Advertisement

Molecular Tools for Assessing Saproxylic Insect Diversity

  • Ryan C. Garrick
  • Christophe Bouget
Chapter
Part of the Zoological Monographs book series (ZM, volume 1)

Abstract

Little is known about the amount and spatial distribution of diversity within and among deadwood-dependent insect species and saproxylic communities as a whole. Molecular approaches offer a solution to these knowledge gaps, even in cases where species and genera are not yet formally described. Indeed, molecular data are broadly connectable among otherwise unrelated studies and directly complement the invaluable work of expert taxonomists. Here we provide an overview of the applications of molecular tools for assessing saproxylic insect diversity. To do this, we use an organizational framework based on the hierarchy of biological units, beginning with diversity at the intraspecific level, followed by species-level diversity within genera, and then close with community-level diversity. Within each of these sections, we consider the types of genetic data that have typically been used and provide an overview of research questions and findings from the primary literature.

Notes

Acknowledgments

R.C.G.’s work on North American saproxylic invertebrates was supported by start-up funds from the University of Mississippi and research grants from the American Philosophical Society, Bay and Paul Foundations, Conservation and Research Foundation, Eppley Foundation for Research, National Geographic Society, Systematics Research Fund, and Washington Biologists’ Field Club. We thank Mike Ulyshen for his generous invitation to contribute to this book series, as well as Chaz Hyseni, Fabien Laroche, Rodolphe Rougerie, Carlos Lopez-Vaamonde, Mike Ulyshen, and two anonymous reviewers for constructive comments on earlier drafts.

References

  1. Aldrich BT, Kambhampati S (2004) Microsatellite markers for two species of dampwood termites in the genus Zootermopsis (Isoptera: Termopsidae). Mol Ecol Notes 4:719–721CrossRefGoogle Scholar
  2. Aldrich BT, Kambhampati S (2007) Population structure and colony composition of two Zootermopsis nevadensis subspecies. Heredity 99:443–451PubMedCrossRefPubMedCentralGoogle Scholar
  3. Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations, 2nd edn. Wiley-Blackwell, ChichesterGoogle Scholar
  4. Alvarez-Presas M, Carbayo F, Rozas J, Riutort M (2011) Land planarians (Platyhelminthes) as a model organism for fine-scale phylogeographic studies: understanding patterns of biodiversity in the Brazilian Atlantic Forest hotspot. J Evol Biol 24:887–896PubMedCrossRefPubMedCentralGoogle Scholar
  5. Andújar C, Arribas P, Ruzicka F, Crampton-Platt A, Timmermans MJ, Vogler AP (2015) Phylogenetic community ecology of soil biodiversity using mitochondrial metagenomics. Mol Ecol 24:3603–3617PubMedCrossRefPubMedCentralGoogle Scholar
  6. Armstrong KF, Ball SL (2005) DNA barcodes for biosecurity: invasive species identification. Philos Trans R Soc Lond B Biol Sci 360:1813–1823PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ashfaq M, Hebert PD, Naaum A (2016) DNA barcodes for bio-surveillance: regulated and economically important arthropod plant. Genome 59:933–945PubMedCrossRefPubMedCentralGoogle Scholar
  8. Astrin JJ, Stüben PE, Misof B, Wägele JW, Gimnich F, Raupach MJ, Ahrens D (2012) Exploring diversity in cryptorhynchine weevils (Coleoptera) using distance-, character- and tree-based species delineation. Mol Phylogenet Evol 63:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  9. Audisio P, Brustel H, Carpaneto GM, Coletti G, Mancini E, Trizzino M, Antonini G, De Biase A (2009) Data on molecular taxonomy and genetic diversification of the European Hermit beetles, a species complex of endangered insects (Coleoptera: Scarabaeidae, Cetoniinae, Osmoderma). J Zool Syst Evol Res 47:88–95CrossRefGoogle Scholar
  10. Austin JW, Szalanski AL, Gold RE, Foster BT (2004) Genetic variation and geographical distribution of the subterranean termite genus Reticulitermes in Texas. Southwest Entomol 29:1–11Google Scholar
  11. Austin JW, Szalanski AL, Scheffrahn RH, Messenger MT, Dronnet S, Bagnères A-G (2005) Genetic evidence for the synonymy of two Reticulitermes species: Reticulitermes flavipes and Reticulitermes santonensis. Ann Entomol Soc Am 98:395–401CrossRefGoogle Scholar
  12. Austin JW, Szalanski AL, Messenger MT, McKern JA, Gold RE (2006) Genetic variation and phylogenetics of Reticulitermes (Isoptera: Rhinotermitidae) from the American Great Plains. Sociobiology 48:427–445Google Scholar
  13. Austin JW, Bagnères A-G, Szalanski AL, Scheffrahn RH, Heintschel BP, Messenger MT, Clément J-L, Gold RE (2007) Reticulitermes malletei (Isoptera: Rhinotermitidae): a valid Nearctic subterranean termite from Eastern North America. Zootaxa 1554:1–26Google Scholar
  14. Avise JC (2004) Molecular markers, natural history and evolution, 2nd edn. Sinauer, Sunderland, MAGoogle Scholar
  15. Aylagas E, Borja Á, Rodríguez-Ezpeleta N (2014) Environmental status assessment using DNA metabarcoding: towards a genetics based marine biotic index (gAMBI). PLoS ONE 9:e90529PubMedPubMedCentralCrossRefGoogle Scholar
  16. Baldrian P, Zrůstová P, Tláskal V, Davidová A, Merhautová V, Vrška T (2016) Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol 23:109–122CrossRefGoogle Scholar
  17. Bankhead-Dronnet S, Perdereau E, Kutnik M, Dupont S, Bagnères A-G (2015) Spatial structuring of the population genetics of a European subterranean termite species. Ecol Evol 5:3090–3102PubMedPubMedCentralCrossRefGoogle Scholar
  18. Beavis AS, Sunnucks P, Rowell DM (2011) Microhabitat preferences drive phylogeographic disparities in two Australian funnel web spiders. Biol J Linn Soc Lond 104:805–819CrossRefGoogle Scholar
  19. Bergsten J, Bilton DT, Fujisawa T, Elliott M, Monaghan MT, Balke M, Hendrich L, Geijer J, Herrmann J, Foster GN, Ribera I, Nilsson AN, Barraclough TG, Vogler AP (2012) The effect of geographical scale of sampling on DNA barcoding. Syst Biol 61:851–869PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bienert F, De Danieli S, Miquel C, Coissac E, Poillot C, Brun JJ, Taberlet P (2012) Tracking earthworm communities from soil DNA. Mol Ecol 21:2017–2030PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bohmann K, Evans A, Gilbert MT, Carvalho GR, Creer S, Knapp M, Yu DW, de Bruyn M (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367PubMedCrossRefPubMedCentralGoogle Scholar
  22. Booth W, Brent CS, Calleri DV, Rosengaus RB, Traniello JFA, Vargo EL (2012) Population genetic structure and colony breeding system in dampwood termites (Zootermopsis angusticollis and Z. nevadensis nuttingi). Insectes Soc 59:127–137CrossRefGoogle Scholar
  23. Bouget C, Parmain G, Gilg O, Noblecourt T, Nusillard B, Paillet Y, Pernot C, Larrieu L, Gosselin F (2014) Does a set-aside conservation strategy help the restoration of old-growth forest attributes and recolonization by saproxylic beetles? Anim Conserv 17:342–353CrossRefGoogle Scholar
  24. Burnside CA, Smith PT, Kambhampati S (1999) Three new species of the wood roach, Cryptocercus (Blattodea: Cryptocercidae), from the Eastern United States. J Kans Entomol Soc 72:361–378Google Scholar
  25. Cameron SL, Whiting MF (2007) Mitochondrial genomic comparisons of the subterranean termites from the genus Reticulitermes (Insecta: Isoptera: Rhinotermitidae). Genome 50:188–202PubMedCrossRefPubMedCentralGoogle Scholar
  26. Carstens BC, Pelletier TA, Reid NM, Satler JD (2013) How to fail at species delimitation. Mol Ecol 22:4369–4383PubMedCrossRefPubMedCentralGoogle Scholar
  27. Castalanelli MA, Severtson DL, Brumley CJ, Szito A, Foottit RG, Grimm M, Munyard K, Groth DM (2010) A rapid non-destructive DNA extraction method for insects and other arthropods. J Asia Pac Entomol 13:243–248CrossRefGoogle Scholar
  28. Caterino MS, Cho S, Sperling FA (2000) The current state of insect molecular systematics: a thriving Tower of Babel. Annu Rev Entomol 45:1–54PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chang H, Liu Q, Hao D, Liu Y, An Y, Qian L, Yang X (2014) DNA barcodes and molecular diagnostics for distinguishing introduced Xyleborus (Coleoptera: Scolytinae) species in China. Mitochondrial DNA 25:63–69PubMedCrossRefPubMedCentralGoogle Scholar
  30. Cicconardi F, Borges PA, Strasberg D, Oromí P, López H, Pérez-Delgado AJ, Casquet J, Caujapé-Castells J, Fernández-Palacios JM, Thébaud C, Emerson BC (2017) MtDNA metagenomics reveals large-scale invasion of belowground arthropod communities by introduced species. Mol Ecol 26:3104–3115PubMedCrossRefPubMedCentralGoogle Scholar
  31. Clayhills T, Audisio P, Cline AR, Mancini E, Trizzino M, Sabatelli S (2016) Unraveling cryptic species diversity in an aposematic sap beetle genus (Coleoptera: Nitidulidae: Cryptarchinae) from northern Europe. Insect Syst Evol 47:131–148CrossRefGoogle Scholar
  32. Copren KA, Nelson LJ, Vargo EL, Haverty MI (2005) Phylogenetic analyses of mtDNA sequences corroborate taxonomic designations based on cuticular hydrocarbons in subterranean termites. Mol Phylogenet Evol 35:689–700PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cox K, Thomaes A, Antonini G, Zilioli M, De Gelas K, Harvey D, Solano E, Audisio P, McKeown N, Shaw P, Minetti R, Bartolozzi L, Mergeay J (2013) Testing the performance of a fragment of the COI gene to identify western Palaearctic stag beetle species (Coleoptera, Lucanidae). ZooKeys 365:105–126CrossRefGoogle Scholar
  34. Cristescu ME (2014) From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. Trends Ecol Evol 29:566–571PubMedCrossRefPubMedCentralGoogle Scholar
  35. Cuadros-Orellana S, Leite L, Smith A, Medeiros J, Badotti F, Fonseca P, Vaz A, Oliveira G, Góes-Neto A (2013) Assessment of fungal diversity in the environment using metagenomics: a decade in review. Fungal Genom Biol 3:110Google Scholar
  36. Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P (2014) DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biol Lett 10:20140562PubMedPubMedCentralCrossRefGoogle Scholar
  37. Derraik JG, Closs GP, Dickinson KJ, Sirvid P, Barratt BI, Patrick BH (2002) Arthropod morphospecies versus taxonomic species: a case study with Araneae, Coleoptera, and Lepidoptera. Conserv Biol 16:1015–1023CrossRefGoogle Scholar
  38. Dillard JR (2017) High rates of extra-pair paternity in a socially monogamous beetle with biparental care. Ecol Entomol 42:1–10CrossRefGoogle Scholar
  39. Dillon N, Austin AD, Bartowsky E (1996) Comparison of preservation techniques for DNA extraction from hymenopterous insects. Insect Mol Biol 5:21–24PubMedCrossRefPubMedCentralGoogle Scholar
  40. Drag L, Cizek L (2015) Successful reintroduction of an endangered veteran tree specialist: conservation and genetics of the Great Capricorn beetle (Cerambyx cerdo). Conserv Genet 16:267–276CrossRefGoogle Scholar
  41. Drag L, Zima J Jr, Cizek L (2013a) Characterization of nine polymorphic microsatellite loci for a threatened saproxylic beetle Rosalia alpina (Coleoptera: Cerambycidae). Conserv Genet Resour 5:903–905CrossRefGoogle Scholar
  42. Drag L, Kosnar J, Cizek L (2013b) Development and characterization of ten polymorphic microsatellite loci for the Great Capricorn beetle (Cerambyx cerdo) (Coleoptera: Cerambycidae). Conserv Genet Resour 5:907–909CrossRefGoogle Scholar
  43. Drag L, Hauck D, Bérces S, Michalcewicz J, Šerić Jelaska L, Aurenhammer S, Cizek L (2015) Genetic differentiation of populations of the threatened saproxylic beetle Rosalia longicorn, Rosalia alpina (Coleoptera: Cerambycidae) in Central and South-east Europe. Biol J Linn Soc Lond 116:911–925CrossRefGoogle Scholar
  44. Dronnet S, Bagnères A-G, Juba TR, Vargo EL (2004) Polymorphic microsatellite loci in the European subterranean termite, Reticulitermes santonensis Feytaud. Mol Ecol Notes 4:127–129CrossRefGoogle Scholar
  45. Dupuis JR, Roe AD, Sperling FA (2012) Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Mol Ecol 21:4422–4436PubMedCrossRefPubMedCentralGoogle Scholar
  46. Ebach MC, Valdecasas AG, Wheeler QD (2011) Impediments to taxonomy and users of taxonomy: accessibility and impact evaluation. Cladistics 27:550–557CrossRefGoogle Scholar
  47. Edwards SV, Beerli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854PubMedPubMedCentralGoogle Scholar
  48. Eitzinger B, Micic A, Körner M, Traugott M, Scheu S (2013) Unveiling soil food web links: new PCR assays for detection of prey DNA in the gut of soil arthropod predators. Soil Biol Biochem 57:943–945CrossRefGoogle Scholar
  49. Ence DD, Carstens BC (2011) SpedeSTEM: a rapid and accurate method for species delimitation. Mol Ecol Resour 11:473–480PubMedCrossRefPubMedCentralGoogle Scholar
  50. Evans DM, Kitson JJ, Lunt DH, Straw NA, Pocock MJ (2016) Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems. Funct Ecol 30:1904–1916CrossRefGoogle Scholar
  51. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  52. Faith DP (2002) Quantifying biodiversity: a phylogenetic perspective. Conserv Biol 16:248–252CrossRefGoogle Scholar
  53. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedPubMedCentralGoogle Scholar
  54. Foltan P, Sheppard S, Konvicka M, Symondson W (2005) The significance of facultative scavenging in generalist predator nutrition: detecting decayed prey in the guts of predators using PCR. Mol Ecol 14:4147–4158PubMedCrossRefPubMedCentralGoogle Scholar
  55. Fontaneto D, Flot JF, Tang CQ (2015) Guidelines for DNA taxonomy, with a focus on the meiofauna. Mar Biodivers 45:433–451CrossRefGoogle Scholar
  56. Foster BT, Cognato AI, Gold RE (2004) DNA-based identification of the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). J Econ Entomol 97:95–101PubMedCrossRefPubMedCentralGoogle Scholar
  57. Frishkoff LO, Karp DS, M’Gonigle LK, Mendenhall CD, Zook J, Kremen C, Hadly EA, Daily GC (2014) Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345:1343–1346PubMedCrossRefPubMedCentralGoogle Scholar
  58. Garrick RC (2017) Genetic insights into family group co-occurrence in Cryptocercus punctulatus, a sub-social woodroach from the southern Appalachian Mountains. PeerJ 5:e3127PubMedPubMedCentralCrossRefGoogle Scholar
  59. Garrick RC, Sands CJ, Sunnucks P (2006) The use and application of phylogeography for invertebrate conservation research and planning. In: Grove SJ, Hanula JL (eds) Insect biodiversity and dead wood: Proceedings of a symposium for the 22nd International Congress of Entomology, pp 15–22. General Technical Report SRS-93. U.S. Department of Agriculture Forest Service, Southern Research Station, Asheville, NCGoogle Scholar
  60. Garrick RC, Caccone A, Sunnucks P (2010) Inference of population history by coupling exploratory and model-driven phylogeographic analyses. Int J Mol Sci 11:1190–1227PubMedPubMedCentralCrossRefGoogle Scholar
  61. Garrick RC, Rowell DM, Sunnucks P (2012) Phylogeography of saproxylic and forest floor invertebrates from Tallaganda, south-eastern Australia. Insects 3:270–294PubMedPubMedCentralCrossRefGoogle Scholar
  62. Garrick RC, Collins BD, Yi RN, Dyer RJ, Hyseni C (2015) Identification of eastern United States Reticulitermes termite species via PCR-RFLP, assessed using training and test data. Insects 6:524–537PubMedPubMedCentralCrossRefGoogle Scholar
  63. Garrick RC, Sabree ZL, Jahnes BC, Oliver JC (2017) Strong spatial-genetic congruence between a wood-feeding cockroach and its bacterial endosymbiont, across a topographically complex landscape. J Biogeogr 44:1500–1511CrossRefGoogle Scholar
  64. Gibson J, Shokralla S, Porter TM, King I, Van Konynenburg S, Janzen DH, Hallwachs W, Hajibabaei M (2014) Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. Proc Natl Acad Sci U S A 111:8007–8012PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gómez-Rodríguez C, Crampton-Platt A, Timmermans MJ, Baselga A, Vogler AP (2015) Validating the power of mitochondrial metagenomics for community ecology and phylogenetics of complex assemblages. Methods Ecol Evol 6:883–894CrossRefGoogle Scholar
  66. Goodisman MAD, Crozier RH (2002) Population and colony genetic structure of the primitive termite Mastotermes darwiniensis. Evolution 56:70–83PubMedCrossRefPubMedCentralGoogle Scholar
  67. Goodisman MAD, Evans TA, Ewen JG, Crozier RH (2001) Microsatellite markers in the primitive termite Mastotermes darwiniensis. Mol Ecol Notes 1:250–251CrossRefGoogle Scholar
  68. Gossner MM, Struwe JF, Sturm S, Max S, McCutcheon M, Weisser WW, Zytynska SE (2016) Searching for the optimal sampling solution: variation in invertebrate communities, sample condition and DNA quality. PLoS ONE 11:e0148247PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gray C, Baird DJ, Baumgartner S, Jacob U, Jenkins GB, O’Gorman EJ, Lu X, Ma A, Pocock MJ, Schuwirth N, Thompson M, Woodward G (2014) FORUM: Ecological networks: the missing links in biomonitoring science. J Appl Ecol 51:1444–1449PubMedPubMedCentralCrossRefGoogle Scholar
  70. Grove SJ (2002a) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23CrossRefGoogle Scholar
  71. Grove SJ (2002b) Tree basal area and dead wood as surrogate indicators of saproxylic insect faunal integrity: a case study from the Australian lowland tropics. Ecol Indic 1:171–188CrossRefGoogle Scholar
  72. Grove SJ, Stork NE (2000) An inordinate fondness for beetles. Invertebr Taxon 14:733–739CrossRefGoogle Scholar
  73. Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23:167–172PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hajibabaei M, Spall JL, Shokralla S, van Konynenburg S (2012) Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. BMC Ecol 12:28PubMedPubMedCentralCrossRefGoogle Scholar
  75. Haran J, Koutroumpa F, Magnoux E, Roques A, Roux G (2015) Ghost mtDNA haplotypes generated by fortuitous NUMTs can deeply disturb infra-specific genetic diversity and phylogeographic pattern. J Zool Syst Evol Res 53:109–115CrossRefGoogle Scholar
  76. Harvey DJ, Harvey H, Larsson MC, Svensson GP, Hedenström E, Finch P, Gange AC (2017) Making the invisible visible: determining an accurate national distribution of Elater ferrugineus in the United Kingdom using pheromones. Insect Conserv Divers 10:283–293CrossRefGoogle Scholar
  77. Hausmann A, Charles H, Godfray J, Huemer P, Mutanen M, Rougerie R, Van Nieukerken EJ, Ratnasingham S, Hebert PD (2013) Genetic patterns in European geometrid moths revealed by the Barcode Index Number (BIN) system. PLoS ONE 8:e84518PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hayashi Y, Maekawa K, Nalepa CA, Miura T, Shigenobu S (2017) Transcriptome sequencing and estimation of DNA methylation level in the subsocial wood-feeding cockroach Cryptocercus punctulatus (Blattodea: Cryptocercidae). Appl Entomol Zool 52:643–651CrossRefGoogle Scholar
  79. Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54:852–859PubMedCrossRefPubMedCentralGoogle Scholar
  80. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321CrossRefGoogle Scholar
  81. Hendrich L, Morinière J, Haszprunar G, Hebert PD, Hausmann A, Köhler F, Balke M (2015) A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD. Mol Ecol Resour 15:795–818PubMedCrossRefPubMedCentralGoogle Scholar
  82. Höfer H, Astrin J, Holstein J, Spelda J, Meyer F, Zarte N (2015) Propylene glycol – a useful capture preservative for spiders for DNA barcoding. Arachnol Mitt 50:30–36CrossRefGoogle Scholar
  83. Hoppe B, Krüger D, Kahl T, Arnstadt T, Buscot F, Bauhus J, Wubet T (2015) A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Sci Rep 5:9456PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hoppe B, Purahong W, Wubet T, Kahl T, Bauhus J, Arnstadt T, Hofrichter M, Buscot F, Krüger D (2016) Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Divers 77:367–379CrossRefGoogle Scholar
  85. Huemer P, Mutanen M, Sefc KM, Hebert PD (2014) Testing DNA barcode performance in 1000 species of European Lepidoptera: large geographic distances have small genetic impacts. PLoS ONE 9:e115774PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hugall A, Moritz C, Moussalli A, Stanisic J (2002) Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proc Natl Acad Sci U S A 99:6112–6117PubMedPubMedCentralCrossRefGoogle Scholar
  87. Jang Y, Jang S, Min M, Hong JH, Lee H, Lee H, Lim YW, Kim JJ (2015) Comparison of the diversity of basidiomycetes from dead wood of the Manchurian fir (Abies holophylla) as evaluated by fruiting body collection, mycelial isolation, and 454 sequencing. Microb Ecol 70:634–645PubMedCrossRefPubMedCentralGoogle Scholar
  88. Janowiecki MA, Szalanski AL (2015) Molecular diagnostic technique for the differentiation of the formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae) from other subterranean termites by multiplex-PCR. Fla Entomol 98:387–388CrossRefGoogle Scholar
  89. Janzen DH, Hallwachs W, Blandin P, Burns JM, Cadiou JM, Chacon I, Dapkey T, Deans AR, Epstein ME, Espinoza B, Franclemont JG, Haber WA, Hajibabaei M, Hall JP, Hebert PD, Gauld ID, Harvey DJ (2009) Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Mol Ecol Resour 9:1–26PubMedCrossRefPubMedCentralGoogle Scholar
  90. Jenkins TM, Haverty MI, Basten CJ, Nelson LJ, Page M, Forschler BT (2000) Correlation of mitochondrial haplotypes with cuticular hydrocarbon phenotypes of sympatric Reticulitermes species from the Southeastern United States. J Chem Ecol 26:1525–1542CrossRefGoogle Scholar
  91. Ji Y, Ashton L, Pedley SM, Edwards DP, Tang Y, Nakamura A, Kitching R, Dolman PM, Woodcock P, Edwards FA, Larsen TH, Hsu WW, Benedick S, Hamer KC, Wilcove DS, Bruce C, Wang X, Levi T, Lott M, Emerson BC, Yu DW (2013) Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol Lett 16:1245–1257PubMedCrossRefPubMedCentralGoogle Scholar
  92. Jonsson BG, Kruys N (2001) Ecology of woody debris in boreal forests. Ecol Bull 49:1–281Google Scholar
  93. Jonsson M, Johannesen J, Seitz A (2003) Comparative genetic structure of the threatened tenebrionid beetle Oplocephala haemorrhoidalis and its common relative Bolitophagus reticulatus. J Insect Conserv 7:111–124CrossRefGoogle Scholar
  94. Jordal BH, Kambestad M (2014) DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Mol Ecol Resour 14:7–17PubMedCrossRefPubMedCentralGoogle Scholar
  95. Kambhampati S, Luykx P, Nalepa CA (1996) Evidence for sibling species in Cryptocercus punctulatus, the wood roach, from variation in mitochondrial DNA and karyotype. Heredity 76:485–496PubMedCrossRefPubMedCentralGoogle Scholar
  96. King I (2009) The need for the incorporation of phylogeny in the measurement of biological diversity, with special reference to ecosystem functioning research. BioEssays 31:107–116PubMedCrossRefPubMedCentralGoogle Scholar
  97. King SW, Austin JW, Szalanski AL (2007) Use of soldier pronotal width and mitochondrial DNA sequencing to distinguish the subterranean termites, Reticulitermes flavipes (Kollar) and R. virginicus (Banks) (Isoptera: Rhinotermitidae), on the Delmarva Peninsula: Delaware, Maryland, and Virginia, U.S.A. Entomol News 118:41–48CrossRefGoogle Scholar
  98. Kubartová A, Ottosson E, Dahlberg A, Stenlid J (2012) Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Mol Ecol 21:4514–4532PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lamarre GP, Decaëns T, Rougerie R, Barbut J, Dewaard JR, Hebert PD, Herbin D, Laguerre M, Thiaucourt P, Bonifacio Martins M (2016) An integrative taxonomy approach unveils unknown and threatened moth species in Amazonian rainforest fragments. Insect Conserv Divers 9:475–479CrossRefGoogle Scholar
  100. Landvik M, Wahlberg N, Roslin T (2013) The identity of the Finnish Osmoderma (Coleoptera: Scarabaeidae, Cetoniinae) population established by COI sequencing. Entomol Fenn 24:147–155Google Scholar
  101. Langor DW, Spence JR, Hammond HEJ, Jacobs J, Cobb TP (2006) Maintaining saproxylic insects in Canada’s extensively managed boreal forests: a review. In: Grove SJ, Hanula JL (eds) Insect biodiversity and dead wood: Proceedings of a symposium for the 22nd International Congress of Entomology, pp 83–97. General Technical Report SRS-93. U.S. Department of Agriculture Forest Service, Southern Research Station, Asheville, NC, USA.Google Scholar
  102. Lebuhn G, Droege S, Connor EF, Gemmill-Herren B, Potts SG, Minckley RL, Griswold T, Jean R, Kula E, Roubik DW, Cane J, Wright KW, Frankie G, Parker F (2013) Detecting insect pollinator declines on regional and global scales. Conserv Biol 27:113–120PubMedCrossRefPubMedCentralGoogle Scholar
  103. Leschen RAB, Buckley TR, Harman HM, Shulmeister J (2008) Determining the origin and age of the Westland beech (Nothofagus) gap, New Zealand, using fungus beetle genetics. Mol Ecol 17:1256–1276PubMedCrossRefPubMedCentralGoogle Scholar
  104. Lim SY, Forschler BT (2012) Reticulitermes nelsonae, a new species of subterranean termite (Rhinotermitidae) from the Southeastern United States. Insects 3:62–90PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lin C-P, Huang J-P, Lee Y-H, Chen M-Y (2009) Phylogenetic position of a threatened stag beetle, Lucanus datunensis (Coleoptera: Lucanidae) in Taiwan and implications for conservation. Conserv Genet 12:337–341CrossRefGoogle Scholar
  106. Lin C-P, Huang J-P, Lee Y-H, Chen M-Y (2011) Phylogenetic position of a threatened stag beetle, Lucanus datunensis (Coleoptera: Lucanidae) in Taiwan and implications for conservation. Conserv Genet 12:337–341CrossRefGoogle Scholar
  107. Lindenmayer DB, Margules CR, Botkin DB (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14:941–950CrossRefGoogle Scholar
  108. Lodge DM, Turner CR, Jerde CL, Barnes MA, Chadderton L, Egan SP, Feder JL, Mahon AR, Pfrender ME (2012) Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Mol Ecol 21:2555–2558PubMedPubMedCentralCrossRefGoogle Scholar
  109. Marske KA, Leschen RAB, Barker GM, Buckley TR (2009) Phylogeography and ecological niche modelling implicate coastal refugia and trans-alpine dispersal of a New Zealand fungus beetle. Mol Ecol 18:5126–5142PubMedCrossRefPubMedCentralGoogle Scholar
  110. Marske KA, Leschen RAB, Buckley TR (2011) Reconciling phylogeography and ecological niche models for New Zealand beetles: looking beyond glacial refugia. Mol Phylogenet Evol 59:89–102PubMedCrossRefPubMedCentralGoogle Scholar
  111. McDonald DE, Daniels SR (2012) Phylogeography of the Cape velvet worm (Onychophora: Peripatopsis capensis) reveals the impact of Pliocene/Pleistocene climatic oscillations on Afromontane forest in the Western Cape, South Africa. J Evol Biol 25:824–835PubMedCrossRefPubMedCentralGoogle Scholar
  112. Meier R, Shiyang K, Vaidya G, Ng PK (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728PubMedCrossRefPubMedCentralGoogle Scholar
  113. Morinière J, Cancian De Araujo B, Lam AW, Hausmann A, Balke M, Schmidt S, Hendrich L, Doczkal D, Fartmann B, Arvidsson S, Haszprunar G (2016) Species identification in malaise trap samples by DNA barcoding based on NGS technologies and a scoring matrix. PLoS ONE 11:e0155497PubMedPubMedCentralCrossRefGoogle Scholar
  114. Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biol 2:1529–1531CrossRefGoogle Scholar
  115. Morlon H, Schwilk DW, Bryant JA, Marquet PA, Rebelo GA, Tauss C, Bohannan BJM, Green JL (2011) Spatial patterns of phylogenetic diversity. Ecol Lett 14:141–149PubMedPubMedCentralCrossRefGoogle Scholar
  116. Muna N, O’Ryan C (2016) Isolation and characterization of the first microsatellite markers for the southern harvester termite, Microhodotermes viator. Bull Entomol Res 106:488–493PubMedCrossRefPubMedCentralGoogle Scholar
  117. New TR (1999) Untangling the web: spiders and the challenges of invertebrate conservation. J Insect Conserv 3:251–256CrossRefGoogle Scholar
  118. Oi CA, López-Uribe MM, Cervini M, Del Lama MA (2013) Non-lethal method of DNA sampling in euglossine bees supported by mark-recapture experiments and microsatellite genotyping. J Insect Conserv 17:1071–1079CrossRefGoogle Scholar
  119. Oleksa A (2014) Weak isolation by distance in Diaperis bolete, a fungivorous saproxylic beetle. J Insect Sci 14:109PubMedPubMedCentralGoogle Scholar
  120. Oleksa A, Chybicki IJ, Gawroński R, Svensson GP, Burczyk J (2013) Isolation by distance in saproxylic beetles may increase with niche specialization. J Insect Conserv 17:219–233CrossRefGoogle Scholar
  121. Oleksa A, Chybicki IJ, Larsson MC, Svensson GP, Gawroński R (2015) Rural avenues as dispersal corridors for the vulnerable saproxylic beetle Elater ferrugineus in a fragmented agricultural landscape. J Insect Conserv 19:567–580CrossRefGoogle Scholar
  122. Oliveira IS, Lacorte GA, Fonseca CG, Wieloch AH, Mayer G (2011) Cryptic speciation in Brazilian Epiperipatus (Onychophora: Peripatidae) reveals an underestimated diversity among the peripatid velvet worms. PLoS ONE 6:e19973PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ottosson E, Kubartová A, Edman M, Jönsson M, Lindhe A, Stenlid J, Dahlberg A (2015) Diverse ecological roles within fungal communities in decomposing logs of Picea abies. FEMS Microbiol Ecol 91:fiv012PubMedCrossRefPubMedCentralGoogle Scholar
  124. Ovaskainen O, Nokso-Koivisto J, Hottola J, Rajala T, Pennanen T, Ali-Kovero H, Miettinen O, Oinonen P, Auvinen P, Paulin L, Larsson KH, Mäkipää R (2010) Identifying wood-inhabiting fungi with 454 sequencing – what is the probability that BLAST gives the correct species? Fungal Ecol 3:274–283CrossRefGoogle Scholar
  125. Ovaskainen O, Schigel D, Ali-Kovero H, Auvinen P, Paulin L, Nordén B, Nordén J (2013) Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. ISME J 7:1696–1709PubMedPubMedCentralCrossRefGoogle Scholar
  126. Painter JN, Siitonen J, Hanski I (2007) Phylogeographical patterns and genetic diversity in three species of Eurasian boreal forest beetles. Biol J Linn Soc Lond 91:267–279CrossRefGoogle Scholar
  127. Pansu J, De Danieli S, Puissant J, Gonzalez JM, Gielly L, Cordonnier T, Zinger L, Brun JJ, Choler P, Taberlet P, Cécillon L (2015) Landscape-scale distribution patterns of earthworms inferred from soil DNA. Soil Biol Biochem 83:100–105CrossRefGoogle Scholar
  128. Paquette A, Joly S, Messier C (2015) Explaining forest productivity using tree functional traits and phylogenetic information: two sides of the same coin over evolutionary scale? Ecol Evol 5:1774–1783PubMedPubMedCentralCrossRefGoogle Scholar
  129. Paula DP, Linard B, Crampton-Platt A, Srivathsan A, Timmermans MJ, Sujii ER, Pires CS, Souza LM, Andow DA, Vogler AP (2016) Uncovering trophic interactions in arthropod predators through DNA shotgun-sequencing of gut contents. PLoS ONE 11:e0161841PubMedPubMedCentralCrossRefGoogle Scholar
  130. Pawlowski J, Esling P, Lejzerowicz F, Cedhagen T, Wilding TA (2014) Environmental monitoring through protist next-generation sequencing metabarcoding: assessing the impact of fish farming on benthic foraminifera communities. Mol Ecol Resour 14:1129–1140PubMedCrossRefPubMedCentralGoogle Scholar
  131. Pentinsaari M, Mutanen M, Kaila L (2014) Cryptic diversity and signs of mitochondrial introgression in the Agrilus viridis species complex (Coleoptera: Buprestidae). Eur J Entomol 111:475–486Google Scholar
  132. Perdereau E, Bagnères A-G, Bankhead-Dronnet S, Dupont S, Zimmermann M, Vargo EL, Dedeine F (2013) Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol Ecol 22:1105–1119PubMedCrossRefPubMedCentralGoogle Scholar
  133. Pokluda P, Cizek L, Stribrna E, Drag L, Lukes J, Novotny V (2014) A goodbye letter to alcohol: an alternative method for field preservation of arthropod specimens and DNA suitable for mass collecting methods. Eur J Entomol 111:175–179Google Scholar
  134. Purahong W, Pietsch KA, Lentendu G, Schöps R, Bruelheide H, Wirth C, Buscot F, Wubet T (2017) Characterization of unexplored deadwood mycobiome in highly diverse subtropical forests using culture-independent molecular technique. Front Microbiol 8:574PubMedPubMedCentralCrossRefGoogle Scholar
  135. Rajala T, Peltoniemi M, Hantula J, Mäkipää R, Pennanen T (2011) RNA reveals a succession of active fungi during the decay of Norway spruce logs. Fungal Ecol 4:437–448CrossRefGoogle Scholar
  136. Rajala T, Peltoniemi M, Pennanen T, Mäkipää R (2012) Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiol Ecol 81:494–505PubMedPubMedCentralCrossRefGoogle Scholar
  137. Ranius T, Douwes P (2002) Genetic structure of two pseudoscorpion species living in tree hollows in Sweden. Anim Biodivers Conserv 25:67–74Google Scholar
  138. Ranius T, Hedin J (2001) The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126:363–370PubMedPubMedCentralCrossRefGoogle Scholar
  139. Ranius T, Martikainen P, Kouki J (2011) Colonisation of ephemeral forest habitats by specialised species: beetles and bugs associated with recently dead aspen wood. Biodivers Conserv 20:2903–2915CrossRefGoogle Scholar
  140. Ratnasingham S, Hebert PD (2013) A DNA-based registry for all animal species: The Barcode Index Number (BIN) System. PLoS ONE 8:e66213PubMedPubMedCentralCrossRefGoogle Scholar
  141. Røed KH, Birkemoe T, Sverdrup-Thygeson A, Horak J, Midthjell L, Leinaas HP (2014) Isolation and characterization of ten microsatellite loci for the wood-living and threatened beetle Cucujus cinnaberinus (Coleoptera: Cucujidae). Conserv Genet Resour 6:641–643CrossRefGoogle Scholar
  142. Roeding F, Hagner-Holler S, Ruhberg H, Ebersberger I, von Haeseler A, Kube M, Reinhardt R, Burmester T (2007) EST sequencing of Onychophora and phylogenomic analysis of Metazoa. Mol Phylogenet Evol 45:942–951PubMedCrossRefPubMedCentralGoogle Scholar
  143. Rosauer D, Laffan SW, Crisp MD, Donnellan SC, Cook LG (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol Ecol 18:4061–4072PubMedCrossRefPubMedCentralGoogle Scholar
  144. Rotheray EL, Greminger MP, Nater A, Krützen M, Goulson D, Bussière LF (2012a) Polymorphic microsatellite loci for the endangered pine hoverfly Blera fallax (Diptera: Syrphidae). Conserv Genet Resour 4:117–120CrossRefGoogle Scholar
  145. Rotheray EL, Lepais O, Nater A, Krützen M, Greminger M, Goulson D, Bussière LF (2012b) Genetic variation and population decline of an endangered hoverfly Blera fallax (Diptera: Syrphidae). Conserv Genet 13:1283–1291CrossRefGoogle Scholar
  146. Rougerie R, Lopez-Vaamonde C, Barnouin T, Delnatte J, Moulin N, Noblecourt T, Nusillard B, Parmain G, Soldati F, Bouget C (2015a) PASSIFOR: a reference library of DNA barcodes for French saproxylic beetles (Insecta, Coleoptera). Biodivers Data J 3:e4078CrossRefGoogle Scholar
  147. Rougerie R, Hajibabaei M, Bouget C, Shokralla S, Gibson JF, Lopez-Vaamonde C (2015b) DNA metabarcoding of saproxylic beetles-streamlining species identification for large-scale forest biomonitoring. Genome 58:272Google Scholar
  148. Rowley DL, Coddington JA, Gates MW, Norrbom AL, Ochoa RA, Vandenberg NJ, Greenstone MH (2007) Vouchering DNA-barcoded specimens: test of a nondestructive extraction protocol for terrestrial arthropods. Mol Ecol Notes 7:915–924CrossRefGoogle Scholar
  149. Rulik B, Eberle J, von der Mark L, Thormann J, Jung M, Köhler F, Apfel W, Weigel A, Kopetz A, Köhler J, Fritzlar F, Hartmann M, Hadulla K, Schmidt J, Hörren T, Krebs D, Theves F, Eulitz U, Skale A, Rohwedder D, Kleeberg A, Astrin JJ, Geiger MF, Wägele JW, Grobe P, Ahrens D (2017) Using taxonomic consistency with semi-automated data pre-processing for high quality DNA barcodes. Methods Ecol Evol (in press)CrossRefGoogle Scholar
  150. Runciman D, Blacket MJ, Schmuki C, Sunnucks P (2006) Polymorphic population genetic markers for the Australian wood cockroach Panesthia australis. Mol Ecol Notes 6:765–766CrossRefGoogle Scholar
  151. Runnel K, Tamm H, Lõhmus A (2015) Surveying wood-inhabiting fungi: most molecularly detected polypore species form fruit-bodies within short distances. Fungal Ecol 18:93–99CrossRefGoogle Scholar
  152. Scheffrahn RH, Carrijo TF, Křeček J, Su N-Y, Szalanski AL, Austin JW, Chase JA, Mangold JR (2015) A single endemic and three exotic species of the termite genus Coptotermes (Isoptera, Rhinotermitidae) in the New World. Arthropod Syst Phylogeny 73:333–348Google Scholar
  153. Schiegg K (2000) Are there saproxylic beetles species characteristic of high dead wood connectivity? Ecography 23:579–587CrossRefGoogle Scholar
  154. Schmidt P-A, Bálint M, Greshake B, Bandow C, Römbke J, Schmitt I (2013) Illumina metabarcoding of a soil fungal community. Soil Biol Biochem 65:128–132CrossRefGoogle Scholar
  155. Schmuki C, Blacket MJ, Sunnucks P (2006a) Anonymous single-copy nuclear DNA (scnDNA) markers for two endemic log-dwelling beetles: Apasis puncticeps and Adelium calosomoides (Tenebrionidae: Lagriinae: Adeliini). Mol Ecol Notes 6:362–364CrossRefGoogle Scholar
  156. Schmuki C, Vorburger C, Runciman D, MacEachern S, Sunnucks P (2006b) When log-dwellers meet loggers: impacts of forest fragmentation on two endemic log-dwelling beetles in southeastern Australia. Mol Ecol 15:1481–1492PubMedCrossRefPubMedCentralGoogle Scholar
  157. Schnell IB, Bohmann K, Gilbert MT (2015) Tag jumps illuminated – reducing sequence-to-sample misidentifications in metabarcoding studies. Mol Ecol Resour 15:1289–1303PubMedCrossRefPubMedCentralGoogle Scholar
  158. Schoeller EN, Husseneder C, Allison JD (2012) Molecular evidence of facultative intraguild predation by Monochamus titillator larvae (Coleoptera: Cerambycidae) on members of the southern pine beetle guild. Naturwissenschaften 99:913–924PubMedPubMedCentralCrossRefGoogle Scholar
  159. Seibold S, Brandl R, Buse J, Hothorn T, Schmidl J, Thorn S, Müller J (2015) Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv Biol 29:382–390PubMedPubMedCentralCrossRefGoogle Scholar
  160. Shokralla S, Singer GA, Hajibabaei M (2010) Direct PCR amplification and sequencing of specimens’ DNA from preservative ethanol. BioTechniques 48:233–234PubMedCrossRefPubMedCentralGoogle Scholar
  161. Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805PubMedCrossRefPubMedCentralGoogle Scholar
  162. Shokralla S, Porter TM, Gibson JF, Dobosz R, Janzen DH, Hallwachs W, Golding GB, Hajibabaei M (2015) Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Sci Rep 5:9687PubMedPubMedCentralCrossRefGoogle Scholar
  163. Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–42Google Scholar
  164. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701CrossRefGoogle Scholar
  165. Sint D, Thurner I, Kaufmann R, Traugott M (2015) Sparing spiders: faeces as a non-invasive source of DNA. Front Zool 12:3PubMedPubMedCentralCrossRefGoogle Scholar
  166. Solano E, Mancini E, Ciucci P, Mason F, Audisio P, Antonini G (2013) The EU protected taxon Morimus funereus Mulsant, 1862 (Coleoptera: Cerambycidae) and its western Palaearctic allies: systematics and conservation outcomes. Conserv Genet 14:683–694CrossRefGoogle Scholar
  167. Solano E, Thomaes A, Cox K, Carpaneto GM, Cortellessa S, Baviera C, Bartolozzi L, Zilioli M, Casiraghi M, Audisio P, Antonini G (2016) When morphological identification meets genetic data: the case of Lucanus cervus and L. tetraodon (Coleoptera, Lucanidae). J Zool Syst Evol Res 54:197–205CrossRefGoogle Scholar
  168. Song H, Buhay JE, Whiting MF, Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci U S A 105:13486–13491PubMedPubMedCentralCrossRefGoogle Scholar
  169. Speight MCD (1989) Saproxylic invertebrates and their conservation. Nature and Environment Series No 42. Council of Europe, Strasbourg, FranceGoogle Scholar
  170. Sukumaran J, Knowles LL (2017) Multispecies coalescent delimits structure, not species. Proc Natl Acad Sci U S A 114:1607–1611PubMedPubMedCentralCrossRefGoogle Scholar
  171. Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203PubMedCrossRefPubMedCentralGoogle Scholar
  172. Sunnucks P, Wilson ACC (1999) Microsatellite markers for the onychophoran Euperipatoides rowelli. Mol Ecol 8:899–900PubMedPubMedCentralGoogle Scholar
  173. Suzuki G, Inoda T, Kubota S (2012) Nonlethal sampling of DNA from critically endangered diving beetles (Coleoptera: Dytiscidae) using a single antenna. Entomol Sci 15:352–356CrossRefGoogle Scholar
  174. Svensson GP, Oleksa A, Gawroński R, Lassance J-M, Larsson MC (2009) Enantiomeric conservation of the male-produced sex pheromone facilitates monitoring of threatened European hermit beetles (Osmoderma spp.) Entomol Exp Appl 133:276–282CrossRefGoogle Scholar
  175. Szalanski AL, Austin JW, Scheffrahn RH, Messenger MT (2004) Molecular diagnostics of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Fla Entomol 87:145–151CrossRefGoogle Scholar
  176. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012a) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050PubMedCrossRefPubMedCentralGoogle Scholar
  177. Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH (2012b) Environmental DNA. Mol Ecol 21:1789–1793PubMedCrossRefPubMedCentralGoogle Scholar
  178. Tang M, Hardman CJ, Ji Y, Meng G, Liu S, Tan M, Yang S, Moss ED, Wang J, Yang C, Bruce C, Nevard T, Potts SG, Zhou X, Yu DW (2015) High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods Ecol Evol 6:1034–1043PubMedPubMedCentralCrossRefGoogle Scholar
  179. Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME (2009) Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2:25PubMedPubMedCentralCrossRefGoogle Scholar
  180. Timmermans MJTN, Vogler AP (2012) Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea). Mol Phylogenet Evol 63:299–304PubMedCrossRefPubMedCentralGoogle Scholar
  181. Timmermans MJTN, Dodsworth S, Culverwell CL, Bocak L, Ahrens DTJ, Littlewood D, Pons J, Vogler AP (2010) Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res 38:e197PubMedPubMedCentralCrossRefGoogle Scholar
  182. Trewick SA (2000) Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of New Zealand Peripatoides (Onychophora). Mol Ecol 9:269–281PubMedCrossRefPubMedCentralGoogle Scholar
  183. Ulyshen MD (2013) Strengthening the case for saproxylic arthropod conservation: a call for ecosystem services research. Insect Conserv Divers 6:393–395CrossRefGoogle Scholar
  184. Ulyshen MD (2014) Interacting effects of insects and flooding on wood decomposition. PLoS ONE 9:e101867PubMedPubMedCentralCrossRefGoogle Scholar
  185. Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85PubMedPubMedCentralCrossRefGoogle Scholar
  186. Ulyshen MD, Wagner TL (2013) Quantifying arthropod contributions to wood decay. Methods Ecol Evol 4:345–352CrossRefGoogle Scholar
  187. Ulyshen MD, Zachos LG, Stireman JO III, Sheehan TN, Garrick RC (2017) Insights into the ecology, genetics and distribution of Lucanus elaphus Fabricius (Coleoptera: Lucanidae), North America’s giant stag beetle. Insect Conserv Divers 10:331–340CrossRefGoogle Scholar
  188. Van Der Wal A, Ottosson E, De Boer W (2015) Neglected role of fungal community composition in explaining variation in wood decay rates. Ecology 96:124–133PubMedPubMedCentralCrossRefGoogle Scholar
  189. Vargo EL (2000) Polymorphism at trinucleotide microsatellite loci in the subterranean termite Reticulitermes flavipes. Mol Ecol 9:817–820PubMedCrossRefPubMedCentralGoogle Scholar
  190. Vaz AB, Fonseca PL, Leite LR, Badotti F, Salim AC, Araujo FM, Cuadros-Orellana S, Duarte ÂA, Rosa CA, Oliveira G, Góes-Neto A (2017) Using next-generation sequencing (NGS) to uncover diversity of wood-decaying fungi in neotropical Atlantic forests. Phytotaxa 295:1–21CrossRefGoogle Scholar
  191. Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252PubMedCrossRefPubMedCentralGoogle Scholar
  192. Walker MJ, Stockman AK, Marek PE, Bond JE (2009) Pleistocene glacial refugia across the Appalachian Mountains and coastal plain in the millipede genus Narceus: evidence from population genetic, phylogeographic, and paleoclimatic data. BMC Evol Biol 9:25PubMedPubMedCentralCrossRefGoogle Scholar
  193. Whitlock MC (1992) Nonequilibrium population structure in forked fungus beetles: extinction, colonization, and the genetic variance among populations. Am Nat 139:952–970CrossRefGoogle Scholar
  194. Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54:844–851PubMedCrossRefPubMedCentralGoogle Scholar
  195. Woodman J, Ash JE, Rowell DM (2006) Population structure in a saproxylic funnelweb spider (Hexathelidae: Hadronyche) along a forested rainfall gradient. J Zool 268:325–333CrossRefGoogle Scholar
  196. Woodward G, Gray C, Baird DJ (2013) Biomonitoring for the 21st century: new perspectives in an age of globalisation and emerging environmental threats. Limnetica 32:159–172Google Scholar
  197. Wu C, Jordan MD, Newcomb RD, Gemmell NJ, Bank S, Meusemann K, Dearden PK, Duncan EJ, Grosser S, Rutherford K, Gardner PP, Crowhurst RN, Steinwender B, Tooman LK, Stevens MI, Buckley TR (2017) Analysis of the genome of the New Zealand giant collembolan (Holacanthella duospinosa) sheds light on hexapod evolution. BMC Genom 18:795CrossRefGoogle Scholar
  198. Yaguchi H, Hayashi Y, Tohoku T, Nalepa C, Maekawa K (2017) Genetic data indicate that most field-collected woodroach pairs are unrelated. Insect Sci 24:522–526PubMedCrossRefPubMedCentralGoogle Scholar
  199. Yamashita S, Masuya H, Abe S, Masaki T, Okabe K (2015) Relationship between the decomposition process of coarse woody debris and fungal community structure as detected by high-throughput sequencing in a deciduous broad-leaved forest in Japan. PLoS ONE 10:e0131510PubMedPubMedCentralCrossRefGoogle Scholar
  200. Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci U S A 107:9264–9269PubMedPubMedCentralCrossRefGoogle Scholar
  201. Yang C, Wang X, Miller JA, De Blécourt M, Ji Y, Yang C, Harrison RD, Yu DW (2014) Using metabarcoding to ask if easily collected soil and leaf-litter samples can be used as a general biodiversity indicator. Ecol Indic 46:379–389CrossRefGoogle Scholar
  202. Yee M, Yuan Z-Q, Mohammed C (2001) Not just waste wood: decaying logs as key habitats in Tasmania’s wet sclerophyll Eucalyptus obliqua production forests: the ecology of large and small logs compared. Tasforests 13:119–128Google Scholar
  203. Yoccoz NG, Bråthen KA, Gielly L, Haile J, Edwards ME, Goslar T, Von Stedingk H, Brysting AK, Coissac E, Pompanon F, Sonstebo JH, Miquel C, Valentini A, De Bello F, Chave J, Thuiller W, Wincker P, Cruaud C, Gavory F, Rasmussen M, Gilbert MTP, Orlando L, Brochmann C, Willerslev E, Taberlet P (2012) DNA from soil mirrors plant taxonomic and growth form diversity. Mol Ecol 21:3647–3655PubMedCrossRefPubMedCentralGoogle Scholar
  204. Yu DW, Ji Y, Emerson BC, Wang X, Ye C, Yang C, Ding Z (2012) Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol Evol 3:613–623CrossRefGoogle Scholar
  205. Zauli A, Carpaneto GM, Chiari S, Mancini E, Nyabuga FN, Redolfi De Zan L, Romiti F, Sabbani S, Audisio PA, Hedenström E, Bologna MA, Svensson GP (2016) Assessing the taxonomic status of Osmoderma cristinae (Coleoptera: Scarabaeidae), endemic to Sicily, by genetic, morphological and pheromonal analyses. J Zool Syst Evol Res 54:206–214CrossRefGoogle Scholar
  206. Zhan A, He S, Brown EA, Chain FJJ, Therriault TW, Abbott CL, Heath DD, Cristescu ME, MacIsaac HJ (2014) Reproducibility of pyrosequencing data for biodiversity assessment in complex communities. Methods Ecol Evol 5:881–890CrossRefGoogle Scholar
  207. Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876PubMedPubMedCentralCrossRefGoogle Scholar
  208. Zhou X, Wheeler MM, Oi FM, Scharf ME (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 38:805–815PubMedCrossRefPubMedCentralGoogle Scholar
  209. Zhou X, Li Y, Liu S, Yang Q, Su X, Zhou L, Tang M, Fu R, Li J, Huang Q (2013) Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. GigaScience 2:4PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.  2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of MississippiOxfordUSA
  2. 2.National Research Institute of Science and Technology for Environment and Agriculture (Irstea), UR EFNONogent-sur-VernissonFrance

Personalised recommendations