaro C, Rojas-Agramonte Y et al (2008) Partial melting and counterclockwise P T path of subducted oceanic crust (Sierra del Convento Melange, Cuba). J Petrol 49:129–161.  https://doi.org/10.1093/petrology/egm074 CrossRefGoogle Scholar
  54. Getsinger A, Rushmer T, Jackson MD, Baker D (2009) Generating high Mg-numbers and chemical diversity in tonalite-trondhjemite-granodiorite (TTG) magmas during melting and melt segregation in the continental crust. J Petrol 50:1935–1954.  https://doi.org/10.1093/petrology/egp060 CrossRefGoogle Scholar
  55. Gomez I (2001) Structural style and evolution of the Cuisa fault system. Guajira, ColombiaGoogle Scholar
  56. Gómez E, Jordan TE, Allmendinger RW, Hegarty K, Kelley S (2005) Syntectonic cenozoic sedimentation in the northern middle Magdalena Valley basin of Colombia and implications for exhumation of the Northern Andes. Geol Soc Am Bull 117(5–6):547–569CrossRefGoogle Scholar
  57. Hernández O, Jaramillo JM (2009) Reconstrucción de la historia termal en los sectores de Luruaco y Cerro Cansona–cuenca del Sinú-San Jacinto y en el piedemonte occidental de la Serranía del Perijá entre Codazzi y la Jagua de Ibirico–cuenca de Cesar Ranchería. Informe Final Cuenca Cesar-Ranchería. Agencia Nacional de Hidrocarburos (Bogotá), p 58Google Scholar
  58. Herrera PM, Santa Escobar M, Ordoñez Carmona O, Pimentel M (2008) Consideraciones Petrograficas, Geoquimicas y Geocronologicas de la parte Occidental del Batolito de Santa Marta. Dyna 75:223–236Google Scholar
  59. INGEOMINAS (2007) Geología de las planchas 11, 12, 13, 14, 18, 19, 20, 21, 25, 26, 27, 33, 34 y 40. Proyecto: “Evolución geohistórcia de la Sierra Nevada de Santa Marta” Informe Contrato de prestación de servicios No. PS 025–06Google Scholar
  60. Karsli O, Dokuz A, Uysal I et al (2010) Generation of the early cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos 114:109–120.  https://doi.org/10.1016/j.lithos.2009.08.003 CrossRefGoogle Scholar
  61. Kellogg JN (1984) Cenozoic tectonic history of the Sierra de Perijá, Venezuela-Colombia, and adjacent basins. In: The Caribbean-South American Plate Boundary and Regional Tectonics, pp 239–262Google Scholar
  62. Kellogg JN, Bonini WE (1982) Subduction of the Caribbean Plate and basement uplifts in the overriding South American Plate. Tectonics 1:251–276.  https://doi.org/10.1029/TC001i003p00251 CrossRefGoogle Scholar
  63. Kellogg JN, Vega V, Stailings TC et al (1995) Tectonic development of Panama, Costa Rica, and the Colombian Andes: constraints from Global Positioning System geodetic studies and gravity. Geol Soc Am Spec Pap 295:75–90.  https://doi.org/10.1130/SPE295-p75 CrossRefGoogle Scholar
  64. Lázaro C, García-Casco A, Rojas Agramonte Y, Kröner A, Neubauer F, Iturralde-Vinent M (2009) Fifty five million year history of oceanic subduction and exhumation at the northern edge of the Caribbean plate (Sierra del Convento mélange, Cuba). J Metamorph Geol 27(1):19–40CrossRefGoogle Scholar
  65. Leal-Mejia H, Shaw RP, Melgarejo JC (2018) Spatial/temporal migration of granitoid magmatisn and the phanerozoic tectono-magmatic evolution of the Colombian Andes. In: Cediel F and Shaw RP (eds). Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction, Springer, pp 253–397Google Scholar
  66. Le Fort P (1981) Manaslu leucogranite: a collision signature of the Himalaya, a model for its génesis and emplacemenr. J Geophys Res 86:10545–10568CrossRefGoogle Scholar
  67. Lidiak EG, Jolly WT (1996) Circum-Caribbean granitoids: characteristics and origin. Int Geol Rev 38:1098–1133CrossRefGoogle Scholar
  68. Macellari CE (1995) Cenozoic sedimentation and tectonics of the southwestern Caribbean pull-apart basin, Venezuela and Colombia. Pet Basins South Am 62:757–780Google Scholar
  69. Mann P (1997) Model for the formation of large, transtensional basins in zones of tectonic escape. Geology 25:211–214.  https://doi.org/10.1130/0091-7613(1997)025<0211:MFTFOL>2.3.CO;2 CrossRefGoogle Scholar
  70. Mann P, Rogers R, Gahagan L (2006) Overview of plate tectonic history and its unresolved tectonic problems. In: Bundschuh J, Alvarado GE (eds) Central america: geology, resources and hazards, vol 1. Leiden, Taylor and Francis/Balkema, pp 201–237Google Scholar
  71. Maresch WV, Kluge R, Baumann A, Pindell JL, Krückhans-Lueder G, Stanek K (2009) The occurrence and timing of high-pressure metamorphism on Margarita Island, Venezuela: a constraint on Caribbean-South America interaction. Geol Soc Lond, Spec Publ 328(1):705–741CrossRefGoogle Scholar
  72. Martin H, Moyen JF (2002) Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology 30:319–322.  https://doi.org/10.1130/0091-7613(2002)030<0319:SCITTG>2.0.CO CrossRefGoogle Scholar
  73. Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite^trondhjemite^granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24CrossRefGoogle Scholar
  74. Martínez J, Hernández R (1992) Evolution and drowning of the late Cretaceous Venezuelan carbonate platform. J S Am Earth Sci 5:197–210CrossRefGoogle Scholar
  75. Mauffret A, Leroy S (1997) Seismic stratigraphy and structure of the Caribbean igneous province. Tectonophysics 283:61–104.  https://doi.org/10.1016/S0040-1951(97)00103-0 CrossRefGoogle Scholar
  76. Maze WB (1984) Jurassic La Quinta Formation in the Sierra de Perijá, northwestern Venezuela: geology and tectonic environment of red beds and volcanic rocks. In: Bonini WE, Hargraves RB, Shagam R (eds) The Caribbean-South American plate boundary and regional tectonics, vol 162. Geological Society of America, Boulder, pp 263–282CrossRefGoogle Scholar
  77. Meschede M, Frisch W (1998) A plate-tectonic model for the mesozoic and early cenozoic history of the Caribbean plate. Tectonophysics 296:269–291.  https://doi.org/10.1016/S0040-1951(98)00157-7 CrossRefGoogle Scholar
  78. Miller JB (1962) Tectonic trends in the Sierra de Perijá and adjacent parts of Venezuela and Colombia. AAPG Bull 46:1565–1595Google Scholar
  79. Miller MS, Levander A, Niu FL, Li AB (2009) Upper mantle structure beneath the Caribbean-South American plate boundary from surface wave tomography. J Geophys Res Earth:B01312.  https://doi.org/10.1029/2007jb005507
  80. Montes C, Hatcher RD, Restrepo-Pace PA (2005) Tectonic reconstruction of the northern Andean blocks: oblique convergence and rotations derived from the kinematics of the Piedras-Girardot area, Colombia. Tectonophysics 399:221–250CrossRefGoogle Scholar
  81. Montes C, Guzman G, Bayona G et al (2010) Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería basins. J S Am Earth Sci 29:832–848.  https://doi.org/10.1016/j.jsames.2009.07.010 CrossRefGoogle Scholar
  82. Montes C, Bayona G, Cardona A, Buchs D, Silva C, Moron SE, Hoyos N, Ramirez DA, Jaramillo C, Valencia V (2012) Arc-continent collision and Orocline formation: closing of the Central American Seaway. J Geophys Res 117(B4):B04105Google Scholar
  83. Moore G, Carmichael I (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130:304.  https://doi.org/10.1007/s004100050367 CrossRefGoogle Scholar
  84. Mora A, Garcia A (2006) Cenozoic tectono-stratigraphic relationships between the Cesar Sub-Basin and the southeastern lower Magdalena Valley Basin of Northern Colombia. Search and Discovery 30046:1–11Google Scholar
  85. Mora A, Parra M, Strecker MR et al (2008) Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Bull Geol Soc Am 120:930–949.  https://doi.org/10.1130/B26186.1 CrossRefGoogle Scholar
  86. Mora A, Horton BK, Mesa A, Rubiano J, Ketcham RA, Parra M, Blanco V, Garcia D, Stockli DF (2010) Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: implications for petroleum systems. AAPG Bull 94(10):1543–1580CrossRefGoogle Scholar
  87. Mora-Bohórquez JA, Ibánez-Mejia M, Oncken O et al (2017) Structure and age of the Lower Magdalena Valley basin basement, northern Colombia: new reflection-seismic and U-Pb-Hf insights into the termination of the central andes against the Caribbean basin. J S Am Earth Sci 74:1–26.  https://doi.org/10.1016/j.jsames.2017.01.001 CrossRefGoogle Scholar
  88. Moyen JF, Martin H, Jayananda M, Auvray B (2003) Late Archaean granites: a typology based on the Dharwar Craton (India). In: Precambrian Research, pp 103–123Google Scholar
  89. Muessig KW (1984) Structure and Cenozoic tectonics of the Falcón Basin, Venezuela and adjacent areas. In: Bonini WE, Hargraves RB, Shagam R (eds) The Caribbean-South American plate boundary and regional tectonics, vol 162. Geological Society of America, BoulderGoogle Scholar
  90. Müller RD, Royer JY, Cande SC, Roest WR, Maschenkov S (1999) New constraints on the Late Cretaceous/Tertiary plate tectonic evolution of the Caribbean, Caribbean basins. Elsevier, Amsterdam, pp 33–59Google Scholar
  91. Nerlich R, Clark SR, Bunge HP (2014) Reconstructing the link between the Galapagos hotspot and the Caribbean plateau. Geo Res J 1–2:1–7.  https://doi.org/10.1016/j.grj.2014.02.001 CrossRefGoogle Scholar
  92. O’Connor J (1965) A classification for quartz-rich igneous rocks based on feldspar ratios. US Geological SurveyGoogle Scholar
  93. Oldow JS, Bally AW, Ave Lallemant HG (1990) Transpression, orogenic float, and lithospheric balance. Geology 18:991–994CrossRefGoogle Scholar
  94. Ostos M, Yoris F, Lallemant HGA (2005) Overview of the southeast Caribbean–South American plate boundary zone. Geol Soc Am Spec Pap 394:53–89Google Scholar
  95. Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American Plates since Late Cretaceous time. Tectonics 6:233–248.  https://doi.org/10.1029/TC006i003p00233 CrossRefGoogle Scholar
  96. Parnaud F, Gou Y, Pascual J, Capello MA, Truskowski I, Passalacqua H (1995) Stratigraphic synthesis of western Venezuela. Pet Basins South Am AAPG Mem no 62, pp 681–698Google Scholar
  97. Parra M, Mora A, Sobel ER et al (2009a) Episodic orogenic front migration in the northern Andes: constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics.  https://doi.org/10.1029/2008TC002423
  98. Parra M, Mora A, Jaramillo C et al (2009b) Orogenic wedge advance in the northern Andes: Evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. Bull Geol Soc Am 121:780–800.  https://doi.org/10.1130/B26257.1 CrossRefGoogle Scholar
  99. Pecerillo R, Taylor S (1976) Geochemistry of Eocene calk-alkaline volcanic rocks from the kastamonu area, Northem Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  100. Pindell JL (1993) Regional synopsis of Gulf of Mexico and Caribbean Evolution. Trans. GCSSEPM 13th Annu. Res. Conf, pp 251–274Google Scholar
  101. Pindell J, Dewey JF (1982) Permo-triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics 1(2):179–211CrossRefGoogle Scholar
  102. Pindell J, Kennan L (2007) Cenozoic kinematics and dynamics of oblique collision between two convergent plate margins: the Caribbean-South America collision in Eastern Venezuela, Trinidad and Barbados , Transactions of GCSSEPM, pp 458–553Google Scholar
  103. Pindell J, Kennan L (2009) Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geol Soc London 328:1–55.  https://doi.org/10.1144/SP328.1 CrossRefGoogle Scholar
  104. Pindell JL, Cande SC, Pitman WC et al (1988) A plate-kinematic framework for models of Caribbean evolution. Tectonophysics 155:121–138.  https://doi.org/10.1016/0040-1951(88)90262-4 CrossRefGoogle Scholar
  105. Pindell J, Kennan L, Maresch WV, Draper G (2005) Plate-kinematics and crustal dynamics of circum-Caribbean arc-continent interactions: tectonic controls on basin development in Proto-Caribbean margins. Geol Soc Am Spec Pap 394:7–52.  https://doi.org/10.1130/2005.2394(01) CrossRefGoogle Scholar
  106. Priem HNA, Beets DJ, Verdurmen ET (1986) Precambrian rocks in an early Tertiary conglomerate on Bonaire, Netherlands Antilles (southern Caribbean borderland): evidence for a 300 km eastward displacement relative to the South American mainland. Geol Mijnb 65(1):35–40Google Scholar
  107. Prouteau G, Scaillet B, Pichavant M, Maury R (2001) Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410:197–200CrossRefGoogle Scholar
  108. Quintero JD (2012) Interpretación sísmica de volcanes de lodo en la zona occidental del abanico del abanico del delta del río Magdalena, Caribe Colombiano, Tesis (pregrado), Universidad Eafit, 64 pGoogle Scholar
  109. Ratschbacher L, Franz L, Min M et al (2009) The North American-Caribbean Plate boundary in Mexico-Guatemala-Honduras. Geol Soc London, Spec Publ 328:219–293.  https://doi.org/10.1144/SP328.11 CrossRefGoogle Scholar
  110. Reiners PW, Shuster DL (2009) Thermochronology and landscape evolution. Phys Today 62:31–36.  https://doi.org/10.1063/1.3226750 CrossRefGoogle Scholar
  111. Reiners PW, Ehlers TA, Zeitler PK (2005) Past, present, and future of thermochronology. Rev Mineral Geochem 58:1–18.  https://doi.org/10.1016/j.jmig.2010.03.005 CrossRefGoogle Scholar
  112. Restrepo-Moreno SA, Foster DA, Stockli DF, Parra-Sánchez LN (2009) Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth Planet Sci Lett 278:1–2CrossRefGoogle Scholar
  113. Rodríguez C, Sellers D, Dungan M et al (2007) Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longav?? Volcano (36.2??S; Andean Southern Volcanic Zone, Central Chile). J Petrol 48:2033–2061.  https://doi.org/10.1093/petrology/egm049 CrossRefGoogle Scholar
  114. Salazar CA, Bustamante C, Archanjo CJ (2016) Magnetic fabric (AMS, AAR) of the Santa Marta batholith (northern Colombia) and the shear deformation along the Caribbean Plate margin. J S Am Earth Sci 70:55–68.  https://doi.org/10.1016/j.jsames.2016.04.011 CrossRefGoogle Scholar
  115. Sanchez J, Mann P (2015) Integrated structural and basinal analysis of the Cesar–Rancheria Basin, Colombia: implications for its tectonic history and petroleum systems. In: Bartolini C, Mann, P (Eds), Petroleum Geology and Potential of the Colombian Caribbean Margin, vol 108Google Scholar
  116. Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310.  https://doi.org/10.1007/BF00310745 CrossRefGoogle Scholar
  117. Silver PG, Russo RM, Lithgow-Bertelloni C (1998) Coupling of South American and African Plate motion and plate deformation. Science 80(279):60–63.  https://doi.org/10.1126/science.279.5347.60 CrossRefGoogle Scholar
  118. Sisson VB, Avé Lallemant HG, Sorensen SS (2008) Correlation of Eocene-Oligocene Exhumation around the Caribbean. Venezuela, Dominican Republic, Honduras, and Guatemala, Geological Society of America, Abstracts, pp 292–298Google Scholar
  119. Sorensen SS, Barton MD (1987) Metasomatism and partial melting in a subduction complex Catalina Schist, southern California. Geology 15(2):115–118CrossRefGoogle Scholar
  120. Spikings RA, Seward D, Winkler W, Ruiz GM (2000) Low-temperature thermochronology of the Northern Cordillera Real, Ecuador: tectonic insights from zircom and apatite fission track analysis. Tectonics 19:649–668.  https://doi.org/10.1029/2000TC900010 CrossRefGoogle Scholar
  121. Spikings RA, Winkler W, Seward D, Handler R (2001) Along-strike variations in the thermal and tectonic response of the continental Ecuadorian Andes to the collision with heterogeneous oceanic crust. Earth Planet Sci Lett 186:57–73.  https://doi.org/10.1016/S0012-821X(01)00225-4 CrossRefGoogle Scholar
  122. Spikings RA, Winkler W, Hughes RA, Handler R (2005) Thermochronology of allochthonous terranes in Ecuador: unravelling the accretionary and post-accretionary history of the Northern Andes. Tectonophysics 399:195–220.  https://doi.org/10.1016/j.tecto.2004.12.023 CrossRefGoogle Scholar
  123. Spikings RA, Crowhurst PV, Winkler W, Villagomez D (2010) Syn- and post-accretionary cooling history of the Ecuadorian Andes constrained by their in-situ and detrital thermochronometric record. J S Am Earth Sci 30:121–133.  https://doi.org/10.1016/j.jsames.2010.04.002 CrossRefGoogle Scholar
  124. Stearns C, Mauk FJ, Van der Voo R (1982) Late cretaceous-early tertiary paleomagnetism of Aruba and Bonaire (Netherlands Leeward Antilles). J Geophys Res Solid Earth 87(B2):1127–1141CrossRefGoogle Scholar
  125. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362.  https://doi.org/10.1016/0012-821X(77)90060-7 CrossRefGoogle Scholar
  126. Sun S, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond (Special Publication) 42:313–345CrossRefGoogle Scholar
  127. Tobisch OT, McNulty BA, Vernon RH (1997) Microgranitoid enclave swarms in granitic plutons, central Sierra Nevada, California. Lithos 40:321–339.  https://doi.org/10.1016/S0024-4937(97)00004-2 CrossRefGoogle Scholar
  128. Trenkamp R, Kellogg JN, Freymueller JT, Mora HP (2002) Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J S Am Earth Sci 15:157–171.  https://doi.org/10.1016/S0895-9811(02)00018-4 CrossRefGoogle Scholar
  129. Tschanz CM, Jimeno A, Cruz J (1969) Geology of the Santa Marta area (Colombia). Instituto Nacional de Investigaciones Geológico Mineras, Informe 1829, p 288Google Scholar
  130. Tschanz CM, Marvin RF, Cruz BJ, Menhert HH, Cebula GT (1974) Geologic Evolution of the Sierra Nevada de Santa Marta, Northeastern Colombia. Geol Soc Am Bull 85:273–284.  https://doi.org/10.1130/0016-7606(1974)85<273:GEOTSN>2.0.CO;2 CrossRefGoogle Scholar
  131. Vallejo C, Spikings RA, Luzieux L et al (2006) The early interaction between the Caribbean Plateau and the NW South American Plate. Terra Nov 18:264–269.  https://doi.org/10.1111/j.1365-3121.2006.00688.x CrossRefGoogle Scholar
  132. Van der Hilst R, Mann P (1994) Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology 22:451–454.  https://doi.org/10.1130/0091-7613(1994)022<0451:TIOTIO>2.3.CO;2 CrossRefGoogle Scholar
  133. Van Der Lelij R, Spikings RA, Kerr AC et al (2010) Thermochronology and tectonics of the Leeward Antilles: evolution of the southern Caribbean Plate boundary zone. Tectonics.  https://doi.org/10.1029/2009TC002654
  134. Vence E (2008) Subsurface structure, stratigraphy, and regional tectonic controls of the Guajira Margin of Northern Colombia [Master of Science]. The University of Texas at Austin, p 128Google Scholar
  135. Villagómez D, Spikings R, Mora A et al (2011) Vertical tectonics at a continental crust-oceanic plateau plate boundary zone: fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics.  https://doi.org/10.1029/2010TC002835
  136. Villaseca C, Barbero L, Rogers G (1998) Crustal origin of Hercynian peraluminous granitic batholiths of Central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos 43(2):55–79CrossRefGoogle Scholar
  137. Weber MBI, Cardona A, Paniagua F et al (2009) The Cabo de la Vela Mafic-Ultramafic Complex, Northeastern Colombian Caribbean region: a record of multistage evolution of a Late Cretaceous intra-oceanic arc. Geol Soc London (Spec Publ) 328:549–568.  https://doi.org/10.1144/SP328.22 CrossRefGoogle Scholar
  138. Weber M, Cardona A, Valencia V et al (2011) Geochemistry and geochronology of the guajira eclogites, northern Colombia: evidence of a metamorphosed primitive cretaceous caribbean Island-arc. Geol Acta 9:425–443.  https://doi.org/10.1344/105.000001740 CrossRefGoogle Scholar
  139. Wilson M (1989) Igneous petrogénesis. A global tectonic approach. Chapman and Hall, London, p 421​Google Scholar
  140. Winter JD (2001) An introduction to igneous and metamorphic petrology. Prentice Hall, London, p 697Google Scholar
  141. Winther KT (1996) An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem Geol 127:43–59.  https://doi.org/10.1016/0009-2541(95)00087-9 CrossRefGoogle Scholar
  142. Yarce J, Monsalve G, Becker TW et al (2014) Seismological observations in Northwestern South America: evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics 637:57–57.  https://doi.org/10.1016/j.tecto.2014.09.006 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José F. Duque-Trujillo
    • 1
  • Teresa Orozco-Esquivel
    • 2
  • Carlos Javier Sánchez
    • 1
  • Andrés L. Cárdenas-Rozo
    • 1
  1. 1.Earth Sciences DepartmentEAFIT UniversityMedellínColombia
  2. 2.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoQuerétaroMexico

Personalised recommendations