Sintering by Low-Voltage Electric Pulses (Including Spark Plasma Sintering (SPS))

  • Eugene A. Olevsky
  • Dina V. Dudina


In this chapter, the principles and physical mechanisms of low-voltage electric pulse sintering (including spark plasma sintering (SPS)) are introduced. The low-voltage electric pulse sintering equipment is described. The experimental and theoretical analyses of the temperature distribution specifics and the possibilities of temperature control under SPS conditions are presented. Various physical phenomena of thermal and nonthermal (field) nature occurring at micro- and macro-level during SPS are discussed. The analyzed thermal factors include macroscopic temperature gradients, local temperature gradients at the inter-particle contacts, high heating rates, and thermal diffusion. The analyzed field factors include electromigration, the possibility of plasma formation, electroplasticity, and breakdown of oxide layers at the inter-particle contacts. The respective constitutive models of SPS are introduced. The results of coupled electromagnetic–thermal–mechanical finite element solutions of SPS problems are described. Various processing and testing methods developed using SPS equipment are analyzed. Selected examples of processes and materials developed using SPS, including SPS-based joining, are introduced. SPS-based surface engineering and processing of porous materials are introduced in addition to the description of SPS of dense bulk materials.


Spark plasma sintering Heating rate Temperature gradient Inter-particle contact Plasma Grain growth Constitutive modeling Field-assisted sinter-forging Creep Material joining Surface engineering 


  1. 1.
    Inoue K (1962) Electric Discharge sintering. US Patent 3241965Google Scholar
  2. 2.
    Inoue K (1966) Apparatus for electrically sintering discrete bodies. US Patent 3250892Google Scholar
  3. 3.
    Raichenko AI, Burenkov GL, Khrienko AF, Litvinenko VP (1976) Electric discharge sintering of binary powder mixtures. Sov Powder Metall Met Ceram 15:602–606CrossRefGoogle Scholar
  4. 4.
    Raichenko AI (1987) Basics of electric current-assisted sintering. Moscow, Metallurgiya, 128 p (in Russian)Google Scholar
  5. 5.
    Slosman AI, Matrenin SV (1994) Electric discharge sintering of ceramics based on zirconium dioxide. Refractories 35:296–297 (in Russian)CrossRefGoogle Scholar
  6. 6.
    Matrenin SV, Slosman AI, Myachin YV (2005) Electric discharge sintering of a Fe-Ti antifriction alloy. News Tomsk State Polytech Univ 308:74–77 (in Russian)Google Scholar
  7. 7.
    Zamula MV, Derevyanko AV, Kolesnichenko VG, Samelyuk AV, Zgalat-Lozinskii OB, Ragulya AV (2007) Electric discharge sintering of TiN-AlN nanocomposites. Powder Metall Met Ceram 46:325–331CrossRefGoogle Scholar
  8. 8.
    Petukhov AS, Khobta IV, Ragulya AV, Derevyanko AV, Raichenko AI, Isaeva LP, Koval’chenko AM (2007) Reactive electric discharge sintering of TiN-TiB2. Powder Metall Met Ceram 46:525–532CrossRefGoogle Scholar
  9. 9.
    Popov VP, Raichenko AI (2000) Kinetics of electric discharge sintering of high-speed steel powders. Powder Metall Met Ceram 39:545–548CrossRefGoogle Scholar
  10. 10.
    Petukhov AS (2009) The influence of various technological conditions on the processes of reactive electric discharge sintering composition TiN-TiB2. Powder Metall Met Ceram 11–12:13–22 (in Russian)Google Scholar
  11. 11.
    Kolesnichenko VG, Popov VP, Zgalat-Lozinskii OB, Klochkov LA, Lobunets TF, Raichenko AI (2011) Field assisted sintering of nanocrystalline titanium nitride powder. Powder Metall Met Ceram 50:3–4CrossRefGoogle Scholar
  12. 12.
    Olevsky EA, Aleksandrova EV, Ilyina AM, Dudina DV, Novoselov AN, Pelve KY, Grigoryev EG (2013) Outside mainstream electronic databases: review of studies conducted in the USSR and post-soviet countries on electric current-assisted consolidation of powder materials. Materials 6:4375–4440CrossRefGoogle Scholar
  13. 13.
    Crivelli IV, Esposito E, Mele G, Siniscalchi A (1973) Formatura per Spark Sintering. Metallurgia Italiana 65(11):611–618Google Scholar
  14. 14.
    Olevsky E, Bogachev I, Maximenko A (2013) Spark-plasma sintering efficiency control by inter-particle contact area growth: a viewpoint. Scr Mater 69(2):112–116CrossRefGoogle Scholar
  15. 15.
    Sukhov OV, Baidenko AA, Istomina TI, Raichenko AI, Popov VP, Svechkov AV, Goldberg MS (1987) Densification kinetics of a copper-tin powder composite during electric discharge sintering. Sov Powder Metall Met Ceram 26:530–532CrossRefGoogle Scholar
  16. 16.
    Raichenko AI, Kol’chinskii MZ, Levina DA (1976) Electric discharge sintering of oxidized metal powders. Sov Powder Metall Met Ceram 15:754–759Google Scholar
  17. 17.
    Raichenko AI, Istomina TI, Troyan IA (2000) Powder sintering with application of an electric current and periodic mechanical pulses. Powder Metall Met Ceram 39(3–4):198–201CrossRefGoogle Scholar
  18. 18.
    Tokita M (1993) Trends in advanced SPS spark plasma sintering systems and technology. J Soc Powder Technol Japan 30(11):790–804CrossRefGoogle Scholar
  19. 19.
    Tokita M (2013) Spark plasma sintering (SPS) method, systems and applications. In: Editor-in-Chief Somiya S (ed) Handbook of advanced ceramics: materials, applications, processing and properties. 2nd edn. Academic Press, USA, pp 1149–1178 (in Russian)Google Scholar
  20. 20.
    Omori M (2000) Basic research and industrial production using the spark plasma system (SPS). Mater Sci Eng A 287(2):183–188CrossRefGoogle Scholar
  21. 21.
    Groza JR, Zavaliangos A (2000) Sintering activation by external electrical field. Mater Sci Eng A 287(2):171–177CrossRefGoogle Scholar
  22. 22.
    Groza JR, Zavaliangos A (2003) Nanostructured bulk solids by field activated sintering. Rev Adv Mater Sci 5:24–33Google Scholar
  23. 23.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777CrossRefGoogle Scholar
  24. 24.
    Munir ZA, Quach D, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94(1):1–19CrossRefGoogle Scholar
  25. 25.
    Garay JE (2010) Current-activated, pressure-assisted densification of materials. Annu Rev Mater Res 40:445–468CrossRefGoogle Scholar
  26. 26.
    Orrù R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63(4–6):127–287CrossRefGoogle Scholar
  27. 27.
    Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis. J Nanomater 625218, 12Google Scholar
  28. 28.
    Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering for the production of nanostructured materials. In: Sinha S, Navani NK (eds) Nanotechnology series, Nanomaterials and nanostructures, vol 4. Studium Press LLC, pp 237–264Google Scholar
  29. 29.
    Locci AM, Orrù R, Cao G, Munir ZA (2003) Field-activated pressure-assisted synthesis of NiTi. Intermetallics 11:555–571CrossRefGoogle Scholar
  30. 30.
    Gauthier V, Bernard F, Gaffet E, Munir ZA, Larpin JP (2001) Synthesis of nanocrystalline NbAl3 by mechanical and field activation. Intermetallics 9:571–580CrossRefGoogle Scholar
  31. 31.
    Meng QS, Fan WH, Chen RX, Munir ZA (2011) Thermoelectric properties of Sc- and Y-doped Mg2Si prepared by field-activated and pressure-assisted reactive sintering. J Alloys Compd 509:7922–7926CrossRefGoogle Scholar
  32. 32.
    Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005) Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions. Mater Sci Eng A 394(1–2):139–148CrossRefGoogle Scholar
  33. 33.
    Vanmeensel K, Laptev A, Hennicke J, Vleugels J, Van der Biest O (2005) Modelling of the temperature distribution during field assisted sintering. Acta Mater 53:4379–4388CrossRefGoogle Scholar
  34. 34.
    Langer J, Quach DV, Groza JR, Guillon O (2011) A comparison between FAST and SPS apparatuses based on the sintering of oxide ceramics. Int J Appl Ceram Technol 8(6):1459–1467CrossRefGoogle Scholar
  35. 35.
    Langer J, Hoffmann MJ, Guillon O (2009) Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina. Acta Mater 57(18):5454–5465CrossRefGoogle Scholar
  36. 36.
    Langer J, Hoffmann MJ, Guillon O (2011) Electric field assisted sintering in comparison to hot pressing of yttria stabilized zirconia. J Am Ceram Soc 94(1):131–138CrossRefGoogle Scholar
  37. 37.
    Langer J, Hoffmann MJ, Guillon O (2011) Electric field-assisted sintering and hot pressing of semiconductive zinc oxide: a comparative study. J Am Ceram Soc 94(8):2344–2353CrossRefGoogle Scholar
  38. 38.
    Lee G, Olevsky EA, Manière C, Maximenko A, Izhvanov O, Back C, McKittrick J (2018) Effect of electric current on densification behavior of conductive ceramic powders consolidated by spark plasma sintering. Acta Mater 144:524–533CrossRefGoogle Scholar
  39. 39.
    Wei X, Giuntini D, Maximenko AL, Haines CD, Olevsky EA (2015) Experimental investigation of electric contact resistance in spark plasma sintering tooling setup. J Am Ceram Soc 98(11):3553–3560CrossRefGoogle Scholar
  40. 40.
    Manière C, Durand L, Brisson E, Desplats H, Carré P, Rogeon P, Estournès C (2016) Contact resistances in spark plasma sintering: from in-situ and ex-situ determinations to an extended model for the scale up of the process. J Eur Ceram Soc 37(4):1593–1605CrossRefGoogle Scholar
  41. 41.
    Zhang F, Reich M, Kessler O, Burkel E (2013) The potential of rapid cooling spark plasma sintering for metallic materials. Mater Today 16(5):192–197CrossRefGoogle Scholar
  42. 42.
    Manière C, Lee G, Olevsky EA (2017) Proportional integral derivative, modeling and ways of stabilization for the spark plasma sintering process. Results Physics 7:1494–1497CrossRefGoogle Scholar
  43. 43.
    Hulbert DM, Anders A, Dudina DV, Andersson J, Jiang D, Unuvar C, Anselmi-Tamburini U, Lavernia EJ, Mukherjee AK (2008) The absence of plasma in “spark plasma sintering”. J Appl Phys 104:033305 7 pCrossRefGoogle Scholar
  44. 44.
    Saunders T, Grasso S, Reece MJ (2015) Plasma formation during electric discharge (50 V) through conductive powder compacts. J Eur Ceram Soc 35:871–877CrossRefGoogle Scholar
  45. 45.
    Song X, Liu X, Zhang J (2006) Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J Am Ceram Soc 89(2):494–500CrossRefGoogle Scholar
  46. 46.
    Aman Y, Garnier V, Djurado E (2012) Pressure-less spark plasma sintering effect on non-conventional necking process during the initial stage of sintering of copper and alumina. J Mater Sci 47:5766–5773CrossRefGoogle Scholar
  47. 47.
    Yanagisawa O, Kuramoto H, Matsugi K, Komatsu M (2003) Observation of particle behavior in copper powder compact during pulsed electric discharge. Mater Sci Eng A 350:184–189CrossRefGoogle Scholar
  48. 48.
    Vasiliev P, Akhtar F, Grins J, Mouzon J, Andersson C, Hedlund J, Bergström L (2010) Strong hierarchically porous monoliths by pulsed current processing of zeolite powder assemblies. Appl Mater Interfaces 2(3):732–737CrossRefGoogle Scholar
  49. 49.
    Dudina DV, Mali VI, Anisimov AG, Bulina NV, Korchagin MA, Lomovsky OI, Bataev IA, Bataev VA (2013) Ti3SiC2-Cu composites by mechanical milling and spark plasma sintering: possible microstructure formation scenarios. Met Mater Int 19(6):1235–1241Google Scholar
  50. 50.
    Zhao S, Song X, Zhang J, Liu X (2008) Effects of scale combination and contact condition of raw powders on SPS sintered near-nanocrystalline WC-Co. Mater Sci Eng A 473:323–329Google Scholar
  51. 51.
    Holland TB, Thron AM, Bonifacio CS, Mukherjee AK, van Benthem K (2010) Field assisted sintering of nickel nanoparticles during in situ transmission electron microscopy. Appl Phys Lett 96:243106 3 pCrossRefGoogle Scholar
  52. 52.
    Matsuno M, Bonifacio CS, Rufner JF, Thron AM, Holland TB, Mukherjee AK, van Benthem K (2012) In situ transmission electron microscopic investigations of reduction-oxidation reactions during densification of nickel nanoparticles. J Mater Res 18:2431–2440CrossRefGoogle Scholar
  53. 53.
    Bonifacio CS, Rufner JF, Holland TB, van Benthem K (2012) In situ transmission electron microscopy study of dielectric breakdown of surface oxides during electric field-assisted sintering of nickel nanoparticles. Appl Phys Lett 101:093107 5 pCrossRefGoogle Scholar
  54. 54.
    Bonifacio CS, Holland TB, van Benthem K (2013) Evidence of surface cleaning during electric field assisted sintering. Scr Mater 69:769–772CrossRefGoogle Scholar
  55. 55.
    Zhou Y, Hirao K, Yamauchi Y, Kanzaki S (2003) Effects of heating rate and particle size on pulse electric current sintering of alumina. Scr Mater 48:1631–1636CrossRefGoogle Scholar
  56. 56.
    Shen Z, Johnsson M, Zhao Z, Nygren M (2002) Spark plasma sintering of alumina. J Am Ceram Soc 85(8):1921–1927CrossRefGoogle Scholar
  57. 57.
    Chu MY, Rahaman MN, Dejonghe LC, Brook RJ (1991) Effect of heating rate on sintering and coarsening. J Am Ceram Soc 74:1217–1225CrossRefGoogle Scholar
  58. 58.
    Stanciu LA, Kodash VY, Groza JR (2001) Effects of heating rate on densification and grain growth during field-assisted sintering of α-Al2O3 and MoSi2 powders. Metall Mater Trans A 32:2633–2638CrossRefGoogle Scholar
  59. 59.
    Ivensen VA (1973) Densification of metal powders during sintering. Consultants Bureau, New YorkCrossRefGoogle Scholar
  60. 60.
    Dabhade VV, Mohan TRR, Ramakrishnan P (2007) Dilatometric sintering study of titanium–titanium nitride nano/nanocomposite powders. Powder Metall 50:33–39CrossRefGoogle Scholar
  61. 61.
    Bhattacharjee PP, Sinha SK, Upadhyaya A (2007) Effect of sintering temperature on grain boundary character distribution in pure nickel. Scr Mater 56:13–16CrossRefGoogle Scholar
  62. 62.
    Panda PC, Mobley WM, Raj R (1989) Effect of the heating rate on the relative rates of sintering and crystallization in glass. J Am Ceram Soc 72:2361–2364CrossRefGoogle Scholar
  63. 63.
    Panda PC, Raj R (1989) Sintering and crystallization of glass at constant heating rates. J Am Ceram Soc 72:1564–1566CrossRefGoogle Scholar
  64. 64.
    Gillia O, Bouvard D (2000) Phenomenological analysis of densification kinetics during sintering: application to WC–co mixture. Mater Sci Eng A 279:185–191CrossRefGoogle Scholar
  65. 65.
    Johnson DL (1990) Temperature-gradient-driven diffusion in rapid-rate sintering—comment. J Am Ceram Soc 73(8):2576–2578CrossRefGoogle Scholar
  66. 66.
    Roura P, Costa J, Farjas J (2002) Is sintering enhanced under non-isothermal conditions? Mater Sci Eng A 337(1–2):248–253CrossRefGoogle Scholar
  67. 67.
    Olevsky EA, Kushnarev B, Maximenko A, Tikare V, Braginsky M (2005) Modelling of anisotropic sintering in crystalline ceramics. Philos Mag 85(19):2123–2146CrossRefGoogle Scholar
  68. 68.
    Bross P, Exner HE (1979) Computer simulation of sintering processes. Acta Metall 27:1013–1020CrossRefGoogle Scholar
  69. 69.
    Exner HE (1987) Neck shape and limiting GBD/SD ratios in solid state sintering. Acta Metall 35:587–591CrossRefGoogle Scholar
  70. 70.
    Takahashi Y, Ueno F, Nishiguchi K (1988) A numerical analysis of the void-shrinkage process controlled by surface-diffusion. Acta Metall 36:3007–3018CrossRefGoogle Scholar
  71. 71.
    Bouvard D, McMeeking RM (1996) Deformation of interparticle necks by diffusion-controlled creep. J Am Ceram Soc 79:666–672CrossRefGoogle Scholar
  72. 72.
    Zhang W, Schneibel JH (1995) The sintering of two particles by surface and grain boundary diffusion—a two-dimensional numerical study. Acta Metall Mater 43:4377–4386CrossRefGoogle Scholar
  73. 73.
    Swinkels FB, Ashby MF (1980) Role of surface redistribution in sintering by grain boundary transport. Powder Metall 23(1):1–6CrossRefGoogle Scholar
  74. 74.
    Swinkels FB, Ashby MF (1981) A second report on sintering diagrams. Acta Metall 29:259–281CrossRefGoogle Scholar
  75. 75.
    Svoboda J, Riedel H (1995) Quasi-equilibrium sintering for coupled grain-boundary and surface diffusion. Acta Metall Mater 43(2):499–506CrossRefGoogle Scholar
  76. 76.
    Schwarz S, Thron AM, Rufner J, van Benthem K, Guillon O (2012) Low temperature sintering of nanocrystalline zinc oxide: effect of heating rate achieved by field assisted sintering/spark plasma sintering. J Am Ceram Soc 95(8):2451–2457CrossRefGoogle Scholar
  77. 77.
    Olevsky EA, Froyen L (2006) Constitutive modeling of spark-plasma sintering of conductive materials. Scr Mater 55(12):1175–1178CrossRefGoogle Scholar
  78. 78.
    Olevsky EA, Kandukuri S, Froyen L (2007) Consolidation enhancement in spark-plasma sintering: impact of high heating rates. J Appl Phys 102:114913 12 p CrossRefGoogle Scholar
  79. 79.
    Olevsky EA, Froyen L (2009) Impact of thermal diffusion on densification during SPS. J Am Ceram Soc 92S:122–132CrossRefGoogle Scholar
  80. 80.
    Skorokhod VV, Olevskii EA, Shtern MB (1993) Continuum theory of sintering. I. Phenomenological model. Analysis of the effect of external forces on the kinetics of sintering. Powder Metall Met Ceram 32(1):21–26CrossRefGoogle Scholar
  81. 81.
    Olevsky E, Dudek HJ, Kaysser WA (1996) Hiping conditions for processing of metal matrix composites using the continuum theory for sintering—I. Theoretical analysis. Acta Mater 44:707–713CrossRefGoogle Scholar
  82. 82.
    Olevsky E, Dudek HJ, Kaysser WA (1996) Hiping conditions for processing of metal matrix composites using continuum theory for sintering—II. Application to fibre reinforced titanium alloys. Acta Mater 44:715–724CrossRefGoogle Scholar
  83. 83.
    Olevsky E, Skorohod V, Petzow G (1997) Densification by sintering incorporating phase transformations. Scr Mater 37(5):635–643CrossRefGoogle Scholar
  84. 84.
    Olevsky EA (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R 23(2):41–100CrossRefGoogle Scholar
  85. 85.
    Olevsky EA, Ma J, LaSalvia JC, Meyers MA (2007) Densification of porous bodies in a granular pressure-transmitting medium. Acta Mater 55:1351–1366CrossRefGoogle Scholar
  86. 86.
    Raj R, Ashby MF (1971) On grain boundary sliding and diffusional creep. Metall Trans 2:1113–1127CrossRefGoogle Scholar
  87. 87.
    Maximenko AL, Olevsky EA (2004) Effective diffusion coefficients in solid-state sintering. Acta Mater 52:2953–2963CrossRefGoogle Scholar
  88. 88.
    Skorokhod VV (1972) Reologicheskie Osnovy Teorii Spekaniya (Rheological Basis of Theory of Sintering) Naukova Dumka, Kiev (in Russian)Google Scholar
  89. 89.
    Olevsky EA, Tikare V, Garino T (2006) Multi-scale study of sintering: a review. J Am Ceram Soc 89:1914–1922CrossRefGoogle Scholar
  90. 90.
    Tikare V, Braginsky M, Olevsky E, Johnson DL (2005) Numerical simulation of anisotropic shrinkage in a 2D compact of elongated particles. J Am Ceram Soc 88(1):59–65CrossRefGoogle Scholar
  91. 91.
    Braginsky M, Tikare V, Olevsky E (2005) Numerical simulation of solid state sintering. Int J Solids Struct 42:621–636CrossRefGoogle Scholar
  92. 92.
    Tikare V, Braginsky M, Olevsky EA (2003) Numerical simulation of solid-state sintering: I. Sintering of three particles. J Am Ceram Soc 86:49–53CrossRefGoogle Scholar
  93. 93.
    Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, New YorkGoogle Scholar
  94. 94.
    Hsueh CH, Evans AG, Cannon RM, Brook RJ (1986) Viscoelastic stresses and sintering damage in heterogeneous powder compacts. Acta Metall 34(5):927–936CrossRefGoogle Scholar
  95. 95.
    Du ZZ, Cocks ACF (1992) Constitutive models for the sintering of ceramic components—I. Material models. Acta Metall Mater 40(8):1969–1979CrossRefGoogle Scholar
  96. 96.
    Beck PA, Kremer JC, Demer L (1947) Grain growth in high purity aluminum. Phys Rev 71:555CrossRefGoogle Scholar
  97. 97.
    Olevsky EA, Strutt ER, Meyers MA (2002) Combustion synthesis and quasi-isostatic densification of powder cermets. J Mater Process Technol 121(1):157–166CrossRefGoogle Scholar
  98. 98.
    Chipman J (1926) The Soret effect. J Am Chem Soc 48:2577–2589CrossRefGoogle Scholar
  99. 99.
    Schottky G (1965) A theory of thermal diffusion based on lattice dynamics of a linear chain. Phys Status Solidi 8(1):357–368CrossRefGoogle Scholar
  100. 100.
    Young RM, McPherson R (1989) Temperature-gradient-driven diffusion in rapid-rate sintering. J Am Ceram Soc 72(6):1080–1084CrossRefGoogle Scholar
  101. 101.
    Matlock JH, Stark JP (1971) Thermal diffusion of vacancies in aluminum. Acta Metall 19(9):923–931CrossRefGoogle Scholar
  102. 102.
    Wirtz K (1943) The kinetic theory of thermodiffusion in crystal lattices. Phys Z 44:221–231Google Scholar
  103. 103.
    Kornyushin YV (1980) Influence of external magnetic and electric fields on sintering, structure and properties. J Mater Sci 15(3):799–801CrossRefGoogle Scholar
  104. 104.
    Kornyushin YV (2004) Phenomenological theory of sintering and its application to swelling. Sci Sinter 36:143–154CrossRefGoogle Scholar
  105. 105.
    Rowe DM (2006) Thermoelectrics handbook: macro to Nano. CRC/Taylor & Francis, Boca RatonGoogle Scholar
  106. 106.
    Johnson DL (1991) Microwave heating of grain boundaries in ceramics. J Am Ceram Soc 74(4):849–850CrossRefGoogle Scholar
  107. 107.
    Gostomelskiy VS, Krupnova LV (1985) Growth and healing of pores in metals under the action of current pulses. Phys Chem Mater Treat (Fizika I Khimiya obrabotki Materialov) 4:82–87 (in Russian)Google Scholar
  108. 108.
    Chen W, Anselmi-Tamburini U, Garay JE, Groza JR, Munir ZA (2005) Fundamental investigations on the spark-plasma sintering/synthesis process I. Effect of dc pulsing on reactivity. Mater Sci Eng A 394(1–2):132–138CrossRefGoogle Scholar
  109. 109.
    Xie G, Ohashi O, Chiba K, Yamaguchi N, Song M, Furuya K, Noda T (2003) Frequency effect on pulse electric current sintering process of pure aluminum powder. Mater Sci Eng A 359(1–2):384–390CrossRefGoogle Scholar
  110. 110.
    Scherge M, Bauer CL, Mullins WW (1995) Stress distribution and mass transport along grain boundaries during steady-state electromigration. Acta Metall Mater 43(9):3525–3538CrossRefGoogle Scholar
  111. 111.
    Blech IA, Herring C (1976) Stress generation by electromigration. Appl Phys Lett 29(3):131–133CrossRefGoogle Scholar
  112. 112.
    Xie G, Ohashi O, Yamaguchi N (2002) Sintering behavior of aluminum powder by Spark Plasma Sintering. Trans Mater Res Soc Jpn 27:743–746Google Scholar
  113. 113.
    Holland TB, Tran TB, Quach DV, Anselmi-Tamburini U, Groza JR, Mukherjee AK (2012) Athermal and thermal mechanisms of sintering at high heating rates in the presence and absence of an externally applied field. J Eur Ceram Soc 32(14):3675–3683CrossRefGoogle Scholar
  114. 114.
    Cologna M, Rashkova B, Raj R (2010) Flash sintering of nanograin zirconia in < 5 s at 850 degrees C. J Am Ceram Soc 93:3556–3559CrossRefGoogle Scholar
  115. 115.
    Conrad H (2002) Thermally activated plastic flow of metals and ceramics with an electric field or current. Mater Sci Eng A 322(1–2):100–107CrossRefGoogle Scholar
  116. 116.
    Ruszkiewicz B, Grimm T, Ragai I, Mears L, Roth JT (2017) A review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect. J Manuf Sci Eng 139(11):110801CrossRefGoogle Scholar
  117. 117.
    Salandro WA, Jones JJ, Bunget C, Mears L, Roth JT (2015) The effect of electric current on metals, electrically assisted forming: modeling and control. Springer International Publishing, Cham, pp 37–54Google Scholar
  118. 118.
    Roth JT, Loker I, Mauck D, Warner M, Golovashchenko SF, Krause A (2008) Enhanced formability of 5754 aluminum sheet metal using electric pulsing. Trans North Am Manuf Res Inst SME 36:405–412Google Scholar
  119. 119.
    Kang W, Beniam I, Qidwai SM (2016) In situ electron microscopy studies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system. Rev Sci Instrum 87(9):095001CrossRefGoogle Scholar
  120. 120.
    Kim SJ, Kim SD, Yoo D, Lee J, Rhyim Y, Kim D (2016) Evaluation of the athermal effect of electric pulsing on the recovery behavior of magnesium alloy. Met Mater Trans A 47(12):6368–6373CrossRefGoogle Scholar
  121. 121.
    Mukherjee AK (2002) An examination of the constitutive equation for elevated temperature plasticity. Mater Sci Eng A 322:1–22CrossRefGoogle Scholar
  122. 122.
    Zlokazov VO, Potemkin VV, Stepanov AV, Chikin DG (1992) Influence of structural defects on 1/f in thin niobium films. Radiophys Quantum Electron 35(11):610–613Google Scholar
  123. 123.
    Narayan J (2013) A new mechanism for field-assisted processing and flash sintering of materials. Scr Mater 69(2):107–111CrossRefGoogle Scholar
  124. 124.
    Kumar M, Umezawa N, Ishii S, Nagao T (2016) Examining the performance of refractory conductive ceramics as plasmonic materials: a theoretical approach. ACS Photonics 3(1):43–50CrossRefGoogle Scholar
  125. 125.
    Garay JE, Glade SC, Anselmi-Tamburini U, Asoka-Kumar P, Munir ZA (2004) Electric current enhanced defect mobility in Ni3Ti intermetallics. Appl Phys Lett 85(4):573–575CrossRefGoogle Scholar
  126. 126.
    Kino T, Endo T, Kawata S (1974) Deviations from Matthiessen's rule of the electrical resistivity of dislocations in aluminum. J Phys Soc Jpn 36(3):698–705CrossRefGoogle Scholar
  127. 127.
    Helle AS, Easterling KE, Ashby MF (1985) Hot-isostatic pressing diagrams: new developments. Acta Metall 33(12):2163–2174CrossRefGoogle Scholar
  128. 128.
    Saheb N, Iqbal Z, Khalil A, Hakeem AS, Al Aqeeli N, Laoui T, Al-Qutub A, Kirchner R (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater 2012(2012):983470 13 pGoogle Scholar
  129. 129.
    Hulbert DM, Jiang D, Kuntz JD, Kodera Y, Mukherjee AK (2007) A low-temperature high-strain-rate formable nanocrystalline superplastic ceramic. Scr Mater 56(12):1103–1106CrossRefGoogle Scholar
  130. 130.
    Jiang D, Hulbert DM, Kuntz JD, Anselmi-Tamburini U, Mukherjee AK (2007) Spark plasma sintering: a high strain rate low-temperature forming tool for ceramics. Mater Sci Eng A 463:89–93CrossRefGoogle Scholar
  131. 131.
    Zhan GD, Garay JE, Mukherjee AK (2005) Ultralow-temperature superplasticity in nanoceramic composites. Nano Lett 5(12):2593–2597CrossRefGoogle Scholar
  132. 132.
    Aleksandrova EV, Ilyina AM, Grigoryev EG, Olevsky EA (2015) Contribution of electric current into densification kinetics during spark plasma sintering of conductive powder. J Am Ceram Soc 98(11):3509–3517CrossRefGoogle Scholar
  133. 133.
    Wei X, Maximenko AL, Back C, Izhvanov O, Olevsky EA (2017) Effects of loading modes on densification efficiency of spark plasma sintering: sample study of zirconium carbide consolidation. Philos Mag Lett 97:265–272CrossRefGoogle Scholar
  134. 134.
    Ratzker B, Sokol M, Kalabukhov S, Frage N (2016) Creep of polycrystalline magnesium aluminate spinel studied by an SPS apparatus. Materials 9(6):493CrossRefGoogle Scholar
  135. 135.
    Ratzker B, Sokol M, Kalabukhov S, Frage N (2017) Using a spark plasma sintering apparatus as a tool in a compressive creep study of fine-grained alumina. Ceram Int 43:9369–9376CrossRefGoogle Scholar
  136. 136.
    Manière C, Durand L, Weibel A, Chevallier G, Estournès C (2016) A sacrificial material approach for spark plasma sintering of complex shapes. Scr Mater 124:126–128CrossRefGoogle Scholar
  137. 137.
    Manière C, Nigito E, Durand L, Weibel A, Beynet Y, Estournès C (2017) Spark plasma sintering and complex shapes: the deformed interfaces approach. Powder Technol 320:340–345CrossRefGoogle Scholar
  138. 138.
    Martin G, Fabrègue D, Mercier F, Chafino-Aixa JA, Dendievel R, Blandin JJ (2016) Coupling electron beam melting and spark plasma sintering: a new processing route for achieving titanium architectured microstructures. Scr Mater 122:5–9CrossRefGoogle Scholar
  139. 139.
    Yang J, Trapp J, Guo Q, Kieback B (2013) Joining of 316L stainless steel by using spark plasma sintering method. Mater Des 52:179–189CrossRefGoogle Scholar
  140. 140.
    Rizzo S, Grasso S, Salvo M, Casalegno V, Reece MJ, Ferraris M (2014) Joining of C/SiC composites by spark plasma sintering technique. J Eur Ceram Soc 3:903–913CrossRefGoogle Scholar
  141. 141.
    Grasso S, Tatarko P, Rizzo S, Porwal H, Hu C, Katoh Y, Salvo M, Reece MJ, Ferraris M (2014) Joining of beta-SiC by spark plasma sintering. J Eur Ceram Soc 34:1681–1686CrossRefGoogle Scholar
  142. 142.
    Dong H, Yu Y, Jin X, Tian X, He W, Ma W (2016) Microstructure and mechanical properties of SiC-SiC joints joined by spark plasma sintering. Ceram Int 42:14463–14468CrossRefGoogle Scholar
  143. 143.
    Cui G, Wei X, Olevsky EA, German RM, Chen J (2016) The manufacturing of high porosity iron with an ultra-fine microstructure via free pressureless spark plasma sintering. Materials 9:495CrossRefGoogle Scholar
  144. 144.
    Giuntini D, Wei X, Maximenko AL, Wei L, Ilyina AM, Olevsky EA (2013) Initial stage of free pressureless spark-plasma sintering of vanadium carbide: determination of surface diffusion parameters. Int J Refract Met Hard Mater 41:501–506CrossRefGoogle Scholar
  145. 145.
    Dudina DV (2017) Application of a spark plasma sintering facility for the heat treatment of compact and powder materials. Inorg Mater 53(6):658–663CrossRefGoogle Scholar
  146. 146.
    Rymorov EV, Dyn'kin LK (1973) Wear resistance of parts clad with sintered layers welded on by the electric contact technique. Sov Powder Metall Met Ceram 12(7):569–572CrossRefGoogle Scholar
  147. 147.
    Mel’nikov LA (1971) Investigation of the roller butt welding of steel sheet 1–3 mm thick using iron powders. Synopsis of thesis, Bryansk, 1971 (in Russian)Google Scholar
  148. 148.
    Ryabinina ON, Raichenko AI, Pushkarev VV (1982) Infiltration of graphite by aluminum during electric-discharge sintering. Sov Powder Metall Met Ceram 21(3):179–181Google Scholar
  149. 149.
    Mulukutla M, Singh A, Harimkar S (2010) Spark plasma sintering for multi-scale surface engineering of materials. JOM 62(6):65–71CrossRefGoogle Scholar
  150. 150.
    Xie G, Louzguine-Luzgin DV, Kimura H, Inoue A (2007) Nearly full density Ni52.5Nb10Zr15Ti15Pt7.5Ni52.5Nb10Zr15Ti15Pt7.5 bulk metallic glass obtained by spark plasma sintering of gas atomized powders. Appl Phys Lett 90:241902CrossRefGoogle Scholar
  151. 151.
    Wang Z, Georgarakis K, Nakayama K, Li Y, Tsarkov A, Xie G, Dudina D, Louzguine D, Yavari AR (2016) Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Sci Rep 6:24384CrossRefGoogle Scholar
  152. 152.
    Walker LS, Marotto VR, Rafiee MA, Koratkar N, Corral EL (2011) Toughening in graphene ceramic composites. ACS Nano 5(4):3182–3190CrossRefGoogle Scholar
  153. 153.
    Azarniya A, Sovizi S, Azarniya A, Reza Rahmani Taji Boyuk M, Varol T, Nithyadharseni P, Reza Madaah Hosseini H, Ramakrishna S, Reddy MV (2017) Physicomechanical properties of spark plasma sintered carbon nanotube-containing ceramic matrix nanocomposites. Nanoscale 9:12779–12820CrossRefGoogle Scholar
  154. 154.
    Demirskyi D, Sakka Y, Vasylkiv O (2015) Consolidation of B4C-TaB2 eutectic composites by spark plasma sintering. J Asian Ceramic Soc 3(4):369–372CrossRefGoogle Scholar
  155. 155.
    Demirskyi D, Sakka Y (2014) In situ fabrication of B4C-NbB2 eutectic composites by spark plasma sintering. J Am Ceram Soc 97:2376–2378CrossRefGoogle Scholar
  156. 156.
    Khaleghi E, Lin YS, Meyers MA, Olevsky EA (2010) Spark plasma sintering of tantalum carbide. Scr Mater 63:577–580CrossRefGoogle Scholar
  157. 157.
    Rudolf CC, Agarwal A, Boesl B (2016) TaC–NbC formed by spark plasma sintering with the addition of sintering additives. J Ceram Soc Japan 124(4):381–387CrossRefGoogle Scholar
  158. 158.
    Jiang D, Hulbert DM, Anselmi-Tamburini U, Ng T, Land D, Mukherjee AK (2008) Optically transparent polycrystalline Al2O3 produced by spark plasma sintering. J Am Ceram Soc 91(1):151–154CrossRefGoogle Scholar
  159. 159.
    Meir S, Kalabukhov S, Froumin N, Dariel MP, Frage N (2009) Synthesis and densification of transparent magnesium aluminate spinel by SPS processing. J Am Ceram Soc 92(2):358–364CrossRefGoogle Scholar
  160. 160.
    Sokol M, Halabi M, Kalabukhov S, Frage N (2017) Nano-structured MgAl2O4 spinel consolidated by high pressure spark plasma sintering (HPSPS). J Eur Ceram Soc 37:755–762CrossRefGoogle Scholar
  161. 161.
    Khasanov OL, Dvilis ES, Bikbaeva ZG, Paygin VD, Khasanov AO (2017) Relationship of optical properties and elastoplastic characteristics of transparent spark-plasma-sintered YSZ ceramics. J Ceram Sci Technol 8(1):161–168Google Scholar
  162. 162.
    Noudem JG, Kenfaui D, Chateigner D, Gomina M (2012) Toward the enhancement of thermoelectric properties of lamellar Ca3Co4O9 by edge-free spark plasma texturing. Scr Mater 66:258–260CrossRefGoogle Scholar
  163. 163.
    Bhame SD, Pravarthana D, Prellier W, Noudem JG (2013) Enhanced thermoelectric performance in spark plasma textured bulk n-type BiTe2.7Se0.3 and p-type Bi0.5Sb1.5Te3. Appl Phys Lett 102:211901CrossRefGoogle Scholar
  164. 164.
    He Z, Katsui H, Goto T (2016) High-hardness diamond composite consolidated by spark plasma sintering. J Amer Ceram Soc 99(6):1862–1865CrossRefGoogle Scholar
  165. 165.
    Jayalakshmi S, Gupta M (2015) Metallic amorphous alloy reinforcements in light metal matrices, Springer, 2015 - Technology & Engineering, 112 pGoogle Scholar
  166. 166.
    Hakamada M, Yamada Y, Nomura T, Kusuda H, Chen Y, Mabuchi M (2005) Effect of sintering temperature on compressive properties of porous aluminum produced by spark plasma sintering. Mater Trans 46(2):186–188CrossRefGoogle Scholar
  167. 167.
    Dudina DV, Lomovsky OI, Korchagin MA, Mali VI (2004) Reactions in a metal matrix: synthesis and properties of TiB2-cu nanocomposites. Chem Sustain Dev 12:319–325Google Scholar
  168. 168.
    Kwon YS, Dudina DV, Korchagin MA, Lomovsky OI (2004) Microstructure changes in TiB2-cu nanocomposite under sintering. J Mater Sci 39(16–17):5325–5331CrossRefGoogle Scholar
  169. 169.
    Kim JS, Kwon YS, Lomovsky OI, Korchagin MA, Mali VI, Dudina DV (2006) A synthetic route for metal-ceramic interpenetrating phase composites. Mater Lett 60(29–30):3723–3726CrossRefGoogle Scholar
  170. 170.
    Korchagin MA, Dudina DV (2007) Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites. Comb Expl Shock Waves 43(2):176–187CrossRefGoogle Scholar
  171. 171.
    Bokhonov BB, Dudina DV (2013) Recrystallisation-accompanied phase separation in ag–Fe and ag–Ni nanocomposites: a route to structure tailoring of nanoporous silver. RSC Adv 3(31):12655–12661CrossRefGoogle Scholar
  172. 172.
    Fu YQ, Shearwood C, Xu B, Yu LG, Khor KA (2010) Characterization of spark plasma sintered ag nanopowders. Nanotechnology 21(11):115707CrossRefGoogle Scholar
  173. 173.
    Dudina DV, Ukhina AV, Bokhonov BB, Mali VI, Anisimov AG, Bulina NV, Skovorodin IN (2015) Nickel-graphite composites of variable architecture by graphitization-accompanied spark plasma sintering and hot pressing and their response to phase separation. Sci Sinter 47:237–248CrossRefGoogle Scholar
  174. 174.
    Bokhonov BB, Dudina DV, Ukhina AV, Korchagin MA, Bulina NV, Mali VI, Anisimov AG (2015) Formation of self-supporting porous graphite structures by spark plasma sintering of nickel-amorphous carbon mixtures. J Phys Chem Solids 76:192–202CrossRefGoogle Scholar
  175. 175.
    Dudina DV, Bokhonov BB, Mukherjee AK (2016) Network distribution of reinforcements in composites produced by sintering: microstructure formation and influence on consolidation behavior and properties. J Ceram Soc Jpn 124:289–295CrossRefGoogle Scholar
  176. 176.
    Dudina DV, Ukhina AV, Bokhonov BB, Korchagin MA, Bulina NV, Kato H (2017) The influence of the formation of Fe3C on graphitization in a carbon-rich iron-amorphous carbon mixture processed by spark plasma sintering and annealing. Ceram Int 43:11902–11906Google Scholar
  177. 177.
    Mali VI, Anisimov AG, Kurguzov VD, Dudina DV, Bokhonov BB (2013) Spark Plasma Sintering for the production of micron- and nanoscale materials. Proceedings of Taiwan-Russia Bilateral Symposium on Materials Processing at micro and nano level, Novosibirsk, p 116–119Google Scholar
  178. 178.
    Ukhina AV, Dudina DV, Anisimov AG, Mali VI, Bulina NV, Bataev IA, Skovorodin IN, Bokhonov BB (2015) Porous electrically conductive materials produced by spark plasma sintering and hot pressing of nanodiamonds. Ceram Int 41:12459–12463CrossRefGoogle Scholar
  179. 179.
    Kuznetsov VL, Butenko YV, Chuvilin AL, Romanenko AI, Okotrub AV (2001) Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon. Chem Phys Lett 336:397–404CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eugene A. Olevsky
    • 1
  • Dina V. Dudina
    • 2
  1. 1.College of EngineeringSan Diego State UniversitySan DiegoUSA
  2. 2.Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations