Dispersal of Saproxylic Insects

  • Heike FeldhaarEmail author
  • Bastian Schauer
Part of the Zoological Monographs book series (ZM, volume 1)


Dispersal is a key trait of species that is required to maintain gene flow between habitat patches. Furthermore, it allows the colonization of new habitats and thus affects population dynamics, extinction risk of populations, and species distributions. Dispersal enables species to persist in a changing environment. Saproxylic insects, depending on deadwood at some stage during their life cycle, must compensate local extinctions resulting from the decay of deadwood with colonizations of new deadwood structures locally and on the landscape scale. Their dispersal strategies are shaped by a suite of driving forces such as spatial and temporal variability of deadwood structures in the environment, feeding strategy, resource competition, kin competition, and inbreeding avoidance. The importance of each factor in selecting for a dispersal strategy will vary among species depending on their life history and interactions with the environment, such as the longevity of the deadwood habitat used. Species using a more transient habitat, such as freshly killed wood, have better dispersal abilities than those in more persistent habitats such as tree hollows that may exist for several decades. Dispersal abilities of only a few saproxylic insect species are known, and these comprise mostly pest species or flagship species of interest to conservation. Dispersal distances vary greatly from a few meters in passalids dispersing by walking to over 100 km in some flying bark beetles. Knowledge of dispersal abilities is of paramount importance though, as it can help to improve conservation strategies and forest management especially in terms of spatial distribution of suitable habitats to enhance species persistence. In this chapter we first review the factors driving dispersal ability and our current knowledge on dispersal distances of saproxylic insects. We provide an overview of different methods used to measure dispersal ability of saproxylic species. We discuss whether saproxylic species are rather dispersal or habitat limited and identify open questions in the study of dispersal of saproxylic insects.



We thank Mike Ulyshen for the invitation to contribute this chapter to the book. We would also like to thank him as well as Kevin Chase and one more anonymous reviewer for very helpful suggestions on a former version of this manuscript. BS was supported by a grant of the LWF (grant number L056 of the Bayerische Landesanstalt für Wald und Forstwirtschaft).


  1. Akbulut S, Linit MJ (1999) Flight performance of Monochamus carolinensis (Coleoptera: Cerambycidae) with respect to nematode phoresis and beetle characteristics. Environ Entomol 28:1014–1020CrossRefGoogle Scholar
  2. Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations. Wiley-Blackwell, ChichesterGoogle Scholar
  3. Angelo MJ, Slansky F (1984) Body building by insects—trade-offs in resource-allocation with particular reference to migratory species. Fla Entomol 67:22–41CrossRefGoogle Scholar
  4. Barak AV, McGrevy D, Tokaya G (2000) Dispersal and recapture of marked, overwintering Tomicus piniperda (Coleoptera: Scolytidae). Great Lakes Entomol 33:69–80Google Scholar
  5. Benton TG, Bowler DE (2012) Dispersal in invertebrates: influences on individual decisions. In: Clobert J, Baguette M, Benton TG, Bullock JM (eds) Dispersal ecology and evolution. Oxford University Press, Oxford, pp 41–49CrossRefGoogle Scholar
  6. Bergman KO, Jansson N, Claesson K, Palmer MW, Milberg P (2012) How much and at what scale? Multiscale analyses as decision support for conservation of saproxylic oak beetles. For Ecol Manag 265:133–141CrossRefGoogle Scholar
  7. Berwaerts K, Van Dyck H, Aerts P (2002) Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Funct Ecol 16:484–491CrossRefGoogle Scholar
  8. Biedermann PHW, Taborsky M (2011) Larval helpers and age polyethism in ambrosia beetles. Proc Natl Acad Sci U S A 108:17064–17069PubMedPubMedCentralCrossRefGoogle Scholar
  9. Blouin SF, Blouin M (1988) Inbreeding avoidance behaviors. Trends Ecol Evol 3:230–233PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouk V, Mathysen E, Mustin K, Saastamoinen M, Schtickzelle N, Stevens VM, Vandewoestijne S, Baguette M, Barton K, Benton TG, Chaput-Bardy A, Clobert J, Dytham C, Hovestadt T, Meier CM, Palmer SCF, Turlure C, Travis JMJ (2012) Costs of dispersal. Biol Rev 87:290–312PubMedCrossRefPubMedCentralGoogle Scholar
  11. Borden JH, Bennett RB (1969) A continously recording flight mill for investigating effect of volatile substances on flight of tethered insects. J Econ Entomol 62:782–785CrossRefGoogle Scholar
  12. Botterweg PF (1982) Dispersal and flight behavior of the spruce bark beetle Ips typographus in relation to sex, size and fat-content. Z Angew Entomol 94:466–489CrossRefGoogle Scholar
  13. Bouget C, Brin A, Tellez D, Archaux F (2015) Intraspecific variations in dispersal ability of saproxylic beetles in fragmented forest patches. Oecologia 177:911–920PubMedCrossRefPubMedCentralGoogle Scholar
  14. Boulanger Y, Sirois L, Hebert C (2010) Distribution of saproxylic beetles in a recently burnt landscape of the northern boreal forest of Quebec. For Ecol Manag 260:1114–1123CrossRefGoogle Scholar
  15. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225PubMedCrossRefPubMedCentralGoogle Scholar
  16. Branquart E, Hemptinne JL (2000) Selectivity in the exploitation of floral resources by hoverflies (Diptera : Syrphinae). Ecography 23:732–742CrossRefGoogle Scholar
  17. Brin A, Valladares L, Ladet S, Bouget C (2016) Effects of forest continuity on flying saproxylic beetle assemblages in small woodlots embedded in agricultural landscapes. Biodivers Conserv 25:587–602CrossRefGoogle Scholar
  18. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449CrossRefGoogle Scholar
  19. Brunet J, Isacsson G (2009) Restoration of beech forest for saproxylic beetles-effects of habitat fragmentation and substrate density on species diversity and distribution. Biodivers Conserv 18:2387–2404CrossRefGoogle Scholar
  20. Buse J (2012) “Ghosts of the past”: flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J Insect Conserv 16:93–102CrossRefGoogle Scholar
  21. Chase KD, Kelly D, Liebhold AM, Bader MKF, Brockerhoff EG (2017) Long-distance dispersal of non-native pine bark beetles from host resources. Ecol Entomol 42:173–183CrossRefGoogle Scholar
  22. Chiari S, Carpaneto GM, Zauli A, Zirpoli GM, Audisio P, Ranius T (2013) Dispersal patterns of a saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Insect Conserv Divers 6:309–318CrossRefGoogle Scholar
  23. Clobert J, Le Galliard JF, Cote J, Le Galliard JF, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209PubMedCrossRefPubMedCentralGoogle Scholar
  24. Compton SG (2002) Sailing with the wind: dispersal by small flying insects. In: Bullock JM, Kenward RE, Hails RS (eds) Dispersal ecology. Blackwell Science, Oxford, pp 113–133Google Scholar
  25. Cronin JT, Turchin P, Hayes JL, Steiner CA (1999) Area-wide efficacy of a localized forest pest management practice. Environ Entomol 28:496–504CrossRefGoogle Scholar
  26. Cronin JT, Reeve JD, Wilkens R, Turchin P (2000) The pattern and range of movement of a checkered beetle predator relative to its bark beetle prey. Oikos 90:127–138CrossRefGoogle Scholar
  27. David G, Giffard B, Piou D, Jactel H (2014) Dispersal capacity of Monochamus galloprovincialis, the European vector of the pine wood nematode, on flight mills. J Appl Entomol 138:566–576CrossRefGoogle Scholar
  28. Denno RF, Roderick GK, Peterson MA, Huberty AF, Döbel HG, Eubanks MD, Losey JE, Langellotto GA (1996) Habitat persistence underlies intraspecific variation in the dispersal strategies of planthoppers. Ecol Monogr 66:389–408CrossRefGoogle Scholar
  29. Dolezal P, Okrouhlik J, Davidkova M (2016) Fine fluorescent powder marking study of dispersal in the spruce bark beetle, Ips typographus (Coleoptera: Scolytidae). Eur J Entomol 113:1–8CrossRefGoogle Scholar
  30. Drag L, Hauck D, Pokluda P, Zimmermann K, Cizek L (2011) Demography and dispersal ability of a threatened saproxylic beetle: a mark-recapture study of the Rosalia longicorn (Rosalia alpina). PLoS One 6:e21345PubMedPubMedCentralCrossRefGoogle Scholar
  31. Drag L, Hauck D, Berces S, Michalcewicz J, Seric Jelaska L, Aurenhammer S, Cizek L (2015) Genetic differentiation of populations of the threatened saproxylic beetle Rosalia longicorn, Rosalia alpina (Coleoptera: Cerambycidae) in central and south-east Europe. Biol J Linn Soc 116:911–925CrossRefGoogle Scholar
  32. Dubois G, Vignon V (2008) First results of radio-tracking of Osmoderma eremita (Coleoptera: Cetoniidae) in French chestnut orchards. Rev Ecol Terre Vie:131–138Google Scholar
  33. Dubois GF, Le Gouar PJ, Delettre YR, Brustel H, Vernon P (2010) Sex-biased and body condition dependent dispersal capacity in the endangered saproxylic beetle Osmoderma eremita (Coleoptera: Cetoniidae). J Insect Conserv 14:679–687CrossRefGoogle Scholar
  34. Epperson BK (2005) Estimating dispersal from short distance spatial autocorrelation. Heredity 95:7–15PubMedCrossRefPubMedCentralGoogle Scholar
  35. Epps CW, Keyghobadi N (2015) Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 24:6021–6040PubMedCrossRefPubMedCentralGoogle Scholar
  36. Etxebeste I, Sanchez-Husillos E, Alvarez G, Gisbert MI, Pajares J (2016) Dispersal of Monochamus galloprovincialis (Col.: Cerambycidae) as recorded by mark-release-recapture using pheromone traps. J Appl Entomol 140:485–499CrossRefGoogle Scholar
  37. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663CrossRefGoogle Scholar
  38. Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59CrossRefGoogle Scholar
  39. Fahrner SJ, Lelito JP, Aukema BH (2015) The influence of temperature on the flight capacity of emerald ash borer Agrilus planipennis and its parasitoid, Tetrastichus planipennisi: implications to biological control. BioControl 60:437–449CrossRefGoogle Scholar
  40. Fayt P, Dufrene M, Branquart E, Hastir P, Pontegenie C, Henin JM, Versteirt V (2006) Contrasting responses of saproxylic insects to focal habitat resources: the example of longhorn beetles and hoverflies in Belgian deciduous forests. J Insect Conserv 10:129–150CrossRefGoogle Scholar
  41. Fielding NJ, Okeefe T, King CJ (1991) Dispersal and host-finding capability of the predatory beetle Rhizophagus grandis Gyll (Col., Rhizophagidae). J Appl Entomol 112:89–98CrossRefGoogle Scholar
  42. Flensted KK, Bruun HH, Ejrnaes R, Eskildsen A, Thomsen PF, Heilmann-Clausen J (2016) Red-listed species and forest continuity—a multi-taxon approach to conservation in temperate forests. For Ecol Manag 378:144–159CrossRefGoogle Scholar
  43. Forsse E, Solbreck C (1985) Migration in the bark beetle Ips typographus L—duration, timing and height of flight. Z Angew Entomol 100:47–57CrossRefGoogle Scholar
  44. Galindo-Cardona A, Giray T, Sabat AM, Reyes-Castillo P (2007) Bess beetle (Coleoptera : Passalidae): substrate availability, dispersal, and distribution in a subtropical wet forest. Ann Entomol Soc Am 100:711–720CrossRefGoogle Scholar
  45. Gall LF (1984) The effects of capturing and marking on subsequent activity in Boloria acrocnema (Lepidoptera, Nymphalidae), with a comparison of different numerical models that estimate population size. Biol Conserv 28:139–154CrossRefGoogle Scholar
  46. Gibb H, Hjalten J, Ball JP, Atlegrim O, Petterson RB, Hilszezanski J, Johansson T, Danell K (2006) Wing loading and habitat selection in forest beetles: are red-listed species poorer dispersers or more habitat-specific than common congenerics? Biol Conserv 132:250–260CrossRefGoogle Scholar
  47. Gossner M, Engel K, Jessel B (2008) Plant and arthropod communities in young oak stands: are they determined by site history? Biodivers Conserv 17:3165–3180CrossRefGoogle Scholar
  48. Gotelli NJ (1991) Metapopulation models—the rescue effect, the propagule rain, and the core-satellite hypothesis. Am Nat 138:768–776CrossRefGoogle Scholar
  49. Grove SJ (2002a) The influence of forest management history on the integrity of the saproxylic beetle fauna in an Australian lowland tropical rainforest. Biol Conserv 104:149–171CrossRefGoogle Scholar
  50. Grove SJ (2002b) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23CrossRefGoogle Scholar
  51. Hanks LM (1999) Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu Rev Entomol 44:483–505PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49CrossRefGoogle Scholar
  53. Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conserv Biol 16:666–673CrossRefGoogle Scholar
  54. Hanski I, Kuussaari M, Nieminen M (1994) Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75:747–762CrossRefGoogle Scholar
  55. Hedin J, Ranius T (2002) Using radio telemetry to study dispersal of the beetle Osmoderma eremita, an inhabitant of tree hollows. Comput Electron Agric 35:171–180CrossRefGoogle Scholar
  56. Hedin J, Ranius T, Nilsson SG, Smith HG (2008) Restricted dispersal in a flying beetle assessed by telemetry. Biodivers Conserv 17:675–684CrossRefGoogle Scholar
  57. Heidinger IMM, Poethke HJ, Bonte D, Hein S (2009) The effect of translocation on movement behaviour—a test of the assumptions of behavioural studies. Behav Process 82:12–17CrossRefGoogle Scholar
  58. Heikkala O, Martikainen P, Kouki J (2017) Prescribed burning is an effective and quick method to conserve rare pyrophilous forest-dwelling flat bugs. Insect Conserv Divers 10:32–41CrossRefGoogle Scholar
  59. Henter HJ (2003) Inbreeding depression and haplodiploidy: experimental measures in a parasitoid and comparisons across diploid and haplodiploid insect taxa. Evolution 57:1793–1803PubMedCrossRefPubMedCentralGoogle Scholar
  60. Herrault PA, Larrieu L, Cordier S, Gimmi U, Lachat T, Ouin A, Sarthou JP, Sheeren D (2016) Combined effects of area, connectivity, history and structural heterogeneity of woodlands on the species richness of hoverflies (Diptera: Syrphidae). Landsc Ecol 31:877–893CrossRefGoogle Scholar
  61. Horak J, Vodka S, Pavlicek J, Boza P (2013) Unexpected visitors: flightless beetles in window traps. J Insect Conserv 17:441–449CrossRefGoogle Scholar
  62. Irmler U, Arp H, Notzold R (2010) Species richness of saproxylic beetles in woodlands is affected by dispersion ability of species, age and stand size. J Insect Conserv 14:227–235CrossRefGoogle Scholar
  63. Jackson HB, Baum KA, Robert T, Cronin JT (2009) Habitat-specific movement and edge-mediated behavior of the saproxylic insect Odontotaenius disjunctus (Coleoptera: Passalidae). Environ Entomol 38:1411–1422PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jackson HB, Baum KA, Cronin JT (2012) From logs to landscapes: determining the scale of ecological processes affecting the incidence of a saproxylic beetle. Ecol Entomol 37:233–243CrossRefGoogle Scholar
  65. Jactel H (1993) Individual variability of the flight potential of Ips sexdentatus Boern (Coleoptera, Scolytidae) in relation to day of emergence, sex, size, and lipid-content. Can Entomol 125:919–930CrossRefGoogle Scholar
  66. Jactel H, Gaillard J (1991) A preliminary study of the dispersal potential of Ips sexdentatus (Boern) (Col., Scolytidae) with an automatically recording flight mill. J Appl Entomol Z Angew Entomol 112:138–145CrossRefGoogle Scholar
  67. Janssen P, Cateau E, Fuhr M, Nusillard B, Brustel H, Bouget C (2016) Are biodiversity patterns of saproxylic beetles shaped by habitat limitation or dispersal limitation? A case study in unfragmented montane forests. Biodivers Conserv 25:1167–1185CrossRefGoogle Scholar
  68. Jansson N, Ranius T, Larsson A, Milberg P (2009) Boxes mimicking tree hollows can help conservation of saproxylic beetles. Biodivers Conserv 18:3891–3908CrossRefGoogle Scholar
  69. Jonsell M, Nordlander G, Jonsson M (1999) Colonization patterns of insects breeding in wood-decaying fungi. J Insect Conserv 3:145–161CrossRefGoogle Scholar
  70. Jonsell M, Schroeder M, Larsson T (2003) The saproxylic beetle Bolitophagus reticulatus: its frequency in managed forests, attraction to volatiles and flight period. Ecography 26:421–428CrossRefGoogle Scholar
  71. Jonsson M (2003) Colonisation ability of the threatened tenebrionid beetle Oplocephala haemorrhoidalis and its common relative Bolitophagus reticulatus. Ecol Entomol 28:159–167CrossRefGoogle Scholar
  72. Jonsson M, Nordlander G (2006) Insect colonisation of fruiting bodies of the wood-decaying fungus Fomitopsis pinicola at different distances from an old-growth forest. Biodivers Conserv 15:295–309CrossRefGoogle Scholar
  73. Jonsson M, Johannesen J, Seitz A (2003) Comparative genetic structure of the threatened tenebrionid beetle Oplocephala haemorrhoidalis and its common relative Bolitophagus reticulatus. J Insect Conserv 7:111–124CrossRefGoogle Scholar
  74. Kadowaki K, Leschen RAB, Beggs JR (2011) Competition-colonization dynamics of spore-feeding beetles on the long-lived bracket fungi Ganoderma in New Zealand native forest. Oikos 120:776–786CrossRefGoogle Scholar
  75. Karpinski L, Rutkowski T, Szczepanski WT (2017) First record of phoresy of Dendrochernes cyrneus (L. Koch, 1873) (Pseudoscorpiones, Chernetidae) on Cerambyx cerdo Linnaeus, 1758 (Coleoptera, Cerambycidae) and their potential value as bioindicators. Anim Biodivers Conserv 40:187–192Google Scholar
  76. Katlav A, Hajiqanbar H, Talebi AA (2014) First record of the genus Acanthomastix Mahunka, 1972 (Acari: Dolichocybidae) from Asia, with the description of a new species. Int J Acarol 40:7–14CrossRefGoogle Scholar
  77. Keller L, Peer K, Bernasconi C, Taborsky M, Shuker DM (2011) Inbreeding and selection on sex ratio in the bark beetle Xylosandrus germanus. BMC Evol Biol 11Google Scholar
  78. Kettunen J, Kobro S, Martikainen P (2005) Thrips (Thysanoptera) from dead aspen (Populus tremula) trees in eastern Finland. Entomol Fenn 16:246–250Google Scholar
  79. Kirkendall LR (1983) The evolution of mating systems in bark and ambrosia beetles (Coleoptera, Scolytidae and Platypodidae). Zool J Linn Soc Lond 77:293–352CrossRefGoogle Scholar
  80. Kirkendall LR, Biedermann PHW, Jordal BH (2015) Evolution and diversity of bark and ambrosia beetles. In: Vega FE, Hofstetter RW (eds) Bark beetles—biology and ecology of native and invasive species. Academic, London, pp 85–156Google Scholar
  81. Kissling WD, Pattemore DE, Hagen M (2014) Challenges and prospects in the telemetry of insects. Biol Rev 89:511–530CrossRefGoogle Scholar
  82. Knutsen H, Rukke BA, Jorde PE, Ims RA (2000) Genetic differentiation among populations of the beetle Bolitophagus reticulatus (Coleoptera: Tenebrionidae) in a fragmented and a continuous landscape. Heredity 84:667–676PubMedCrossRefPubMedCentralGoogle Scholar
  83. Korb J, Schmidinger S (2004) Help or disperse? Cooperation in termites influenced by food conditions. Behav Ecol Sociobiol 56:89–95CrossRefGoogle Scholar
  84. Kouki J, Hyvarinen E, Lappalainen H, Martikainen P, Similä M (2012) Landscape context affects the success of habitat restoration: large-scale colonization patterns of saproxylic and fire-associated species in boreal forests. Divers Distrib 18:348–355CrossRefGoogle Scholar
  85. Kuussaari M, Nieminen M, Hanski I (1996) An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J Anim Ecol 65:791–801CrossRefGoogle Scholar
  86. Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051PubMedCrossRefPubMedCentralGoogle Scholar
  87. Lowe A, Harris S, Ashton P (2004) Ecological genetics—design, analysis, and application. Blackwell, OxfordGoogle Scholar
  88. Marden JH (2000) Variability in the size, composition, and function of insect flight muscles. Annu Rev Physiol 62:157–178PubMedCrossRefPubMedCentralGoogle Scholar
  89. Matthysen E (2012) Multicausality of dispersal: a review. In: Clobert J, Baguette M, Benton TG, Bullock JM (eds) Dispersal ecology and evolution. Oxford University Press, Oxford, pp 3–18CrossRefGoogle Scholar
  90. Messenger MT, Mullins AJ (2005) New flight distance recorded for Coptotermes formosanus (Isoptera: Rhinotermitidae). Fla Entomol 88:99–100CrossRefGoogle Scholar
  91. Meurisse N, Pawson S (2017) Quantifying dispersal of a non-aggressive saprophytic bark beetle. PLoS One 12:e0174111PubMedPubMedCentralCrossRefGoogle Scholar
  92. Moore A, Barahona DC, Lehman KA, Skabeikis D, Iriarte IR, Jang EB, Siderhurst MS (2017) Judas beetles: discovering cryptic breeding sites by radio-tracking coconut rhinoceros beetles, Oryctes rhinoceros (Coleoptera: Scarabaeidae). Environ Entomol 46:92–99PubMedPubMedCentralGoogle Scholar
  93. Mullins AJ, Messenger MT, Hochmair HH, Tonini F, Su NY, Riegel C (2015) Dispersal flights of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J Econ Entomol 108:707–719PubMedCrossRefPubMedCentralGoogle Scholar
  94. Nilssen AC (1984) Long-range aerial dispersal of bark beetles and bark weevils (Coleoptera, Scolytidae and Curculionidae) in northern Finland. Ann Entomol Fenn 50:37–42Google Scholar
  95. Nilsson SG, Baranowski R (1997) Habitat predictability and the occurrence of wood beetles in old-growth beech forests. Ecography 20:491–498CrossRefGoogle Scholar
  96. Nordén B, Götmark F, Tönnberg M, Ryberg M (2004) Dead wood in semi-natural temperate broadleaved woodland: contribution of coarse and fine dead wood, attached dead wood and stumps. For Ecol Manag 194:235–248CrossRefGoogle Scholar
  97. Nordén B, Dahlberg A, Brandrud TE, Fritz Ö, Ejrnaes R, Ovaskainen O (2014) Effects of ecological continuity on species richness and composition in forests and woodlands: a review. Ecoscience 21:34–45CrossRefGoogle Scholar
  98. Oleksa A (2014) Weak isolation by distance in Diaperis boleti, a fungivorous saproxylic beetle. J Insect Sci 14Google Scholar
  99. Oleksa A, Chybicki IJ, Gawronski R, Svensson GP, Burczyk J (2013) Isolation by distance in saproxylic beetles may increase with niche specialization. J Insect Conserv 17:219–233CrossRefGoogle Scholar
  100. Oleksa A, Chybicki IJ, Larsson MC, Svensson GP, Gawronski R (2015) Rural avenues as dispersal corridors for the vulnerable saproxylic beetle Elater ferrugineus in a fragmented agricultural landscape. J Insect Conserv 19:567–580CrossRefGoogle Scholar
  101. Peer K, Taborsky M (2005) Outbreeding depression, but no inbreeding depression in haplodiploid ambrosia beetles with regular sibling mating. Evolution 59:317–323PubMedCrossRefPubMedCentralGoogle Scholar
  102. Peer K, Taborsky M (2007) Delayed dispersal as a potential route to cooperative breeding in ambrosia beetles. Behav Ecol Sociobiol 61:729–739CrossRefGoogle Scholar
  103. Perrin N, Mazalov V (2000) Local competition, inbreeding, and the evolution of sex-biased dispersal. Am Nat 155:116–127PubMedPubMedCentralGoogle Scholar
  104. Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends Ecol Evol 11:201–206PubMedCrossRefPubMedCentralGoogle Scholar
  105. Putz J, Vorwagner EM, Hoch G (2016) Flight performance of Monochamus sartor and Monochamus sutor, potential vectors of the pine wood nematode. Lesnícky Casopis For J 62:195–201Google Scholar
  106. Ranius T (2006) Measuring the dispersal of saproxylic insects: a key characteristic for their conservation. Popul Ecol 48:177–188CrossRefGoogle Scholar
  107. Ranius T, Douwes P (2002) Genetic structure of two pseudoscorpions species living in tree hollows in Sweden. Anim Biodivers Conserv 25:67–74Google Scholar
  108. Ranius T, Hedin J (2001) The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126:363–370PubMedCrossRefPubMedCentralGoogle Scholar
  109. Ranius T, Johansson V, Fahrig L (2011) Predicting spatial occurrence of beetles and pseudoscorpions in hollow oaks in southeastern Sweden. Biodivers Conserv 20:2027–2040CrossRefGoogle Scholar
  110. Ranius T, Bohman P, Hedgren O, Wikars LO, Caruso A (2014) Metapopulation dynamics of a beetle species confined to burned forest sites in a managed forest region. Ecography 37:797–804CrossRefGoogle Scholar
  111. Rink M, Sinsch U (2007) Radio-telemetric monitoring of dispersing stag beetles: implications for conservation. J Zool 272:235–243CrossRefGoogle Scholar
  112. Roff DA (1991) Life-history consequences of bioenergetic and biomechanical constraints on migration. Am Zool 31:205–215CrossRefGoogle Scholar
  113. Roff DA (1994) Habitat persistence and the evolution of wing dimorphism in insects. Am Nat 144:772–798CrossRefGoogle Scholar
  114. Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253CrossRefGoogle Scholar
  115. Rossi de Gasperis SR, Passacantilli C, De Zan LR, Carpaneto GM (2016) Overwintering ability and habitat preference of Morimus asper: a two-year mark-recapture study with implications for conservation and forest management. J Insect Conserv 20:821–835CrossRefGoogle Scholar
  116. Rotheray EL, Bussiere LF, Moore P, Bergstrom L, Goulson D (2014) Mark recapture estimates of dispersal ability and observations on the territorial behaviour of the rare hoverfly, Hammerschmidtia ferruginea (Diptera, Syrphidae). J Insect Conserv 18:179–188CrossRefGoogle Scholar
  117. Saint-Germain M, Drapeau P, Buddle CM (2008) Persistence of pyrophilous insects in fire-driven boreal forests: population dynamics in burned and unburned habitats. Divers Distrib 14:713–720CrossRefGoogle Scholar
  118. Saint-Germain M, Drapeau P, Hibbert A (2013) Saproxylic beetle tolerance to habitat fragmentation induced by salvage logging in a boreal mixed-cover burn. Insect Conserv Divers 6:381–392CrossRefGoogle Scholar
  119. Schauer B, Steinbauer MJ, Vailshery LS, Müller J, Feldhaar H, Obermaier E (2018a) Influence of tree hollow characteristics on saproxylic beetle diversity in a managed forest. Biodivers Conserv 27:853–869. Scholar
  120. Schauer B, Bong J, Popp C, Obermaier E, Feldhaar H (2018b) Dispersal limitation of saproxylic insects in a managed forest? A population genetics approach. Basic Appl Ecol. Scholar
  121. Schiegg K (2000a) Are there saproxylic beetle species characteristic of high dead wood connectivity? Ecography 23:579–587CrossRefGoogle Scholar
  122. Schiegg K (2000b) Effects of dead wood volume and connectivity on saproxylic insect species diversity. Ecoscience 7:290–298CrossRefGoogle Scholar
  123. Seibold S, Brandl R, Buse J, Hothorn T, Schmidl J, Thorn S, Müller J (2015) Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv Biol 29:382–390PubMedCrossRefPubMedCentralGoogle Scholar
  124. Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134CrossRefGoogle Scholar
  125. Shibata E (1986a) Adult populations of the Sugi bark borer, Semanotus japonicus Lacordaire (Coleoptera, Cerambycidae), in Japanese cedar stands—population parameters, dispersal, and spatial distribution. Res Popul Ecol 28:253–266CrossRefGoogle Scholar
  126. Shibata E (1986b) Dispersal movement of the adult Japanese pine sawyer, Monochamus alternatus hope (Coleoptera, Cerambycidae) in a young pine forest. Appl Entomol Zool 21:184–186CrossRefGoogle Scholar
  127. Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41Google Scholar
  128. Simms D, Husseneder C (2009) Assigning individual alates of the Formosan subterranean termite (Isoptera: Rhinotermitidae) to their colonies of origin within the context of an area-wide management program. Sociobiology 53:631–650Google Scholar
  129. Smith MT, Bancroft J, Li GH, Gao R, Teale S (2001) Dispersal of Anoplophora glabripennis (Cerambycidae). Environ Entomol 30:1036–1040CrossRefGoogle Scholar
  130. Smith MT, Tobin PC, Bancroft J, Li GH, Gao RT (2004) Dispersal and spatiotemporal dynamics of Asian longhorned beetle (Coleoptera: Cerambycidae) in China. Environ Entomol 33:435–442CrossRefGoogle Scholar
  131. Solbreck C (1980) Dispersal distances of migrating pine weevils, Hylobius abietis, Coleoptera-Curculionidae. Entomol Exp Appl 28:123–131CrossRefGoogle Scholar
  132. Southwood T (1962) Migration of terrestrial arthropods in relation to habitat. Biol Rev 37:171–211CrossRefGoogle Scholar
  133. Speight MCD (1989) Saproxylic invertebrates and their conservation. Nature and environment series, vol 42. Council of Europe, Strasbourg, p 79Google Scholar
  134. Speight MCD (2012) Species accounts of European Syrphidae (Diptera), 2012. Syrph the Net Publications, DublinGoogle Scholar
  135. Sprecher-Uebersax E, Durrer H (2001) Verhaltensstudien über den Hirschkäfer Lucanus cervus L. mit Hilfe der Telemetrie und Videobeobachtung. Mitteilungen der Naturforschenden Gesellschaften beider Basel 5:161–182Google Scholar
  136. Starzomski BM, Bondrup-Nielsen S (2002) Analysis of movement and the consequence for metapopulation structure of the forked fungus beetle, Bolitotherus cornutus panzer (Tenebrionidae). Ecoscience 9:20–27CrossRefGoogle Scholar
  137. Stokland JN (2012) The saproxylic food web. In: Stokland JN, Siitonen P, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, Cambridge, pp 29–57CrossRefGoogle Scholar
  138. Svensson GP, Sahlin U, Brage B, Larsson MC (2011) Should I stay or should I go? Modelling dispersal strategies in saproxylic insects based on pheromone capture and radio telemetry: a case study on the threatened hermit beetle Osmoderma eremita. Biodivers Conserv 20:2883–2902CrossRefGoogle Scholar
  139. Sverdrup-Thygeson A (2010) Colonization of experimentally arranged resource patches—a case study of fungivorous beetles. Entomol Fenn 21:139–150Google Scholar
  140. Taylor RAJ, Bauer LS, Poland TM, Windell KN (2010) Flight performance of Agrilus planipennis (Coleoptera: Buprestidae) on a flight mill and in free flight. J Insect Behav 23:128–148CrossRefGoogle Scholar
  141. Tini M, Bardiani M, Chiari S, Campanaro A, Marizi E, Toni I, Mason F, Audisio PA, Carpetano GM (2018) Use of space and dispersal ability of a flagship saproxylic insect: a telemetric study of the stag beetle (Lucanus cervus) in a relict lowland forest. Insect Conserv Divers 11:116–129CrossRefGoogle Scholar
  142. Torres-Vila LM, Sanchez-Gonzalez A, Ponce-Escudero F, Martin-Vertedor D, Ferrero-Garcia JJ (2012) Assessing mass trapping efficiency and population density of Cerambyx welensii Küster by mark-recapture in dehesa open woodlands. Eur J For Res 131:1103–1116CrossRefGoogle Scholar
  143. Torres-Vila LM, Zugasti C, De-Juan JM, Oliva MJ, Montero C, Mendiola FJ, Conejo Y, Sanchez A, Fernandez F, Ponce F, Esparrago G (2015) Mark-recapture of Monochamus galloprovincialis with semiochemical-baited traps: population density, attraction distance, flight behaviour and mass trapping efficiency. Forestry 88:224–236CrossRefGoogle Scholar
  144. Torres-Vila LM, Mendiola-Diaz FJ, Sanchez-Gonzalez A (2017) Dispersal differences of a pest and a protected Cerambyx species (Coleoptera: Cerambycidae) in oak open woodlands: a mark-recapture comparative study. Ecol Entomol 42:18–32CrossRefGoogle Scholar
  145. Travis JMJ, Delgado M, Bocedi G, Baguette M, Barton K, Bonte D, Boulangeat I, Hodgson JA, Kubisch A, Penteriani V, Saastamoinen M, Stevens VM, Bullock JM (2013) Dispersal and species' responses to climate change. Oikos 122:1532–1540CrossRefGoogle Scholar
  146. Türke M, Fiala B, Linsenmair KE, Feldhaar H (2010) Estimation of dispersal distances of the obligately plant-associated ant Crematogaster decamera. Ecol Entomol 35:662–671CrossRefGoogle Scholar
  147. Ulyshen MD (2011) Arthropod vertical stratification in temperate deciduous forests: implications for conservation-oriented management. For Ecol Manag 261:1479–1489CrossRefGoogle Scholar
  148. Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85PubMedPubMedCentralCrossRefGoogle Scholar
  149. Ulyshen MD, Hanula JL, Horn S, Kilgo JC, Moorman CE (2004) Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests. For Ecol Manag 199:259–272CrossRefGoogle Scholar
  150. Vlasanek P, Sam L, Novotny V (2013) Dispersal of butterflies in a new Guinea rainforest: using mark-recapture methods in a large, homogeneous habitat. Ecol Entomol 38:560–569CrossRefGoogle Scholar
  151. Waldbauer GP, Sternburg JG (1979) Inbreeding depression and a behavioral mechanism for its avoidance in Hyalophora cecropia. Am Midl Nat 102:204–208CrossRefGoogle Scholar
  152. Weslien J, Lindelöw A (1990) Recapture of marked spruce bark beetles (Ips typographus) in pheromone traps using area-wide mass trapping. Can J For Res Revue Canadienne De Recherche Forestiere 20:1786–1790CrossRefGoogle Scholar
  153. Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49PubMedCrossRefPubMedCentralGoogle Scholar
  154. Whitlock MC (1992) Nonequilibrium population-structure in forked fungus beetles—extinction, colonization, and the genetic variance among populations. Am Nat 139:952–970CrossRefGoogle Scholar
  155. Wootton RJ (1992) Functional morphology of insect wings. Annu Rev Entomol 37:113–140CrossRefGoogle Scholar
  156. Zauli A, Chiari S, Hedenstrom E, Svensson GP, Carpaneto GM (2014) Using odour traps for population monitoring and dispersal analysis of the threatened saproxylic beetles Osmoderma eremita and Elater ferrugineus in central Italy. J Insect Conserv 18:801–813CrossRefGoogle Scholar
  157. Zeh JA, Zeh DW (2013) On the threshold of dispersal: hitchhiking on a giant fly favours exaggerated male traits in a male-dimorphic pseudoscorpion. Biol J Linn Soc 108:509–520CrossRefGoogle Scholar
  158. Zolubas P, Byers JA (1995) Recapture of dispersing bark beetle Ips typographus L (col, Scolytidae) in pheromone-baited traps—regression-models. J Appl Entomol Z Angew Entomol 119:285–289CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.  2018

Authors and Affiliations

  1. 1.Animal Ecology I, BayCEER (Bayreuth Center for Ecology and Environmental Research), University of BayreuthBayreuthGermany

Personalised recommendations