Advertisement

Sequence and Analysis of the Black Raspberry (Rubus occidentalis) Genome

  • Robert VanBuren
  • Doug Bryant
  • Jill M. Bushakra
  • Kelly J. Vining
  • Sergei Filichkin
  • Patrick P. Edger
  • Erik R. Rowley
  • Henry D. Priest
  • Todd P. Michael
  • Michael Dossett
  • Chad E. Finn
  • Nahla V. Bassil
  • Todd C. Mockler
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

The US Pacific Northwest is the primary production region of black raspberry, and this high-value specialty crop has been underutilized for several decades. Black raspberries contain high levels of anthocyanins and other bioactive compounds, which has sparked a renewed interest in breeding programs and cultivation. Despite this potential, black raspberry stands have seen a marked decline that many attribute to disease pressures and only three new cultivars have been released over the last 20 years. Here we discuss the available genomic resources for black raspberry, including the recently released draft genome. These resources will expedite marker-assisted improvement of raspberry with applications across the Rosaceae family. The 243 Mb black raspberry genome was sequenced using an Illumina-based whole genome shotgun sequencing approach, and a chromosome-scale assembly was generated using a high-density genetic map. Black raspberry is the sixth genome to be sequenced in the Rosaceae facilitating in-depth comparative genomics across the family. Black raspberry and the diploid wild strawberry (Fragaria vesca) are largely collinear with some lineage-specific structural rearrangements. The genome has 28,005 genes which is comparable to other Rosaceae species and includes a number of recently duplicated genes which may be related to domestication. Gene expression atlases during fruit ripening and Verticillium inoculation provide insights into ripening and disease resistance, respectively. Together the resources discussed here will provide tools for the improved understanding and breeding of Rosaceae crops.

References

  1. Alice LA (2002) Evolutionary relationships in Rubus (Rosaceae) based on molecular data. Acta Horticu (ISHS) 585:79–83CrossRefGoogle Scholar
  2. Anonymous (2015) National statistics for Raspberries. In: National Agricultural Statistics ServiceGoogle Scholar
  3. Ash MM, Wolford KA, Carden TJ, Hwang KT, Carr TP (2011) Unrefined and refined black raspberry seed oils significantly lower triglycerides and moderately affect cholesterol metabolism in male Syrian hamsters. J Med Food 14:1032–1038CrossRefPubMedGoogle Scholar
  4. Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269CrossRefPubMedGoogle Scholar
  5. Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438CrossRefPubMedGoogle Scholar
  6. Bushakra JM, Bryant DW, Dossett M, Vining KJ, VanBuren R, Gilmore BS, Lee J, Mockler TC, Finn CE, Bassil NV (2015a) A genetic linkage map of black raspberry (Rubus occidentalis) and the mapping of Ag4 conferring resistance to the aphid Amphorophora agathonica. Theor Appl Genet 128:1631–1646CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bushakra JM, Lewers KS, Staton ME, Zhebentyayeva T, Saski CA (2015b) Developing expressed sequence tag libraries and the discovery of simple sequence repeat markers for two species of raspberry (Rubus L.). BMC Plant Biol 15:1–11CrossRefGoogle Scholar
  8. Bushakra JM, Stephens MJ, Atmadjaja AN, Lewers KS, Symonds VV, Udall JA, Chagné D, Buck EJ, Gardiner SE (2012) Construction of black (Rubus occidentalis) and red (R. idaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach. Theor Appl Genet 125:311–327CrossRefPubMedGoogle Scholar
  9. Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES, Nusbaum C, Jaffe DB (2008) ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res 18:810–820CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Alvarado AS, Yandell M (2008) MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18:188–196CrossRefPubMedPubMedCentralGoogle Scholar
  11. Castro P, Stafne ET, Clark JR, Lewers KS (2013) Genetic map of the primocane-fruiting and thornless traits of tetraploid blackberry. Theor Appl Genet 126:2521–2532CrossRefPubMedGoogle Scholar
  12. Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knäbel M, Saeed M, Montanari S, Kim YK, Nicolini D, Larger S, Stefani E, Allan AC, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedow C, Won K, Viola R, Hellens RP, Brewer L, Bus VGM, Schaffer RJ, Gardiner SE, Velasco R (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS ONE 9:e92644CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK, Clemente TE, Diers BW, Jiang J, Hudson ME, Bent AF (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–1209CrossRefPubMedGoogle Scholar
  14. de Oliveira Dal’Molin CG, Quek L-E, Palfreyman RW, Brumbley SM, Nielsen LK (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in arabidopsis. Plant Physiol 152:579–589CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dossett M (2011) Evaluation of genetic diversity in wild populations of black raspberry (Rubus occidentalis L.). Doctor of Philosophy. Oregon State UniversityGoogle Scholar
  16. Dossett M, Bassil NV, Finn CE (2010a) Transferability of Rubus microsatellite markers to black raspberry. Acta Hort. (ISHS) 859:103–109CrossRefGoogle Scholar
  17. Dossett M, Bassil NV, Lewers KS, Finn CE (2012) Genetic diversity in wild and cultivated black raspberry (Rubus occidentalis L.) evaluated by simple sequence repeat markers. Genet Resour Crop Evol 59:1849–1865CrossRefGoogle Scholar
  18. Dossett M, Finn CE (2010) Identification of resistance to the large raspberry aphid in black raspberry. J Am Soc Hortic Sci 135:438–444Google Scholar
  19. Dossett M, Lee J, Finn CE (2008) Inheritance of phenological, vegetative, and fruit chemistry traits in black raspberry. J Am Soc Hortic Sci 133:408–417Google Scholar
  20. Dossett M, Lee J, Finn CE (2010b) Variation in anthocyanins and total phenolics of black raspberry populations. J Funct Foods 2:292–297CrossRefGoogle Scholar
  21. Dossett M, Lee J, Finn CE (2011) Characterization of a novel anthocyanin profile in wild black raspberry mutants: an opportunity for studying the genetic control of pigment and color. J Funct Foods 3:207–214CrossRefGoogle Scholar
  22. Freialdenhoven A, Peterhansel C, Kurth J, Kreuzaler F, Schulze-Lefert P (1996) Identification of genes required for the function of non-race-specific mlo resistance to powdery mildew in barley. Plant Cell 8:5–14CrossRefPubMedPubMedCentralGoogle Scholar
  23. Galletta GJ, Maas JL, Enns JM (1998) ‘Earlysweet’ black raspberry. Fruit Varieties J 52:123–124Google Scholar
  24. Hedrick UP, Taylor OM, Berger A, Slate GL, Einset O (1925) The small fruits of New York. NY, J.B, Lyon Company, Printers, AlbanyGoogle Scholar
  25. Hitchcock CL, Cronquist A (1973) Flora of the Pacific Northwest. University of Washington Press, SeattleGoogle Scholar
  26. Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, Pérez-Torres CA, Carretero-Paulet L, Chang T-H, Lan T, Welch AJ, Juárez MJA, Simpson J (2013) Architecture and evolution of a minute plant genome. Nature 498:94–98CrossRefPubMedPubMedCentralGoogle Scholar
  27. International Rice Genome Sequencing Consortium (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  28. Jennings DL (1988) Raspberries and blackberries: their breeding, diseases and growth. Academic Press, San Diego, CAGoogle Scholar
  29. Jung S, Main D (2013) Genomics and bioinformatics resources for translational science in Rosaceae. Plant Biotechnol Rep 1–16Google Scholar
  30. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mayer KF, Rogers J, Doležel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ, Sourdille P (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788CrossRefGoogle Scholar
  32. Mayes S, Massawe FJ, Alderson PG, Roberts JA, Azam-Ali SN, Hermann M (2011) The potential for underutilized crops to improve security of food production. J Exp BotCrossRefPubMedGoogle Scholar
  33. Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10CrossRefPubMedPubMedCentralGoogle Scholar
  34. Melters DP, Paliulis LV, Korf IF, Chan SWL (2012) Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res 20:579–593CrossRefPubMedGoogle Scholar
  35. Meng R, Finn C (2002) Determining ploidy level and nuclear DNA content in Rubus by flow cytometry. J Am Soc Hortic Sci 127:767–775Google Scholar
  36. Michael TP, VanBuren R (2015) Progress, challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81CrossRefPubMedGoogle Scholar
  37. Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Gray JC, Morden CW (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13:645–658CrossRefPubMedPubMedCentralGoogle Scholar
  38. Montrose DC, Horelik NA, Madigan JP, Stoner GD, Wang L-S, Bruno RS, Park HJ, Giardina C, Rosenberg DW (2011) Anti-inflammatory effects of freeze-dried black raspberry powder in ulcerative colitis. Carcinogenesis 32:343–350CrossRefPubMedGoogle Scholar
  39. Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE (2001) Anthocyanins, Phenolics, and Antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J Agric Food Chem 50:519–525CrossRefGoogle Scholar
  40. Murray SL, Ingle RA, Petersen LN, Denby KJ (2007) Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Mol Plant Microbe Interact 20:1431–1438CrossRefPubMedGoogle Scholar
  41. Naithani S, Partipilo CM, Raja R, Elser JL, Jaiswal P (2016) FragariaCyc: a metabolic pathway database for woodland strawberry Fragaria vesca. Front Plant Sci 7:242CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nakashima M, Hirano K, Nakashima S, Banno H, Nishihama R, Machida Y (1998) The expression pattern of the gene for NPK1 protein kinase related to mitogen-activated protein kinase kinase kinase (MAPKKK) in a tobacco plant: correlation with cell proliferation. Plant Cell Physiol 39:690–700CrossRefPubMedGoogle Scholar
  43. Ohno S (1970) Evolution by gene duplication. Springer, New YorkCrossRefGoogle Scholar
  44. Ourecky DK (1975) Brambles. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, IN, pp 98–129Google Scholar
  45. Seeram NP, Momin RA, Nair MG, Bourquin LD (2001) Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8:362–369CrossRefPubMedGoogle Scholar
  46. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton J-M, Rees DJG, Williams KP, Holt SH, Rojas JJR, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin SA, Troggio M, Viola R, Ashman T-L, Wang H, Dharmawardhana P, Elser J, Raja R, Priest HD, Bryant DW, Fox SE, Givan SA, Wilhelm LJ, Naithani S, Christoffels A, Salama DY, Carter J, Girona EL, Zdepski A, Wang W, Kerstetter RA, Schwab W, Korban SS, Davik J, Monfort A, Denoyes-Rothan B, Arús P, Mittler R, Flinn B, Aharoni A, Bennetzen JL, Salzberg SL, Dickerman AW, Velasco R, Borodovsky M, Veilleux RE, Folta KM (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116CrossRefPubMedGoogle Scholar
  47. Stoner GD, Sardo C, Apseloff G, Mullet D, Wargo W, Pound V, Singh A, Sanders J, Aziz R, Casto B, Sun X (2005) Pharmacokinetics of anthocyanins and ellagic acid in healthy volunteers fed freeze-dried black raspberries daily for 7 days. J Clin Pharmacol 45:1153–1164CrossRefPubMedGoogle Scholar
  48. Straub S, Fishbein M, Livshultz T, Foster Z, Parks M, Weitemier K, Cronn R, Liston A (2011) Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing. BMC Genom 12:211CrossRefGoogle Scholar
  49. Tang H, Lyons E, Pedersen B, Schnable JC, Paterson AH, Freeling M (2011) Screening synteny blocks in pairwise genome comparisons through integer programming. BMC Bioinformatics 12:1–11CrossRefGoogle Scholar
  50. Tennessen JA, Govindarajulu R, Ashman T-L, Liston A (2014) Evolutionary origins and dynamics of octoploid strawberry subgenomes revealed by dense targeted capture linkage maps. Genome Biol Evol 6:3295–3313CrossRefPubMedPubMedCentralGoogle Scholar
  51. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796CrossRefGoogle Scholar
  52. Thomma BPHJ, Cammue BPA, Thevissen K (2002) Plant defensins. Planta 216:193–202CrossRefPubMedGoogle Scholar
  53. Thompson MM (1995) Chromosome numbers of Rubus cultivars at the national clonal germplasm repository. HortScience 30:1447–1456Google Scholar
  54. Tulio AZ, Reese RN, Wyzgoski FJ, Rinaldi PL, Fu R, Scheerens JC, Miller AR (2008) Cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside as primary phenolic antioxidants in black raspberry. J Agric Food Chem 56:1880–1888CrossRefPubMedGoogle Scholar
  55. VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, Priest HD, Michael TP, Lyons E, Filichkin SA (2016) The genome of black raspberry (Rubus occidentalis). Plant JGoogle Scholar
  56. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839CrossRefPubMedGoogle Scholar
  57. Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, Fabbro CD, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arus P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494CrossRefPubMedGoogle Scholar
  58. Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, Barry K, Lucas S, Harmon-Smith M, Lail K (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768CrossRefGoogle Scholar
  59. Wang S, Shi C, Gao L (2013) Plastid genome sequence of a wild woody oil species, prinsepia utilis, provides insights into evolutionary and mutational patterns of rosaceae chloroplast genomes. PLoS One 8Google Scholar
  60. Wang SY, Lin H-S (2000) Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem 48:140–146CrossRefPubMedGoogle Scholar
  61. Weber CA (2003) Genetic diversity in black raspberry detected by RAPD markers. HortScience 38:269–272Google Scholar
  62. Woodhead M, Weir A, Smith K, McCallum S, MacKenzie K, Graham J (2010) Functional markers for red raspberry. J Am Soc Hortic Sci 135:418–427Google Scholar
  63. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H (2013a) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013b) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408CrossRefPubMedPubMedCentralGoogle Scholar
  65. Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530CrossRefPubMedGoogle Scholar
  66. Yan M, Dai T, Deak JC, Kyriakis JM, Zon LI, Woodgett JR, Templeton DJ (1994) Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature 372:798–800CrossRefPubMedGoogle Scholar
  67. Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G, Xing Z, Han C, Pan H, Zhong X, Shi W, Liang X, Du D, Sun F, Xu Z, Hao R, Lv T, Lv Y, Zheng Z, Sun M, Luo L, Cai M, Gao Y, Wang J, Yin Y, Xu X, Cheng T, Wang J (2012) The genome of Prunus mume. Nat Commun 3:8Google Scholar
  68. Zhang Z, Knobloch TJ, Seamon LG, Stoner GD, Cohn DE, Paskett ED, Fowler JM, Weghorst CM (2011) A black raspberry extract inhibits proliferation and regulates apoptosis in cervical cancer cells. Gynecol Oncol 123:401–406CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zikri NN, Riedl KM, Wang L-S, Lechner J, Schwartz SJ, Stoner GD (2009) Black raspberry components inhibit proliferation, induce apoptosis, and modulate gene expression in rat esophageal epithelial cells. Nutr Cancer 61:816–826CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Robert VanBuren
    • 1
    • 2
  • Doug Bryant
    • 2
  • Jill M. Bushakra
    • 3
  • Kelly J. Vining
    • 4
  • Sergei Filichkin
    • 5
  • Patrick P. Edger
    • 1
  • Erik R. Rowley
    • 2
  • Henry D. Priest
    • 2
  • Todd P. Michael
    • 6
  • Michael Dossett
    • 7
  • Chad E. Finn
    • 8
  • Nahla V. Bassil
    • 3
  • Todd C. Mockler
    • 2
  1. 1.Department of HorticultureMichigan State UniversityEast LansingUSA
  2. 2.Donald Danforth Plant Science CenterSt. LouisUSA
  3. 3.United States Department of Agriculture-Agricultural Research ServiceNational Clonal Germplasm RepositoryCorvallisUSA
  4. 4.Department of HorticultureOregon State UniversityCorvallisUSA
  5. 5.Center for Genome Research and BiocomputingOregon State UniversityCorvallisUSA
  6. 6.Ibis BiosciencesCarlsbadUSA
  7. 7.B.C. Blueberry Council (in Partnership with Agriculture and Agri-Food Canada)Pacific Agri-Food Research CentreAbbotsfordCanada
  8. 8.USDA-ARS Horticultural Crops Research UnitCorvallisUSA

Personalised recommendations