An Introduction to Nanomaterials

  • Fatma Hadef
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 14)


Nanotechnology can be defined as the systematic study of materials that have properties critically dependant on length scales on the order of nanometers. Such novel and improved properties make nanoscale materials promising candidates for a wide range of applications that are expected to improve our lifestyles. Here, I review different aspects of nanotechnology. This paper describes first, definitions and classifications of nanomaterials reported in published research works. Then, I disscuss the most enhanced properties of manufactured nanomaterials. This will be followed by a description of the synthesis methods being used to obtain nanostructured materials. Nanotechnology applications in the energy, environment, nanomedicine, sensors, nanoelectronics, textile, food and agriculture fields are discussed in the last section.


Nanostructures Nanotechnology Natural nanomaterials Classification Atomic structure Grain boundaries Surface area Manufacturing technologies Enhanced properties Potentiel applications 



This work was supported by the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, Algeria.


  1. Aparajita V, Ravinkumar P (2014) Liposomes as carriers in skin ageing. Int J Curr Pharm Res 6:1–7Google Scholar
  2. Abdelsalam HA, Abdelaziz AY (2014) The smart grid state of the art and future trends. Electr Power Components Syst 42:306–314.
  3. Adeosun SO, Lawal GI, Balogun SA, Akpan EI (2012) Review of green polymer nanocomposites. J Miner Mater Charact Eng 11:385–416. CrossRefGoogle Scholar
  4. Ajayan PM (2000) Carbon nanotubes. In: Singh Nalwa H (ed) Handbook of nanostructured materials and nanotechnology. Academic, New York. CrossRefGoogle Scholar
  5. Akbarzadeh A, Mohamad Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144. CrossRefGoogle Scholar
  6. Alexander M (1973) Nonbiodegradable and other racalcitrant molecules. Biotechnol Bioeng 15:611–647. CrossRefGoogle Scholar
  7. Alivisatos P, Cummings P, De Yoreo J, Fichthorn K, Gates B, Hwang R, Lowndes D, Majumdar A, Michalske T, Misewich J, Murray C, Sibener S, Teague C, Williams E (2005) Nanoscience research for energy needs. Report of the March 2004 national nanotechnology initiative grand challenge workshop second edition, June 2005Google Scholar
  8. Allsopp M, Walters A, Santillo D (2007) GRL-TN-09-2007. Green peace Research Laboratories. Technical Note 09/2007Google Scholar
  9. Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:825910. CrossRefGoogle Scholar
  10. Anandhan S, Bandyopadhyay S (2011) Polymer nanocomposites: from synthesis to applications. In: Cuppoletti J (ed) Nanocomposites and polymers with analytical methods. InTech. Available online at: Google Scholar
  11. Andrews D, Scholes G, Wiederrecht G (2010) Comprehensive nanoscience and technology. Academic, New YorkGoogle Scholar
  12. Antoniammal P, Arivuoli D (2012) Size and shape dependence on melting temperature of gallium nitride nanoparticles. J Nanomater 2012:415797. CrossRefGoogle Scholar
  13. Anwar S (2013) Nanoelectronics research and commercialization in the United States. In: Mohammad RI, Ahmadi T, Anwar A (eds) Advanced nanoelectronics. CRC Press, New YorkGoogle Scholar
  14. Aouada FA, de Moura MR (2015) Nanotechnology applied in agriculture: controlled release of agrochemicals. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Cham. CrossRefGoogle Scholar
  15. Appel P, Dubbert W, Schwirn K, Völker D, Winde C, Zietlow B, Dessau-Roßlau (2013) Available online at:
  16. Aristotle (350 B.C.) (1918) Historia animalium, historia animalium (trans: Thomson DAW). Clarendon, OxfordGoogle Scholar
  17. Arivalagan K, Ravichandran S, Rangasamy K, Karthikeyan E (2011) Nanomaterials and its potential applications. Int J ChemTech Res 3:534–538Google Scholar
  18. Asmatulu R, Asmatulu E, Zhang B (2010) Nanotechnology and nanoethics in engineering education. In: Proceedings of the 2010 midwest section conference of the American Society for Engineering Education, Lawrence, KS, September 22–24, 2010Google Scholar
  19. Bader SD, Buchanan KS, Chung SH, Guslienko KY, Hoffmann A, Ji Y, Novosad V (2007) Issues in nanomagnetism. Superlattice Microst 41:72–80. CrossRefGoogle Scholar
  20. Bahrami A (2007) Technology review. Available online at:
  21. Balaz P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin. CrossRefGoogle Scholar
  22. Bandyopadhyay KK, Hati KM, Singh R (2009) Management options for improving soil physical environment for sustainable agricultural production: a brief review. J Agric Phys 9:1–8Google Scholar
  23. Bao Z, Liu X, Liu Y, Liu H, Zhao K (2016) Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian J Pharm Sci 11:349–364. CrossRefGoogle Scholar
  24. Barakat N, Jiao H (2011) Nanotechnology integration to enhance undergraduate engineering education. In: Bernardino J, Quadrado JC (eds) WEE2011, September 27–30, 2011, Lisbon, pp 623–630Google Scholar
  25. Bashir S, Liu J (2015) Advanced nanomaterials and their applications in renewable energy. Elsevier, Waltham. CrossRefGoogle Scholar
  26. Bedanta S, Kleemann W (2009) Supermagnetism. J Phys D Appl Phys 42:013001. CrossRefGoogle Scholar
  27. Berger M (2012) NASA and nanotechnology. Available online at:
  28. Binnig G, Rohrer H (1986) Scanning tunneling microscopy. IBM J Res Dev 30:355–369Google Scholar
  29. Blackwelder B (2007) In: de S. Cameron NM, Mitchell ME (eds) Nanoscale: issues and perspectives for the nano centry. Wiley, Hoboken. CrossRefGoogle Scholar
  30. Bowles J, Jackson M, Chen A, Solheid P (2009) Interpretation of low-temperature data Part I: Superparamagnetism and paramagnetism. IRM Q 19:3Google Scholar
  31. Brinker JC, Ginger D (2011) Nanotechnology for sustainability: energy conversion, storage, and conservation. In: Roco MC, Hersam MC, Mirkin CA (eds) Nanotechnology research directions for societal needs in 2020. Springer, New York, pp 261–303CrossRefGoogle Scholar
  32. Brinker CJ, Scherer G (1990) The physics and chemistry of sol–gel processing. Academic, San DiegoGoogle Scholar
  33. Brown WF Jr (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130:1677–1686. CrossRefGoogle Scholar
  34. Butler JS, Sadler PJ (2013) Targeted delivery of platinum-based anticancer complexes. Curr Opin Chem Biol 17:175–188. CrossRefGoogle Scholar
  35. Cai D, Wu Z, Jiang J, Wu Y, Feng H, Brown IG, Chu PK, Yu Z (2014) Controlling nitrogen migration through micro-nano networks. Sci Rep 14:3665. CrossRefGoogle Scholar
  36. Cano-Sarmiento C, Alamilla-Beltrán L, Azuara-Nieto E, Hernández-Sánchez H, Téllez-Medina DA, Jiménez-Martínez C, Gutiérrez-López GF (2015) High shear methods to produce nano-sized food related to dispersed systems. In: Hernández-Sánchez H, Gutiérrez-López GF (eds) Food nanoscience and nanotechnology, food engineering series. Springer, New York. CrossRefGoogle Scholar
  37. Cao G, Wang Y (2011) Nanostructures and nanomaterials: synthesis, properties, and applications, vol 2. World Scientific, LondonCrossRefGoogle Scholar
  38. Cefic (2012) Chemistry making a world of difference European Chemical Industry Council – Cefic aisbl. Available online at:
  39. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35. CrossRefGoogle Scholar
  40. Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6:3483–3507. CrossRefGoogle Scholar
  41. Chang KH, Bruins EEW, Reinhoudt DN (2007) Strategic research agenda and nanotechnology. Available online at:
  42. Charitidis CA, Georgiou P, Koklioti MA, Trompeta AF, Markakis V (2014) Manufacturing nanomaterials: from research to industry. Manuf Rev 1:11. CrossRefGoogle Scholar
  43. Chaudhry Q, Groves K (2010) Nanotechnology applications for food ingredients, additives and supplements. In: Chaudhry Q, Castle L, Watkins R (eds) Nanotechnologies in food. RSC Publishing, CambridgeCrossRefGoogle Scholar
  44. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:241–258. CrossRefGoogle Scholar
  45. Chauhan H, Prasad D (2017) Nanofood materials characteristics and evaluations. In: Sen S, Pathak Y (eds) Nanotechnology in neutraceuticals, production to consumption. CRC Press, Boca RatonGoogle Scholar
  46. Chellammal S (2013) PhD theis, ChennaiGoogle Scholar
  47. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594. CrossRefGoogle Scholar
  48. Cherusseri J, Kar KK (2015) Based on carbon nanomaterials and electronically conducting polymers. In: Mohanty S, Nayak SK, Kaith BS, Kalia S (eds) Polymer nanocomposites based on inorganic and organic nanomaterials. Scrivener Publishing LLC, Salem, pp 229–256Google Scholar
  49. Chhipa H, Joshi P (2016) Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Ranjan S, Dasgupta N, Lichfouste E (eds) Nanoscience in food and agriculture, Sustainable Agriculture Reviews 20, vol 1. Springer, Cham. CrossRefGoogle Scholar
  50. Cholet S, Joachim C, Martinez JP, Rousset B (1999) Fabrication of co-planar metall-insulator-metal nanojunction down to 5 nm. Eur Phys J Appl Phys 8:139–145. CrossRefGoogle Scholar
  51. Chowdhury P, Gogoi M, Das S, Zaman A, Hazarika P, Borchetia S, Bandyopadhyay T (2016) Intellectual property rights for nanotechnology in agriculture. In: Ranjan S, Dasgupta N, Lichfouste E (eds) Nanoscience in food and agriculture, Sustainable Agriculture Reviews 21, vol 2. Springer, Cham. CrossRefGoogle Scholar
  52. Cirillo G, Hampe S, Spizzirri UG, Parisi OI, Picci N, Iemma F (2014) Carbon nanotubes hybrid hydrogels in drug delivery: a perspective review. BioMed Res Int. Article ID 825017.
  53. Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015. CrossRefGoogle Scholar
  54. Connell MJ (2006) Carbon nanotubes: properties and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  55. Cornell LR, Heally N (2005) What is nanotechnology? Georgia Tech, June 2005. Available online at:
  56. Dahman Y, Le D, Niznik N, Sadyathasan (2017) Nanotechnology and functional materials for engineers. Elsevier. CrossRefGoogle Scholar
  57. Dai L, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 23:1130–1166. CrossRefGoogle Scholar
  58. Daniszewska A, Łojkowski W, Fecht H, Kurzydlowski KJ, Narkiewicz U, Salishchev GA, Zehetbauer MJ, Kulczyk M, Chmielecka M, Kuzmenko D (2006) Metallic nano-materials and nanostructures: development of technology roadmap. Solid State Phenom 114:345–350. CrossRefGoogle Scholar
  59. Daryoush B, Darvish A (2013) A case study and review of nanotechnology and nanomaterials in green architecture. Res J Environ Earth Sci 5:78–84Google Scholar
  60. Das S, Banerjee S, Sinha TP (2016) Structural and AC conductivity study of CdTe nanomaterials. Phys E 78:73–78. CrossRefGoogle Scholar
  61. Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400. CrossRefGoogle Scholar
  62. Dasgupta N, Ranjan S, Chakraborty AR, Ramalingam C, Shanker R, Kumar A (2016) Nanoagriculture and water quality management. In: Ranjan S, Dasgupta N, Lichfouste E (eds) Nanoscience in food and agriculture, Sustainable Agriculture Reviews 20, vol 1. Springer, Cham. CrossRefGoogle Scholar
  63. David SS (2002) Nanoparticle-based permanent treatments for textiles. United State Patent, No 6, 607: 994Google Scholar
  64. De la Luz-Asunción M, Sánchez-Mendieta V, Martínez-Hernández AL, Castaño VM, Velasco-Santos C (2015) Adsorption of phenol from aqueous solutions by carbon nanomaterials of one and two dimensions: kinetic and equilibrium studies. J Nanomater 2015:405036. CrossRefGoogle Scholar
  65. De Rogatis L, Montini T, Gombac V, Cargnell M, Fornasiero P (2008) Stabilized metal nanoparticles embedded into porous oxides: a challenging approach for robust catalysts. In: Prescott WV, Schwartz AI (eds) Nanorods, nanotubes and nanomaterials research progress. Nova Science Publishers, NewYork, pp 71–123Google Scholar
  66. Dhingra R, Naidu S, Upreti G, Sawhney R (2010) Sustainable nanotechnology: through green methods and life-cycle thinking. Sustainability 2:3323–3338. CrossRefGoogle Scholar
  67. Diederich F, Ettl R, Rubin Y, Whetten RL, Beck R, Alvarez M, Koch A (1991) The higher fullerenes: isolation and characterization of C76, C84, C90, C94, and C70, an oxide of D5h-C70. Science 252:548–551CrossRefGoogle Scholar
  68. Donatella D, Clara S, Marilena P, Sossio C, Antonella M (2013) Polypropylene and polyethylene-based nanocomposites for food packaging applications. In: Ecosustainable polymer nanomaterials for food packaging. CRC Press, pp 143–168Google Scholar
  69. Drexler KE (1986) Engines of creation: the coming era of nanotechnology. Anchor Press/Doubleday, New YorkGoogle Scholar
  70. Du N, Xu Y, Zhang H, Zhai C, Yang D (2010) Selective synthesis of Fe2O3 and Fe3O4 nanowires via a single precursor: a general method for metal oxide nanowires. Nanoscale Res Lett 5:1295–1300. CrossRefGoogle Scholar
  71. Du D, Zhang W, Asiri AM, Yuehe Lin Y (2014) Street, sustich, duncan and savage. In: Nanotechnology applications for clean water, 2nd ed. Elsevier.
  72. Eckelman MJ, Zimmerman JB, Anastas PT (2008) Toward green nano E-factor analysis of several nanomaterial syntheses. J Ind Ecol 12:316–328. CrossRefGoogle Scholar
  73. Elcock D (2007) Potential impacts of nanotechnology on energy transmission and needs. Environmental Science Division, Argonne National Laboratory, ChicagoCrossRefGoogle Scholar
  74. Empa (2015) ch (EN): NanoSafe textilesGoogle Scholar
  75. Empa & TSV Textilverb and Schweiz (2011) Nano textiles – Grundlagen und Leitprinzipien zur effizienten Entwicklung nachhaltiger Nanomaterialien, Ausgabe September 2011Google Scholar
  76. Enoki T, Takai K, Osipov V, Baidakova M, Vul A (2009) Nanographene and nanodiamond; new members in the nanocarbon family. Chem Asian J 4:7964–7804CrossRefGoogle Scholar
  77. Ermolov V, Heino M, Kärkkäinen A, Lehtiniemi R, Nefedov N, Pasanen P, Radivojevic Z, Rouvala M, Ryhänen T, Seppälä E, Uusitalo MA (2007) Significance of nanotechnology for future wireless devices and communications, The 18th annual IEEE international symposium on personal, indoor and mobile radio communications (PIMRC’07)Google Scholar
  78. Fahlman BD (2007) Materials chemistry. Springer, Dordrecht. CrossRefGoogle Scholar
  79. Fajardo AR, Pereira AGB, Muniz EC (2015) Hydrogels nanocomposites based on crystals, whiskers and fibrils derived from biopolymers. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites, advanced structured materials. Springer, New Delhi. CrossRefGoogle Scholar
  80. Faraday M (1857) The Bakerian lecture: experimental relations of gold (and other metals) to light. Phil Trans R Soc Lond 147:145–181. CrossRefGoogle Scholar
  81. Ferro R, Saccone A (2008) Intermetallic chemistry, 1st edn. Elsevier, OxfordGoogle Scholar
  82. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36Google Scholar
  83. Filella M (2012) Nanomaterials. In: Comprehensive sampling and sample preparation, vol 1. pp 109–124. CrossRefGoogle Scholar
  84. Filipponi L, Sutherland D (2013) Nanotechnologies: principles, applications, implications and hands-on activities, Edited by the European Commission, Directorate-General for Research and Innovation Industrial Technologies (NMP) Programme 2013Google Scholar
  85. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 6986:911–918. CrossRefGoogle Scholar
  86. Franco V, Conde CF, Conde A, Kiss LF, Kemény T (2002) Transition to superparamagnetism in a Cr-containing FINEMET-type alloy. IEEE Trans Magn 38:3069–3074. CrossRefGoogle Scholar
  87. Fulekar MH (2010) Nanotechnology: importance and application. IK International Publishing House, New DelhiGoogle Scholar
  88. Gaffet E (2011) Nanomaterials: a review of the definitions, applications, health effects. How to implement secure development. Available online at:
  89. Ganguly S, Kargupta K, Banerjee D (2012) Nanotechnology and nanomaterials for new and sustainable energy engineering. In: Proceedings of the international conference nanomaterials: applications and properties, vol 1, 04NEA09, 5ppGoogle Scholar
  90. Ghiazza M, Vietti G (2014) Carbon nanotubes: properties, applications, and toxicity. Woodhead Publishing Limited, Cambridge. CrossRefGoogle Scholar
  91. Gleiter H (1993) Mechanical properties and deformation behavior of materials having ultra-fine microstructures. In: Nastasi M, Parkin DM, Gleiter H (eds) Handbook of modern ion-beam materials analysis. Kluwer Academic, Dordrecht, p 3Google Scholar
  92. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29. CrossRefGoogle Scholar
  93. Gogotsi Y (2006) Nanomaterials handbook. CRC Press, Boca RatonCrossRefGoogle Scholar
  94. Gorji TB, Ranjbar AA (2017) A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs). Renew Sust Energ Rev 72:10–32. CrossRefGoogle Scholar
  95. Grabowski K, Zbyrad P, Uhl T (2014) Development of the strain sensors based on CNT/epoxyusing screen printing. Key Eng Mater 588:84–90CrossRefGoogle Scholar
  96. Gray HB (2009) Powering the planet with solar fuel. Nat Chem 1:7–7. CrossRefGoogle Scholar
  97. Greiner C (2010) Gecko – inspired nanomaterials. Biomimetic and bioinspired. In: CSSR K (ed) Nanomaterials, vol 7. WILEY-VCH Verlag GmbH & Co. KGaA, New YorkGoogle Scholar
  98. Grenèche JM (2002) Magnetic phases in alloys and nanostructured systems. In: Gütlich P, Fitzsimmons BW, Rüffer R, Spiering H (eds) Mössbauer spectroscopy: of the fifth Seeheim workshop, held in Seeheim, Germany 21–25 May 2002. Springer, Dordrecht. CrossRefGoogle Scholar
  99. Grenèche JM, Ślawska-Waniewska A (2000) About the interfacial zone in nanocrystalline alloys. J Magn Magn Mater 215–216:264–267. CrossRefGoogle Scholar
  100. Grossiord N, Loos J, Koning CE (2005) Strategies for dispersing carbon nanotubes in highly viscous polymers. J Mater Chem 15:2349–2352. CrossRefGoogle Scholar
  101. Gubin SP (2009) Magnetic nanoparticles. Wiley, Weinheim. CrossRefGoogle Scholar
  102. Gulrajani ML (2013) Advances in the dyeing and finishing of technical textiles. Woodhead Publishing Series in Textiles, Cambridge. CrossRefGoogle Scholar
  103. Guo HB (2009) Cultivation of lotus (Nelumbo nucifera Gaertn. ssp. nucifera) and its utilization in China. Genet Resour Crop Evol 56:323–330. CrossRefGoogle Scholar
  104. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172. CrossRefGoogle Scholar
  105. Han Z (2008) Nanofluids with Enhanced Thermal Transport Properties Ph. D Thesis, University of MarylandGoogle Scholar
  106. Hansen W, Autumn K (2005) Evidence for self-cleaning in gecko setae. Proc Nat Acad Sci U S A 102:385–389CrossRefGoogle Scholar
  107. He H, Wang H, Fang C, Wu H, Guo X, Liu C et al (2012) Barnyard grass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice. J Plant Physiol 169:1747–1753. CrossRefGoogle Scholar
  108. Hernández-Sánchez H, Gutiérrez-López GF (2015) Introduction. In: Hernández-Sánchez H, Gutiérrez-López GF (eds) Food nanoscience and nanotechnology, food engineering series. Springer, New York. CrossRefGoogle Scholar
  109. Hiller U (1968) Untersuchungen zum Feinbau und zur Funktion der Haftborsten in Reptilien. Zeitschrift Für Morphologie Der Tiere 62:307–362CrossRefGoogle Scholar
  110. Hiller U, Blaschke R (1967) Zum Haftproblem der Gecko – Fusse. Naturwissenschaften 54:344–345CrossRefGoogle Scholar
  111. Houssa M, Dimoulas A, Molle A (2016) 2D materials for nanoelectronics. CRC Press, Boca RatonCrossRefGoogle Scholar
  112. Huyen D (2011) Carbon nanotubes and semiconducting polymer nanocomposites. In: Yellampalli S (ed) Carbon nanotubes -synthesis, characterization, applications. InTech. Available online at: Google Scholar
  113. Ihn T (2010) Semiconductor nanostructures: quantum states and electronic transport. Oxford University Press, New YorkGoogle Scholar
  114. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. CrossRefGoogle Scholar
  115. Illuminato I, Miller G (2010) Nanotechnology, climate and energy: over-heated promises and hot air? Friends of the Earth, Available online at:
  116. Irwin P, Zhang W, Cao Y, Fang X, Tan DQ (2010) Mechanical and thermal properties. In: Nelson KJ (ed) Dielectric polymer nanocomposites. Springer, New York. CrossRefGoogle Scholar
  117. Islam N, Miyazaki K (2010) An empirical analysis of nanotechnology research domains. Technovation 30:229–237CrossRefGoogle Scholar
  118. ISO/TS 27687 2008. Nanotechnologies – terminology and definitions for nanoobjects – nanoparticle, nanofibre, nanoplate. Available at:
  119. ISO/TS 80004-1 2010. International standardization organization technical standard: nanotechnologies – vocabulary – Part 1: Core terms. Available at:
  120. Jain A, Ranjan S, Dasgupta N, Ramalingam C (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr.
  121. Jasulaneca L, Kosmaca J, Meija R, Andzane J, Erts D (2018) Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions. Beilstein J Nanotechnol 9:271–300.
  122. Jeong HE, Suh KY (2009) Nanohairs and nanotubes: efficient structural elements for gecko-inspired artificial dry adhesives. Nano Today 4:335–346. CrossRefGoogle Scholar
  123. Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61:438–456. CrossRefGoogle Scholar
  124. Jordan CC, Kaiser I, Moore VC (2014) Nanotechnology patent literature review: graphitic carbon-based nanotechnology and energy applications are on the rise. MsDermott, Will and Emery. Available online:
  125. Julkapli NM, Bagheri S, Sapuan SM (2015) Multifunctionalized carbon nanotubes polymer composites: properties and applications, eco-friendly polymer nanocomposites processing and properties. Springer, New DelhiGoogle Scholar
  126. Kakkar V, Modgill N, Manoj Kumar M (2016) From nutraceuticals to nanoceuticals. In: Ranjan S, Dasgupta N, Lichfouste E (eds) Nanoscience in food and agriculture, Sustainable Agriculture Reviews 23, vol 3. Springer, Cham. CrossRefGoogle Scholar
  127. Kalia A, Parshad V (2015) Novel trends to revolutionize preservation and packaging of fruits/fruit products: microbiological and nanotechnological perspectives. Crit Rev Food Sci Nutr 55:159–182. CrossRefGoogle Scholar
  128. Kang HY (2010) A review of the emerging nanotechnology industry: materials, fabrications, and applications. Available online at:
  129. Karkare M (2008) Nanotechnology: fundamentals and applications. International Publishing House, New DelhiGoogle Scholar
  130. Kashyap PL, Rai P, Sharma S, Chakdar H, Kumar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the detection and diagnosis of plant pathogens. In: Ranjan S, Dasgupta N, Lichfouste E (eds) Nanoscience in food and agriculture, Sustainable Agriculture Reviews 21, vol 2. Springer, Cham. CrossRefGoogle Scholar
  131. Kaur S (2010) PhD thesis, PunjabGoogle Scholar
  132. Kaya-Celiker H, Mallikarjunan K (2012) Better nutrients and therapeutics delivery in food through nanotechnology. Food Eng Rev 4:114–123. CrossRefGoogle Scholar
  133. Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109. CrossRefGoogle Scholar
  134. Khiyami MA, Almoammar H, Awad YM, Alghuthaym MA et al (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28:775–785. CrossRefGoogle Scholar
  135. Khun K (2015) PhD thesis, NorrköpingGoogle Scholar
  136. Kittel C (1946) Theory of the structure of ferromagnetic domains in films and small particles. Phys Rev 70:965. CrossRefGoogle Scholar
  137. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate,bioavailability, and effects. Environ Toxicol Chem 27:1825–1851. CrossRefGoogle Scholar
  138. Koch CC, Ovid’ko IA, Seal S, Veprek S (2007) Structural nanocrystalline materials: fundamentals and applications. Cambridge University Press, New YorkCrossRefGoogle Scholar
  139. Kreuter J (2007) Nanoparticles-a historical perspective. Int J Pharm 331:1–10. CrossRefGoogle Scholar
  140. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163. CrossRefGoogle Scholar
  141. Kruis FE (2001) A review of synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications. Available online at:
  142. Kumar N, Kumbhat S (2016) Essentials in nanoscience and nanotechnology. Wiley, New YorkCrossRefGoogle Scholar
  143. Kumar R, Sen S (2013) Biogenic magnetite nanoparticles. Res J Pharm, Biol Chem Sci 4:1037–1043Google Scholar
  144. Kumar Tammina S, Kumar Mandal B, Ranjan S, Dasgupta N (2017) Cytotoxicity study of Piper nigram seeds mediated synthesised SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168. CrossRefGoogle Scholar
  145. Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 90:173–176. CrossRefGoogle Scholar
  146. Kumar R, Vithiya K, Mahanty B, Sen S (2015) Biosynthesis of hematite nanoparticles and its cytotoxic effect on HepG2 cancer cells. Int J Biol Macromol 74:376–381. CrossRefGoogle Scholar
  147. Kunkel D, Dennis Kunkel Microscopy, Inc. Available online at:
  148. Kuswandi K (2016) Nanotechnology in food packaging. In: Ranjan S, Dasgupta N, Lichfouste E (eds) Nanoscience in food and agriculture, Sustainable Agriculture Reviews 20, vol 1. Springer, Cham. CrossRefGoogle Scholar
  149. Labastie P, Calvo F (2007) Nanomaterials and nanochemistry. In: Bréchignac C, Houdy P, Lahmani M (eds) . Springer, Berlin. CrossRefGoogle Scholar
  150. Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16:307–321. CrossRefGoogle Scholar
  151. Law M, Goldberger J, Yang P (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122. CrossRefGoogle Scholar
  152. Lehn JM (2006) In: Bréchignac C,P, Houdy P, Lahmani M (eds) Nanomaterials and nanochemistry. Springer, BerlinGoogle Scholar
  153. Lemoine C (2000) PhD thesis, PoitierGoogle Scholar
  154. Li JCM (2000) Microstructure and properties of materials, vol 2. World Scientific Publishing Co Pte Ltd, SingaporeCrossRefGoogle Scholar
  155. Li K, Jiang Y, Ding D, Zhang X, Liu Y, Hua J, Feng S, Liu B (2011) Folic acid functionalized two-photon absorbing nanoparticles for targeted MCF-7 cancer cell imaging. Chem Commun 47:7323–7325. CrossRefGoogle Scholar
  156. Li Z, Meng J, Wang W, Wang Z, Li M, Chen T, Liu CJ (2017) The room temperature electron reduction for the preparation of silver nanoparticles on cotton with high antimicrobial activity. Carbohydr Polym 161:270–276. CrossRefGoogle Scholar
  157. Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y (2009) Infrared-triggered actuators from graphene-based nanocompositesi. J Phys Chem C 113:9921–9927. CrossRefGoogle Scholar
  158. Liu CJ, Burghaus U, Besenbacher F, Wang ZL (2010) Preparation and characterization of nanomaterials for sustainable energy. ACS Nano 4:5517–5526. CrossRefGoogle Scholar
  159. Liu J, Xue Y, Zhang M, Dai L (2012a) Graphene-based materials for energy applications. MRS Bull 37:1265–1272. CrossRefGoogle Scholar
  160. Liu Y, Dong X, Chen P (2012b) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307. CrossRefGoogle Scholar
  161. Liu L, Cui L, Losic D (2013) Graphene and graphene oxide as new nano-carriers for drug delivery applications. Acta Biomater 9:9243–9257. CrossRefGoogle Scholar
  162. Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014:843687. CrossRefGoogle Scholar
  163. Lokhande J, Pathak Y (2014) Handbook of metallonutraceuticals. CRC Press Taylor & Francis Group, Boca RatonGoogle Scholar
  164. López-López EA, Hernández-Gallegos MA, Cornejo-Mazón M, Hernández-Sánchez H (2015) Polysaccharide-based nanoparticles. In: Hernández-Sánchez H, Gutiérrez-López GF (eds) Food nanoscience and nanotechnology, food engineering series. Springer, New York. CrossRefGoogle Scholar
  165. Lü MJ, Li J, Yang XY (2013) Applications of graphene-based materials in environmental protection and detection. Chin Sci Bull 58:2698–2710. CrossRefGoogle Scholar
  166. Lubrosky FE (1961) High coercive materials development of elongated particle magnets. J Appl Phys 32:S171. CrossRefGoogle Scholar
  167. Lund P (2009) Nanoscience and technology for energy applications. Int J Energy Res 33:1099–1100. CrossRefGoogle Scholar
  168. Luther W (2008) Application of nanotechnologies in the energy sector. Hessian Ministry of Economy, Transport, Urban and Regional Development, GermanyGoogle Scholar
  169. Maddinedia S b, Mandala BK, Ranjanb S, Dasgupta N (2015) Diastase assisted green synthesis of size controllable gold nanoparticles. RSC Adv.
  170. Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK (2013) Nanobiosensors: concepts and variations. ISRN Nanomater 2013:327435. CrossRefGoogle Scholar
  171. Material Matters (2012) Vol 7. Sigma-Aldrich Co. LLCGoogle Scholar
  172. Medero N (2013) Silver for your smelly socks?? Available online at:
  173. Mehwish N, Kausar A, Siddiq M (2014) Advances in polymer-based nanostructured membranes for water treatment. Polym-Plast Technol Eng 53:1290–1316. CrossRefGoogle Scholar
  174. Mendoza-Gonzalez NY, Avalos-Ramirez A, Quevedo IR. Responsible nanotechnology, Downloaded from by Pennsylvania, State University on 12/07/15. ASCE, Nanomaterials in the EnvironmentGoogle Scholar
  175. Mendoza-Madrigal AG, Chanona-Pérez J, Guadarrama-Fernández L, Hernández-Sánchez H, Calderón-Domínguez G, Palacios-González E, López-Santiago R (2015) Nanobiosensors in food science and technology. In: Hernández-Sánchez H, Gutiérrez-López GF (eds) Food nanoscience and nanotechnology, food engineering series. Springer, New York. CrossRefGoogle Scholar
  176. Meyyappan M (2005) Carbon nanotubes: science and applications. CRC Press, Boca RatonGoogle Scholar
  177. Miller G, Senjen R (2008) Out of the laboratory and onto our plates: nanotechnology in food and agriculture. Report prepared for Friends of the Earth Australia, Friends of the Earth Europe and Friends of the Earth United States and supported by Friends of the Earth Germany. Accessed 20 Jan 2015.
  178. Mills DL, Bland JAC (2006) Contemporary concepts of condensed matter science. In: Nanomagnetism: ultrathin films, multilayers and nanostructures, vol 1, pp xi–xiii.
  179. Mohapatra S, Acharya A, Roy GS (2012) The role of nanomaterial for the design of supercapacitor. Lat Am J Phys Educ 6:380–384Google Scholar
  180. Momin JK, Jayakumar C, Prajapati JB (2013) Potential of nanotechnology in functional foods. Emir J Food Agric 25:10–19. CrossRefGoogle Scholar
  181. Morrow KJ Jr, Bawa R, Wei C (2007) Recent advances in basic and clinical nanomedicine. Med Clin N Am 91:805–843. CrossRefGoogle Scholar
  182. Murday J, Batterson J, Gill R, Nilsson E, Thomas R (2010) International benchmark workshop on K-12 nanoscale science and engineering education (NSEE) Washington, DC 6–7 December 2010Google Scholar
  183. Murty BS, Shankar P, Raj B, Rath BB, Murday J (2013) Textbook of nanoscience and nanotechnology. Springer, Berlin. CrossRefGoogle Scholar
  184. Naseri MG, Saion EB (2012) Crystalization in spinel ferrite nanoparticles. In: Mastai Y (ed) Advances in crystallization processes, InTech. Available online at:
  185. Nasir Khan M, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209. CrossRefGoogle Scholar
  186. National Nanomaterial Initiative (2010) Available online at:
  187. Néel L (1949) Theorie du trainage magneti terres cuites. Ann Geophys 5:99–136Google Scholar
  188. Nelson G (2013) Microencapsulated colourants for technical textile application. In: Gulrajani ML (ed) Advances in the dyeing and finishing of technical textiles. Woodhead Publishing Limited, Cambridge. CrossRefGoogle Scholar
  189. Ngô C, Van de Voorde M (2014) Nanotechnology in a nutshell from simple to complex systems. Atlantis Press, ParisCrossRefGoogle Scholar
  190. Nièpce JC, Pizzagalli L (2007) Structure and phase transitions in nanocrystals. In: Bréchignac C, Houdy P, Lahmani M (eds) Nanomaterials and nanochemistry. Springer, Berlin. CrossRefGoogle Scholar
  191. Nikalje AP (2015) Nanotechnology and its applications in medicine. Med Chem 5:081–089. CrossRefGoogle Scholar
  192. Niu W, Lu X (2015) In: Xiong Y, Lu X (eds) Metallic nanostructures from controlled synthesis to applications. Springer, New York. CrossRefGoogle Scholar
  193. Nouailhat A (2008) An introduction to nanoscience and nanotechnology. Wiley, LondonCrossRefGoogle Scholar
  194. Obaid HN, Habeeb MA, Rashid FL, Hashim A (2013) Thermal energy storage. Nanofluids J Energy Technol Policy 3:34–36Google Scholar
  195. OECD (2013) Nanotechnology for green innovation, OECD Science, Technology and Industry Policy Papers, No. 5. OECD Publishing. Available online at:
  196. Official Journal of the European Union, L 275/38, 2011/696/EUGoogle Scholar
  197. Ong YT, Ahmad AL, Sharif Zein SH, Tan SH (2010) A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz J Chem Eng 27:227–242CrossRefGoogle Scholar
  198. Ossi PM (2006) Disordered materials: an introduction. Springer, Berlin. CrossRefGoogle Scholar
  199. Ozawa E, Kroto HW, Fowler PW, Wassermann E (1993) Phil Trans R Soc (Lond) A 343:1CrossRefGoogle Scholar
  200. Pacioni NL, Borsarelli CD, Rey V, Veglia AV (2015) Synthetic routes for the preparation of silver nanoparticles, a mechanistic perspective. In: Alarcon EI, Griffith M, Udekwu KI (eds) Silver nanoparticle applications, engineering materials. Springer, Cham. CrossRefGoogle Scholar
  201. Pandey G, Rawtani D, Agrawal YK (2016) Aspects of nanoelectronics in materials development, nanoelectronics, and materials development. In: Kar A (ed) Published by ExLi4EvA. Google Scholar
  202. Pastoriza-Gallego MJ, Lugo L, Legido JL, Piñeiro MM (2011) Enhancement of thermal conductivity and volumetric behavior of FexOy nanofluids. J Appl Phys 110:014309. CrossRefGoogle Scholar
  203. Patra JK, Gouda S (2013) Application of nanotechnology in textile engineering: an overview. J Eng Technol Res 5:104–111. CrossRefGoogle Scholar
  204. Perez-de-Luque A, Hermosín MC (2013) Nanotechnology and its use in agriculture. In: Bagchi D, Bagchi M, Moriyama H, Shahidi F (eds) Bio-nanotechnology: a revolution in food, biomedical and health sciences. Blackwell Publishing Ltd, Oxford. CrossRefGoogle Scholar
  205. Peters RJB, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJP, Mech A, Botelho Moniz F, Quiros Pesudo L, Rauscher H, Schoonjans R, Undas AK, Vettori MV, Weigel S, Aschberger K (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol 54:155–164. CrossRefGoogle Scholar
  206. Petracic O (2010) Superparamagnetic nanoparticle ensembles. Superlattice Microst 47:569–578. CrossRefGoogle Scholar
  207. Pienpinijtham P, Thongnopkun P (2015) Unique properties of metal nanomaterials for gems and jewelry applications. In: Aliofkhazraei M (ed) Handbook of mechanical nanostructuring. Wiley. CrossRefGoogle Scholar
  208. Pigozzi G (2006) PhD thesis, ZurichGoogle Scholar
  209. Pokropivny V, Lohmus R, Hussainova I, Pokropivny A, Vlassov S (2007) Introduction in nanomaterials and nanotechnology. – University of Tartu. – 2007, 225p. (Special lecture course for bachelors, MSc, post-graduates and specialists in nanotechnology n Tartu University Press)Google Scholar
  210. Ponnamma D, Sadasivuni KK (2015) Graphene/polymer nanocomposites: role in electronics. In: Sadasivuni KK, Ponnamma D, Kim J, Thomas S (eds) Graphene-based polymer nanocomposites in electronics. Springer, Cham. CrossRefGoogle Scholar
  211. Preuss C, Shah A, Pathak YV (2017) Nanotechnology in food products implications in regulatory requirements. In: Sen S, Pathak Y (eds) Nanotechnology in neutraceuticals, production to consumption. CRC Press, Boca RatonGoogle Scholar
  212. Pulimi M, Subramanian S (2016) Nanomaterials for soil fertilisation and contaminant removal. In: Ranjan N, Dasgupta N, Lichfouste E (eds) Nanoscience in food and agriculture, Sustainable Agriculture Reviews 20, vol 1. Springer, Cham. CrossRefGoogle Scholar
  213. Purkayastha MD, Manhar AK (2016) Nanotechnological applications in food packaging, sensors and bioactive delivery systems. In: Ranjan N, Dasgupta N, Lichfouste E (eds) Nanoscience in food and agriculture, Sustainable Agriculture: Reviews 21, vol 2. Springer, Cham. CrossRefGoogle Scholar
  214. Qi H, Liu J, Gao S, Mäder E (2013a) Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline-urea solution. J Mater Chem A 1:2161–2168. CrossRefGoogle Scholar
  215. Qi H, Mäder E, Liu J (2013b) Unique water sensors based on carbon nanotube-cellulose composites. Sens Actuators B: Chem 185:225–230. CrossRefGoogle Scholar
  216. Qu L, Liu Y, Baek JB, Dai D (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. Nano 4:1321–1326. CrossRefGoogle Scholar
  217. Rajendran K, Sen S (2017) Metallic nanoparticles in the food industry advantages and limitations. In: Sen S, Pathak Y (eds) Nanotechnology in neutraceuticals, production to consumption. CRC Press, Boca RatonGoogle Scholar
  218. Ramachandraiah K, Han SG, Chin KB (2015) Nanotechnology in meat processing and packaging: potential applications d a review. Asian Australas J Anim Sci 28:290–302. CrossRefGoogle Scholar
  219. Ramsden JJ (2016) Nanotechnology: an introduction. Elsevier, Amsterdam. CrossRefGoogle Scholar
  220. Ranjan S, Nandita Dasgupta N, Chakraborty AR, Samuel SM, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:1–23. CrossRefGoogle Scholar
  221. Ranjan S, Nandita D, Sudandiradoss C, Ramalingam C, Ashutosh K (2015) A novel approach to evaluate titanium dioxide nanoparticle-protein interaction through docking: an insight into the mechanism of action. Proc Natl Acad Sci India Sect B Biol Sci.
  222. Ranjan S, Nandita D, Bhavapriya R, Ganesh SA, Chidambaram R, Ashutosh K (2016) Microwave irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environ Sci Pollut Res 23:12287. CrossRefGoogle Scholar
  223. Rastogi V, Yadav P, Bhattacharya SS, Mishra AK, Verma N, Verma A, Pandit JK (2014) Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J Drug Deliv 2014:670815. CrossRefGoogle Scholar
  224. Raza H, Raza TZ (2013) Introducing nanoengineering and nanotechnology to the first year students through an interactive seminar course. J Nano Educ 4:41–46. CrossRefGoogle Scholar
  225. Reddy PP (2015) Climate resilient agriculture for ensuring food security. Springer, New Delhi. CrossRefGoogle Scholar
  226. Ren Z, Lan Y, Wang Y (2013) Aligned carbon nanotubes physics, concepts, fabrication and devices. Springer, Berlin. CrossRefGoogle Scholar
  227. Ressine G, Marko-Varga G, Laurell T (2007) Porous silicon protein microarray technology and ultra-/superhydrophobic states for improved bioanalytical readout. Biotechnol Ann Rev 13:149–200. CrossRefGoogle Scholar
  228. Rezaie HR, Shokuhfar A, Arianpour F (2013) Nanocomposite materials from theory to application. In: Andreas Öchsne A, Shokuhfar A (eds) New frontiers of nanoparticles and nanocomposite materials. Springer, Berlin. CrossRefGoogle Scholar
  229. Rhiel A (2008) Application of nanotechnologies in the energy sector. Available fron:
  230. Richards R, Bönnemann H (2005) In: CSSR K, Hormes J, Leuschner C (eds) Nanofabrication towards biomedical applications: techniques, tools, applications, and impact. Wiley, WeinheimGoogle Scholar
  231. Risbuda AS, Bartl MH (2013) Solution-based techniques for biomimetics and bioreplication. In: Engineered biomimicry. ElsevierCrossRefGoogle Scholar
  232. Rocco MC (2007) National nanotechnology initiative – past, present, future. In: Handbook on nanoscience, engineering and technology, 2nd edn. Taylor and FrancisGoogle Scholar
  233. Rocco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: retrospective and outlook. Springer, Dordrecht. CrossRefGoogle Scholar
  234. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592. CrossRefGoogle Scholar
  235. Rosei F (2004) Nanostructured surfaces: challenges and frontiers in nanotechnology. J Phys Condens Matter 1:S1373–S1436. CrossRefGoogle Scholar
  236. Roy R, Roy RA, Roy DM (1986) Alternative perspectives on “quasi-crystallinity”: non-uniformity and nanocomposites. Mater Lett 4:323–328. CrossRefGoogle Scholar
  237. Royal Society (2003) Report of a workshop held as part of the Nanotechnology study. Available online at:
  238. Royal Society & The Royal Academy of Engineering (2004) Nanoscience and nanotechnologies. Available online at:
  239. Royal Society of Chemistry (2011) Royal Society of Chemistry view on nanoscience and nanotechnology. Available online at:–223077.pdf
  240. Rudershausen S, Grüttner C, Frank M, Teller T, Westphal F (2002) Multifunctional superparamagnetic nanoparticles for life science applications. Eur Cells Mater 3:81–83Google Scholar
  241. Salamon AW, Courtney P, Shuttler I (2010) Nanotechnology and engineered nanomaterials a primer. PerkinElmer, WalthamGoogle Scholar
  242. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:1–6. CrossRefGoogle Scholar
  243. Saleh TA (2016) Nanomaterials for pharmaceuticals determination. Bioenergetics.
  244. Saleh TA, Gupta VK (2016) Nanomaterial and polymer membranes, synthesis, characterization, and applications. Elsevier, Amsterdam. CrossRefGoogle Scholar
  245. Schaefer HE (2010) Nanoscience. Springer, Berlin. CrossRefGoogle Scholar
  246. Scherer C, Neto AMF (2005) Ferrofluids: properties and applications. Braz J Phys 35:718–727. CrossRefGoogle Scholar
  247. Schwarz JA, Contescu CI, Putyera K (2004) Dekker encyclopedia of nanoscience and nanotechnology. CRC Press, Boca RatonGoogle Scholar
  248. Sen S, Pathak Y (2017) Nanotechnology in nutraceuticals: production to consumption. CRC Press, Boca RatonGoogle Scholar
  249. Senthil Kumar P, Narayan AS, Dutta A (2017) Textiles and clothing sustainability nanotextiles and sustainability. In: Muthu SS (ed) Textiles and clothing sustainability, textile science and clothing technology. Springer, Singapore. CrossRefGoogle Scholar
  250. Shalaby TA, Bayoumi Y, Abdalla N, Taha H, Alshaal T, Shehata S, Amer M, Domokos-Szabolcsy E, El-Ramady H (2016) Nanoparticles, soils, plants and sustainable agriculture. In: Ranjan S, Dasgupta N, Lichfouste E (eds) Nanoscience in food and agriculture, Sustainable Agriculture Reviews 20, vol 1. Springer, Cham. CrossRefGoogle Scholar
  251. Shearer CJ, Cherevan A, Eder D (2014) Application of functional hybrids incorporating carbon nanotubes or graphene. In: Carbon nanotubes and graphene. Elsevier.
  252. Shi Y 2006 Master of Engineering Science thesis, AdelaideGoogle Scholar
  253. Shi JP, Evans DE, Khan AA, Harrison RM (2001) Sources and concentration of naoparticles (< 10 nm diameter) in the urban atmosphere. Atmos Environ 35:1193–1202. CrossRefGoogle Scholar
  254. Silvestre C, Cimmino S (2013) Ecosustainable polymer nanomaterials for food packaging. CRC Press, New YorkCrossRefGoogle Scholar
  255. Singh NA (2016) Nanotechnology defi nitions, research, industry and property rights. In: Ranjan S, Dasgupta N, Lichfouste E (eds) Nanoscience in food and agriculture, Sustainable Agriculture Reviews 20, vol 1. Springer, Cham. CrossRefGoogle Scholar
  256. Singh V, Joung L, Zhai S, Das SI, Khondaker S, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271. CrossRefGoogle Scholar
  257. Singh M, Lara S, Tlali S (2017) Effects of size and shape on the specific heat, melting entropy and enthalpy of nanomaterials. J Taibah Univ Sci. (in press)
  258. Som C, Nowack B, Wick P, Krug H (2010) Nanomaterialien in Textilien: Umwelt-, Gesundheits- und Sicherheits-Aspekte Fokus: synthetische Nanopartikel.
  259. Song XQ, Liu A, Ji CT, Li HT (2001) The effect of nano-particle concentration and heating time in the anti-crinkle treatment of silk. J Jilin Inst Technol 22:24–27Google Scholar
  260. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nano composites for food packaging applications. Trends Food Sci Technol 18:84–95. CrossRefGoogle Scholar
  261. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. CrossRefGoogle Scholar
  262. Sur UK (2012) Graphene. A rising star on the horizon of materials science. Int J Electrochem 2012:237689. CrossRefGoogle Scholar
  263. Suresh S (2013) Recent trends on nanostructures based solar energy applications: a review. Rev Adv Mater Sci 34:44–61Google Scholar
  264. Suryanarayana C (1994) Structure and properties of nanocrystalline materials. Bull Mater Sci 17:307–346. CrossRefGoogle Scholar
  265. Suryanarayana C (2004) Mechanical alloying and milling. CRC Press, Boca RatonCrossRefGoogle Scholar
  266. Suryanarayana C, Koch CC (2000) Nanocrystalline materials – current research and future directions. Hyperfine Interact 130:5–44. CrossRefGoogle Scholar
  267. Suzuki K, Makino A, Kataoka N, Inoue A, Masumoto T (1991) High saturation magnetization and soft magnetic properties of bcc Fe–Zr–B and Fe–Zr–B–M (M = transition metal) alloys with nanoscale grain size. Mater Trans JIM 32:93–102. CrossRefGoogle Scholar
  268. Taniguchi N (1974) On the basic concept of NanoTechnology. In: Proceedings of the international conference on production engineering, Tokyo, Part II, Japan Society of Precision EngineeringGoogle Scholar
  269. Tartaj P, Morales MP, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197. PII: S0022-3727(03)37541-2CrossRefGoogle Scholar
  270. Thomas S, Rafiei S, Maghsoodlou S, Afzali A (2014) Foundations of nanotechnology, vol 2, Nanoelements formation and interaction. Apple Academic PressGoogle Scholar
  271. Ting Z, Syed M, Nosang VM, Marc AD (2008) Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19:332001. CrossRefGoogle Scholar
  272. Touhami A (2014) Biosensors and nanobiosensors: design and applications. In: Seifalian A, de Mel A, Deepak M, Kalaska D (eds) Nanomedicine. One Central PressGoogle Scholar
  273. Upreti G, Dhingra R, Naidu S, Atuahene I (2015) Green processes for nanotechnology. Springer.
  274. Van Keer A (2015) Course guide nanomaterials: chemistry and physics, University of Utrecht Department of Chemistry Utrecht. Available online at:
  275. Vaudreuil S, Labzour A, Sinha-Ray S, Mabrouk KE, Bousmina M (2007) Dispersion characteristics and properties of poly(methyl methacrylate)/multiwalled carbon nanotubes nanocomposites. J Nanosci Nanotechnol 7:2349–2355CrossRefGoogle Scholar
  276. Wan ACA, Ying JY (2010) Nanomaterials for in situ cell delivery and tissue regeneration. Adv Drug Deliv Rev 62:731–740. CrossRefGoogle Scholar
  277. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21:1887–1892. CrossRefGoogle Scholar
  278. Wang B, Xue D, Shi Y, Xue F (2008) Titania 1D nanostructured materials: synthesis, properties and applications. In: Prescott WV, Schwartz AI (eds) Nanorods, Nanotubes and Nanomaterials Research Progress. New Nova Science Publishers Inc, New York, pp 163–201Google Scholar
  279. Wang L (2015) Solvated fullerenes, a new class of carbon materials suitable for high-pressure studies: a review. J Phys Chem Solids 84:85–95. CrossRefGoogle Scholar
  280. Wang Y, Chang HX, Wu HK, Liu H (2013) Bioinspired prospects of graphene: from biosensing to energy. J Mater Chem B 1:3521–3534. CrossRefGoogle Scholar
  281. Wani IA (2015) Nanomaterials, novel preparation routes, and characterizations. In: Shah MA, Bhat MA, Davim JP (eds) Nanotechnology applications for improvements in energy efficiency and environmental management. IGI Global.
  282. Wardak A, Gorman ME, Swami N, Deshpande S (2008) Identification of risks in the life cycle of nanotechnology-based products. J Ind Ecol 12:435–448. CrossRefGoogle Scholar
  283. Warriner K, Reddy SM, Namvar A, Neethirajan S (2014) Developments in nanoparticles for use in biosensors to assess food safety and quality. Trends Food Sci Technol 40:183–199. CrossRefGoogle Scholar
  284. Weiss S. What’s the big deal about nanotechnology? Vanderbilt University research. Available online at:
  285. Wikipedia (2017) Quantum tunnellingGoogle Scholar
  286. Willard MA, Laughlin DE, McHenry ME, Thoma D, Sickafus K (1998) Structure and magnetic properties of (FeCo) ZrBCu nanocrystalline alloys. J Appl Phys 84:6773–6777CrossRefGoogle Scholar
  287. Wilson JS (2005) Sensor technology handbook. Elsevier, AmsterdamGoogle Scholar
  288. Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20:2388–2403. CrossRefGoogle Scholar
  289. Wong YWH, Yuen CWM, Leung MYS, Ku SKA, Lam HLI (2006) Selected applications of nanotechnology in textiles. AUTEX Res J 6(1):1–8Google Scholar
  290. Wu W, Liu Y, Zhu D (2016) Molecular and nano electronics, encyclopedia life support systems (UNESCO-EOLSS)Google Scholar
  291. Xiao X, Beechem TE, Brumbach MT, Lambert TN, Davis DJ, Michael JR, Washburn CM (2012) Lithographically defined three-dimensional graphene structures. ACS Nano 24:3573–3579. CrossRefGoogle Scholar
  292. Xue CH, Jia ST, Zhang J, Ma JZ (2010) Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci Technol Adv Mater 11:1–15. CrossRefGoogle Scholar
  293. Yaya A, Agyei-Tuffour B, Dodoo-Arhin D, Nyankson E, Annan E, Konadu DS, Sinayobye E, Baryeh EA, Ewels CP (2012) Layered nanomaterials- a review. Global J Eng Des Technol 1:32–41Google Scholar
  294. Yoshizawa Y, Oguma S, Yamauchi Y (1988) New Fe-based soft magnetic alloys composed of ultrafine grain structure. J Appl Phys 64:6044–6046. CrossRefGoogle Scholar
  295. Yu X, Rong J, Zhan Z, Liu Z, Liu J (2015) Effects of grain size and thermodynamic energy on the lattice parameters of metallic nanomaterials. Mater Des 83:159–163. CrossRefGoogle Scholar
  296. Zhang B, Wang Y, Zhai G (2016) Biomedical applications of the graphene-based materials. Mater Sci Eng C 61:953–964. CrossRefGoogle Scholar
  297. Zhou X, Birringer R, Herr U, Gleiter H (1987) X-ray diffraction studies of the structure of nanometer-sized crystalline materials. Phys Rev B 35:9085. CrossRefGoogle Scholar
  298. Zhu F (2017) Structures, properties, and applications of lotus starches. Food Hydrocoll 63:332–348. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fatma Hadef
    • 1
  1. 1.DÕpartement de Physique, FacultÕ des SciencesUniversitÕ 20 Août 1955-SkikdaSkikdaAlgeria

Personalised recommendations