Advertisement

Lasers for Adipose Tissue and Cellulite

  • Molly WannerEmail author
  • Mathew M. Avram
Chapter

Abstract

The use of lasers and light devices for the removal of adipose tissue and cellulite represents a new and exciting frontier in the laser field. To date, there are few non-invasive devices in the laser field all of which can only claim limited efficacy. This chapter will review the laser, light sources, as well as devices with radiofrequency and ultrasound devices that currently purport to treat cellulite or adipose tissue.

Keywords

Adipose tissue Cellulite Laser Radiofrequency Ultrasound Coolsculpting 

References

  1. 1.
    Harvey RA, Champe PC. Fatty acid and triacyglycerol metabolism. Lippincott’s illustrated reviews: biochemisty. 2nd ed. Philadelphia: JB Lippincott Company; 1994.Google Scholar
  2. 2.
    Manstein D, et al. Selective Cryolipolysis: a novel method of non-invasive fat removal. Lasers Surg Med. 2008;40:595–604.PubMedCrossRefGoogle Scholar
  3. 3.
    Zelickson B, et al. Cryolipolysis for non invasive cell destruction: results from a pig model. Dermatol Surg. 2009;35:1462–70.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Dover J, Burns J, Coleman S et al. A prospective clinical study of noninvasive cryolipolysis for subcutaneous fat reduction-Interim report of available subject data. Presented at ASLMS, April 2009, National Harbor, MD.Google Scholar
  5. 5.
    Avram M, Harry RS. Cryolipolysis for subcutaneous fat layer reduction. Lasers Surg Med. 2009;41:703–8.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Shek SY, Chan NPY, Chan HH. Non-invasive cryolipolysis for body contouring in Chinese – a first commercial experience. Lasers Surg Med. 2012;44:125–30.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Klein KB, et al. Non-invasive cryolipolysis for subcutaneous fat does not affect serum lipid levels or liver function tests. Lasers Surg Med. 2009;41:785–90.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Brightman L, Geronemus R. Can second treatment enhance clinical results in cryolipolysis? Cosmet Dermatol. 2011;24:85–8.Google Scholar
  9. 9.
    Boey G, Wasilenchuk J, Preciado J. Effect of post-treatment manual massage on efficacy following a cryolipolysis procedure. Presented at ASLMS 2012.Google Scholar
  10. 10.
    Coleman SR, et al. Clinical efficacy of noninvasive cryolipolysis and its effects on peripheral nerves. Aesthet Plast Surg. 2009;33:482–8.CrossRefGoogle Scholar
  11. 11.
    Dover J, Saedi N, Kaminer M, Zachary C. Side effects and risks associated with cryolipolysis. Lasers Surg Med. 2011;43:928.Google Scholar
  12. 12.
    Post marketing information from company through 12/31/2012.Google Scholar
  13. 13.
    Jalian HR, Avram MM, Garibyan L, Mihm MC, Anderson RR. Paradxoical hyperplasia after cyrolipolysis. JAMA Dermatol. 2014;150:317–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jewell ML, et al. Randomized sham-controlled trial to evaluate the safety and effectiveness of a high-intensity focused ultrasound device for noninvasive body sculpting. Plast Recontr Surg. 2011;128:253–62.CrossRefGoogle Scholar
  15. 15.
    Fatemi A. High-intensity focused ultrasound effectively reduces adipose tissue. Semin Cutan Med Surg. 2009;28(4):257–62.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Gadsen E, et al. Evaluation of a novel high intensity focused ultrasound device for ablating subcutaneous adipose tissue for noninvasive body contouring safety studies in human volunteers. Aesthet Surg J. 2011;31:401–10.CrossRefGoogle Scholar
  17. 17.
    Fatemi A, Kane MAC. High intensity focused ultrasound effectively reduces waist circumference by ablating adipose tissue from the abdomen and flanks. Aesthet Plast Surg. 2010;34:577–82.CrossRefGoogle Scholar
  18. 18.
    Moreno-Moraga J, Valero-Altes T, Martinez Riquelme A, et al. Body contouring by non-invasive transdermal focused ultrasound. Lasers Surg Med. 2007;39:315–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Teitelbaum SA, Burns JL, Kubota J, et al. Noninvasive body contouring by focused ultrasound: safety and efficacy of the contour I device in a multicenter, controlled, clinical trial. Plast Reconstr Surg. 2007;120:779–89.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hotta TA. Nonsurgical body contouring with focused ultrasound. Plast Surg Nursing. 2010;30:77–82.CrossRefGoogle Scholar
  21. 21.
    Ascher B. Safety and efficacy of UltraShape Contour I treatments to improve the appearance of body contours: multiple treatments in shorter intervals. Aesthet Surg J. 2010;30:217–24.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Shek S, et al. The use of focused ultrasound for non-invasive body contouring in Asians. Lasers Surg Med. 2009;41:751–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin HR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2011;2:516–33.Google Scholar
  24. 24.
    Neira R, Toledo L, Arroyave J, et al. Low-level laser-assisted liposuction: the Neira 4L Technique. Clin Plast Surg. 2005;33:117–27.CrossRefGoogle Scholar
  25. 25.
    Neira R, Arroyave J, Ramirez H, et al. Fat liquefaction: effect of low-level laser energy on adipose tissue. Plast Reconstr Surg. 2002;110:912–22.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Neira R, Jackson R, Dedo D, Ortiz CL, Arroyave JA. Low-level laser-assisted lipoplasty appearance of fat demonstrated by MRI on abdominal tissue. Am J Cosmet Surg. 2001;18:133–40.CrossRefGoogle Scholar
  27. 27.
    Brown SA, Rohrich RJ, Kenkel J, et al. Effect of low-level laser therapy on abdominal adipocytes before lipoplasty procedures. Plast Reconstr Surg. 2004;113:1796–804.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Medrano AP, Trindade E, Reis SRA, et al. Action of the low-level laser therapy on living fatty tissue of rats. Lasers Med Sci. 2006;21:19–23.CrossRefGoogle Scholar
  29. 29.
    Jackson RF, et al. Low level laser therapy as a non invasive approach for body contouring: a randomized, controlled study. Lasers Surg Med. 2009;41:799–809.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Nestor M, et al. Effect of 635 nm low level laser therapy on upper arm circumference: a double-blind, randomized, sham-controlled trial. J Clin Aesthet Dermatol. 2012;5:42–8.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Jackson RF, et al. Application of low level laser therapy for noninvasive body contouring. Lasers Surg Med. 2012;44:211–7.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    McRae E, Boris J. Independent evaluation of LLLT at 635 nm for non-invasive body contuoring of waist, hips, and thighs. Lasers Surg Med. 2013;45:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Elm CML, et al. Efficacy of a multiple diode laser system for body contouring. Lasers Surg Med. 2011;43:114–21.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    De Felipe I, et al. Animal model to explain fat atrophy using nonablative radiofrequency. Dermatol Surg. 2007;33:141–5.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Weiss R, Weiss M, Beasley K, et al. Operator independent focused high frequency ISM band for fat reduction: porcine model. Lasers Surg Med. 2013;45:235–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Fajkosova K, Machovcova A, Onder A, Fritz K. Selective radiofrequency therapy as a non invasive approach for contactless body contouring and circumferential reduction. J Drugs Dermatol. 2014;13:291–6.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Berankovaa B, Simotova P. Evaluation of non invasive body sculpting method based on novel efficient application of high frequency energy administered to human adipose tissue. J Czecho-Slovak Assoc Anti-Aging Med. 2009;2:21.Google Scholar
  38. 38.
    Anderson RR, Farinelli W, Laubach H, et al. Selective photothermolysis of lipid-rich tissues: a free electron laser study. Lasers Surg Med. 2006;38(10):913–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Badin AEZD, Gondek LBE, Garcia MJ, et al. Analysis of laser lipolysis effects on human tissue samples obtained from liposuction. Aesthet Plast Surg. 2005;29:281–6.CrossRefGoogle Scholar
  40. 40.
    Ichikawa K, Miyasaka M, Tanaka R, et al. Histologic evaluation of the pulsed Nd:YAG laser for laser lipolysis. Lasers Surg Med. 2005;36:43–6.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Prado A, Andrades P, Danilla S, et al. A prospective, randomized, double-blind, controlled clinical trial comparing laser-assisted lipoplasty with suction-assisted lipoplasty. Plast Reconstr Surg. 2006;118:1032–45.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Apfelberg DB. Results of multicenter study of laser-assisted liposuction. Clin Plast Surg. 1996;23:713–9.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Goldman A, Schavelzon DE, Blugerman GS. Laserlipolysis: liposuction using Nd-YAG laser. Rev Soc Bras Cir Plást. 2002;17:17–26.Google Scholar
  44. 44.
    Kim KH, Geronemus RG. Laser lipolysis using a novel 1,064 nm Nd:YAG laser. Dermatol Surg. 2006;32:241–8.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Badin AZD, Moraes LM, Gondek L, et al. Laser lipolysis: flaccidity under control. Aesthet Plast Surg. 2002;26:335–9.CrossRefGoogle Scholar
  46. 46.
    Goldman A. Submental Nd:YAG laser-assisted liposuction. Lasers Surg Med. 2006;38:181–4.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Neira R, Ortiz C. Low level laser assisted liposculpture: clinical report of 700 cases. Aesthet Surg J. 2002;22:451–5.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Jackson RF, Roche G, Butterwick KJ, Dedo DD, Slattery KT. Low lever laser-assisted liposuction: a 2004 clinical study of its effectiveness for enhancing ease of liposuction procedures and facilitating the recovery process for patients undergoing thigh, hip, and stomach contouring. Am J Cosmet Surg. 2004;21:191–8.CrossRefGoogle Scholar
  49. 49.
    Silberg B. The technique of external ultrasound-assisted lipoplasty. Plast Reconstr Surg. 1998;101:552.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Silberg B. The use of external ultrasound assist with liposuction. Aesthet Surg J. 1998;18:284–5.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kinney B. Body contouring with external ultrasound. Plast Reconstr Surg. 1999;103:728–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Rosenberg GJ, Cabrera RC. External ultrasonic lipoplasty: an effective method of fat removal and skin shrinkage. Plast Reconstr Surg. 2000;105:785–91.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wilkinson TS. External ultrasound-assisted lipoplasty. Aesthet Surg J. 1999;19:124–9.CrossRefGoogle Scholar
  54. 54.
    Cook WR. Utilizing external ultrasonic energy to improve the results of tumescent liposculpture. Dermatol Surg. 1997;23:1207–11.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Havoonjian HH, Luftman DB, Menaker GM, Moy RL. External ultrasonic tumescent liposuction. Dermatol Surg. 1997;23:1201–6.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Mendes FH. External ultrasound-assisted lipoplasty from our own experience. Aesthet Plast Surg. 2000;24:270–4.CrossRefGoogle Scholar
  57. 57.
    Lawrence N, Cox SE. The efficacy of external ultrasound-assisted liposuction: a randomized controlled trial. Dermatol Surg. 2000;26:329–32.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Zocchi M. Ultrasonic liposculpturing. Aesthet Plast Surg. 1992;16:287–98.CrossRefGoogle Scholar
  59. 59.
    Tebbets JB. Minimizing complications of ultrasound-assisted lipoplasty: an initial experience with no related complications. Plast Reconstr Surg. 1998;102:1690–7.CrossRefGoogle Scholar
  60. 60.
    Scuderi N, Paolini G, Grippaudo FR, et al. Comparative evaluation of traditional, ultrasonic, and pneumatic assisted lipoplasty: analysis of local and systemic effects, efficacy, and costs of these methods. Aesthet Plast Surg. 2000;24:395–400.CrossRefGoogle Scholar
  61. 61.
    Maxwell PG, Gingrass MK. Ultrasound-assisted lipoplasty: a clinical study of 250 consecutive patients. Plast Reconstr Surg. 1998;101:189–202.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Fodor PB, Watson J. Personal experience with ultrasound-assisted lipoplasty: a pilot study comparing ultrasound-assisted lipoplasty with traditional lipoplasty. Plast Reconstr Surg. 1998;101:1103–16.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kloehn RA. Liposuction with “sonic sculpture”: six years experience with more than 600 patients. Aesthet Surg Q. 1996;16:123–8.CrossRefGoogle Scholar
  64. 64.
    Adamo C, Mazzocchi M, Rossi A, et al. Ultrasonic liposculpturing: extrapolations from the analysis of in vivo sonicated adipose tissue. Plast Reconstr Surg. 1997;100:220–6.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kenkel J, Robinson JB, Beran SJ, et al. The tissue effects of ultrasound-assisted lipoplasty. Plast Reconstr Surg. 1998;102:213–20.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Igra H, Satur NM. Tumescent liposuction versus internal ultrasonic-assisted tumescent liposuction. Dermatol Surg. 1997;23:1213–8.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Rohrich RJ, Beran SJ, Kenkel JM, et al. Extending the role of liposuction in body contouring with ultrasound-assisted liposuction. Plast Reconstr Surg. 1998;101:1090–102.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Cedidi CC, Berger A. Severe abdominal wall necrosis after ultrasound-assisted liposuction. Aesthet Plast Surg. 2002;26:20–2.CrossRefGoogle Scholar
  69. 69.
    Scheflan M, Tazi H. Ultrasonically assisted body contouring. Aesthet Surg Q. 1996;16:117–22.CrossRefGoogle Scholar
  70. 70.
    Gupta SC, Khiabani KT, Stephenson LL, et al. Effect of liposuction on skin perfusion. Plast Reconstr Surg. 2002;110:1748–51.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ablaza VJ, Gingrass MK, Perry LC, et al. Tissue temperatures during ultrasound-assisted lipoplasty. Plast Reconstr Surg. 1998;102:534–42.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Trott SA, Rohrich RJ, Beran SJ, et al. Sensory changes after traditional and ultrasound-assisted liposuction using computer-assisted analysis. Plast Reconstr Surg. 1999;103:2016–25.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Howard BK, Beran SJ, Kenkel JM, et al. The effects of ultrasonic energy on peripheral nerves: implications for ultrasound-assisted liposuction. Plast Reconstr Surg. 1999;103:984–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Avram MM. Cellulite: a review of its physiology and treatment. J Cosmet Laser Ther. 2004;7:181–5.CrossRefGoogle Scholar
  75. 75.
    Curri SB. Cellulite and fatty tissue microculation. Cosmet Toiletries. 1993;108:51–8.Google Scholar
  76. 76.
    van Vliet M, Ortiz A, Avram MM, et al. An assessment of traditional and novel therapies for cellulite. J Cosmet Laser Ther. 2005;7(1):7–10.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Draelos ZD. The disease of cellulite. J Cosmet Dermatol. 2005;4:221–2.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Nurnberger F, Muller G. So called cellulite: an invented disease. J Dermatol Surg Oncol. 1978;4:221–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Rossi ABR, Vergnanini AL. Cellulite: a review. J Eur Acad Dermatol Venereol. 2000;14:251–62.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Kligman AM. Cellulite: facts and fiction. J Geriatr Dermatol. 1997;5:136–9.Google Scholar
  81. 81.
    Iyer S, Carranza D, Kolodney M, et al. Evaluation of procollagen I deposition after intense pulsed light treatments at varying parameters in a porcine model. J Cosmet Laser Ther. 2007;9:75–8.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Goldberg DJ. New collagen formation after dermal remodeling with an intense pulsed light source. J Cutan Laser Ther. 2000;2:59–61.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Fink JS, Mermelstein H, Thomas A, et al. Use of intense pulsed light and a retinyl-based cream as a potential treatment for cellulite: a pilot study. J Cosmet Dermatol. 2006;5:254–62.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Sasaki GH, Oberg K, Tucker B, et al. The effectiveness and safety of topical PhotoActif phosphatidylcholine based anti-cellulite gel and LED (red and near-infrared) light on Grade II–III high cellulite: a randomized, double-blinded study. J Cosmet Laser Ther. 2007;9:87–96.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bousquet-Rouaud R, et al. High frequency ultrasound evaluation of cellulite treated with the 1064 nm Nd:YAG laser. J Cosmet Laser Ther. 2009;11:34–44.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Rosenbaum M, Prieto V, Johan H, Boschmann M, Krueger J, Leibel R, Ship A. An exploratory investigation of the morphology and biochemistry of cellulite. Plast Reconstr Surg. 1998;101:1934–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Pierard G, Nizet JL, Claudine P-F. Cellulite: from standing fat herniation to hypodermal stretch marks. Am J Dermatopathol. 2000;22:34–7.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Curri SB, Bombardelli E. Proposed etiology and therapeutic management of local lipodystrophy and districtual microcirculation. Cosmet Toiletries. 1994;109:51–65.Google Scholar
  89. 89.
    Boyce S, Pabby A, Chuchaltkaren P, et al. Clinical evaluation of a device for the treatment of cellulite: Triactive. Am J Cosmet Surg. 2005;22:233–7.CrossRefGoogle Scholar
  90. 90.
    Nootheti PK, Magpantay A, Yosowitz G, et al. A single center, randomized, comparative, prospective clinical study to determine efficacy of the Velasmooth system versus the Triactive system for the treatment of cellulite. Lasers Surg Med. 2006;38:908–12.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Lach E. Reduction of subcutaneous fat and improvement in cellulite appearance by dual-wavelength, low-level laser energy combined with vacuum and massage. J Cosmet Laser Ther. 2008;10(4):202–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Kulick MI. Evaluation of a noninvasive, dual-wavelength laser-suction and massage device for the regional treatment of cellulite. Plast Reconstr Surg. 2010;125(6):1788–96.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Gold MH, et al. Reduction in thigh circumference and improvement in the appearance of cellulite with dual-wavelength, low-level laser energy. J Cosmet Laser Ther. 2011;13:13–20.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Manuskiatti W, et al. Circumference reduction and cellulite treatment with Tripollar radiofrequency device: a pilot study. J Eur Acad Dermatol Venereol. 2009;23:820–7.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Mlosek RK, Woźniak W, Malinowska S, Lewandowski M, Nowicki A. The effectiveness of anticellulite treatment using tripolar radiofrequency monitored by classic and high-frequency ultrasound. J Eur Acad Dermatol Venereol. 2012;26(6):696–703.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Sadick NS, Mulholland RS. A prospective clinical study to evaluate the efficacy and safety of cellulite treatment using the combination of optical and RF energies for subcutaneous tissue heating. J Cosmet Laser Ther. 2004;6(4):187–90.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Sadick NS, Magro C. A study evaluating the safety and efficacy of the Velasmooth™system in the treatment of cellulite. J Cosmet Laser Ther. 2007;9:15–20.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Alster TS, Tanzi EL. Cellulite treatment using a novel combination readiofrequency, infrared light, and mechanical tissue manipulation device. J Cosmet Laser Ther. 2005;7:81–5.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Kulick M. Evaluation of the combination of radio frequency, infrared energy and mechanical rollers with suction to improve skin surface irregularities (cellulite) in a limited treatment area. J Cosmet Laser Ther. 2006;8:185–90.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Waniphakdeedecha R, Manuskiatti W. Treatment of cellulite with a bipolar radiofrequency, infrared heat, and pulsatile suction device. J Cosmet Dermatol. 2006;5:284–8.CrossRefGoogle Scholar
  101. 101.
    Pino ME, Rosado RH, Azuela A, et al. Effect of controlled volumetric tissue heating with radiofrequency on cellulite and the subcutaneous tissue of the buttocks and thighs. J Drugs Dermatol. 2006;5:714–22.Google Scholar
  102. 102.
    Goldberg D, et al. Clinical, laboratory, and MRI analysis of cellulite treatment with unipolar radiofrequency device. Dermatol Surg. 2007;34:204–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Alexiaders-Armenakas M, et al. Unipolar radiofrequency treatment to improve the appearance of cellulite. J Cosmet Laser Ther. 2008;10:148–53.CrossRefGoogle Scholar
  104. 104.
    DiBernardo BE. Treatment of Cellulite using a 1440-nm pulsed laser with one year follow up. Aesthet Surg J. 2011;31:328–41.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    DiBernardo B, Sasaki G, Katz BE, Hunstad JP, Petti C, Burns AJ. A multicenter study for a single, three-step laser treatment for cellulite using a 1440-nm Nd:YAG laser, a novel side-firing fiber, and a temperature-sensing cannula. Aesthet Surg J. 2013;33(4):576–84.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Dermatology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations