Advertisement

Root Biology pp 239-258 | Cite as

Optimizing Growth and Tolerance of Date Palm (Phoenix dactylifera L.) to Drought, Salinity, and Vascular Fusarium-Induced Wilt (Fusarium oxysporum) by Application of Arbuscular Mycorrhizal Fungi (AMF)

  • Abdelilah MeddichEmail author
  • Mohamed Ait El Mokhtar
  • Widad Bourzik
  • Toshiaki Mitsui
  • Marouane Baslam
  • Mohamed Hafidi
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 52)

Abstract

Date palm (Phoenix dactylifera L.) is an important agricultural and commercial crop in the countries of North Africa and Near East. Date palm tree could be used for generations to come due to its remarkable nutritional, health, and economic value in addition to its aesthetic and environmental benefits. During the last decade, date palm plantations were subjected to degradation due to an extensive exploitation and to drastic environmental conditions. The major problems of drought and salinity have become more intense over time, and their negative impacts on palm crop are marked by decreasing the production of Phoenix dactylifera. Furthermore, fusarium wilts (bayoud) are economically important soilborne diseases that result in significant crop losses and damage to natural ecosystems. Bayoud is a vascular wilt caused by Fusarium oxysporum f. sp. albedinis (Foa) and represents the most serious fungal disease threatening date palm plantations. This vascular disease combined with the problems of drought and salinity causes huge losses in palm groves destroying more than 12 million trees and reducing the total areas from 150,000 to 44,000 ha. Plant–microbe interactions can be either beneficial or detrimental, and a fast and accurate assessment of the surrounding organisms is essential for the plant’s survival. Arbuscular mycorrhizal fungi (AMF) are a major component of soil fertility, and its use can improve crop resistance to biotic and abiotic stresses. This study highlights the importance of AMF in increasing tolerance of date palm to the combination of Fusarium oxysporum f. sp. albedinis and to water-deficit or salt stresses. Here, we investigated the consequences of date palm inoculation with four AMF spores: Glomus monosporus, Glomus clarum, Glomus deserticola, and Aoufous consortium (indigenous AMF) on morphological and physiological levels under F. oxysporum infection and drought or salinity stresses. Our results, after 14 months of growth, revealed that mycorrhizal infection rates were higher and slightly affected by water deficit. Aoufous consortium, G. monosporus, or G. clarum increased the biomass production of date palm despite the pathogen inoculation, independently of the water regime. AMF allowed maintaining high-level leaf water parameters in plants F. oxysporum inoculated or not under drought conditions. The mortality rate among the date palm trees infected by F. oxysporum was lower in mycorrhizal plants than non-mycorrhizal one. After 5 months of salt stress application (240 mM), AMF showed a positive effect on date palm tolerance compared to control (0 mM). Under salt stress, the aerial dry weight was increased more than twice in mycorrhizal date palm seedlings than in the control. Similarly, the water parameters including stomatal conductance, water content, and water potential were enhanced by AMF in the presence of salt stress. Our data suggest that AMF decrease the deleterious effect of F. oxysporum on date palm; nevertheless, the bioprotection against the plant pathogen was AMF species-dependent. The indigenous AM fungal community “Aoufous” resulted in a better crop resistance under harsh biotic and abiotic conditions.

Keywords

Bioprotector agents Date palm Fusarium oxysporum f. sp. albedinis Vascular wilt Abiotic stress Indigenous arbuscular mycorrhizal fungal community Mycorrhizal symbioses Tolerance 

Notes

Acknowledgments

This research was partially supported by Grant for Promotion of KAAB Projects (Niigata University) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

  1. Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54CrossRefGoogle Scholar
  2. Al-Karaki GN (2013) Application of mycorrhizae in sustainable date palm cultivation. Emir J Food Agric 25:854–862CrossRefGoogle Scholar
  3. Al-Karaki GN, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269CrossRefGoogle Scholar
  4. Al-Karaki GN, Othman Y, Al-Ajmi A (2007) Effects of mycorrhizal fungi inoculation on landscape turf establishment under Arabian Gulf region conditions. Arab Gulf J Sci Res 25:147–152Google Scholar
  5. Asghari HR, Marschner P, Smith SE, Smith FA (2005) Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant Soil 273:245–256CrossRefGoogle Scholar
  6. Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis altersstomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24CrossRefGoogle Scholar
  7. Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens—an overview of the mechanisms involved. Mycorrhiza 6:457–464CrossRefGoogle Scholar
  8. Bartschi H, Gianinazzi-Pearson V, Vegh I (1981) Vesicular arbuscular mycorrhiza formation and root disease (Phytophthora cinnamomi) development in Chamaecyparis lawsoniana. J Phytopathol 102:213–218CrossRefGoogle Scholar
  9. Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359CrossRefGoogle Scholar
  10. Baslam M, Qaddoury A, Goicoechea N (2014) Role of native and exotic mycorrhizal symbiosis to develop morphological, physiological and biochemical responses coping with water drought of date palm, Phoenix dactylifera. Trees 28:161–172CrossRefGoogle Scholar
  11. Bearden B, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant Soil 218:173–183CrossRefGoogle Scholar
  12. Benmeddour Z, Mehinagic E, Le Meurlay D, Louaileche H (2013) Phenolic composition and antioxidant capacities of ten Algerian date (Phoenix dactylifera L.) cultivars: a comparative study. J Funct Foods 5:346–354CrossRefGoogle Scholar
  13. Borowicz VA (2001) Do arbuscular mycorrhiza fungi alter plant–pathogen relations? Ecology 82:3057–3068Google Scholar
  14. Brown MS, Bethelenfalvay GJ (1987) Glycine Glomus-Rhizobium symbiosis. Plant Physiol 85:120–123CrossRefGoogle Scholar
  15. Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281CrossRefGoogle Scholar
  16. Caron M, Fortin A, Richard C (1986) Effect of inoculation sequence on the interaction between Glomus intraradices and Fusarium oxysporum f. sp. radicis-lycopersici in tomatoes. Can J Plant Pathol 8(1):12–16.  https://doi.org/10.1080/07060668609501835 CrossRefGoogle Scholar
  17. Chao CCT, Krueger RR (2007) The date palm (Phoenix dactylifera L.), overview of biology, uses, and cultivation. Hortscience 42(5):1077–1082Google Scholar
  18. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533CrossRefGoogle Scholar
  19. Daayf F, El Bellaj M, El Hassni M, Jaiti F, El Hadrami I (2003) Elicitation of soluble phenolics in date palm (Phoenix dactylifera) callus by Fusarium oxysporum f. sp. albedinis culture medium. Environ Exp Bot 49:41–47CrossRefGoogle Scholar
  20. Delaux PM, Séjalon-Delmas N, Bécard G, Ané JM (2013) Evolution of the plant-microbe symbiotic ‘toolkit’. Trends Plant Sci 18(6):298–304CrossRefGoogle Scholar
  21. Dell’Amico J, Torrecillas A, Rodriguez P, Morte A, Sanchez-Blanco M (2002) Responses of tomato plants associated with the arbuscular mycorrhizal fungus Glomus clarum during drought and recovery. J Agric Sci 138:387–393Google Scholar
  22. Djerbi M (1998) Diseases of the date palm: present status and future prospects. In: Proceedings of the international conference on integrated pest management, Muscat, Sultanate of Oman, 23–25 Feb 1998, Sultan-Qaboos-University. J Sci Res Agric Sci 3:103–114Google Scholar
  23. Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–82CrossRefGoogle Scholar
  24. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280CrossRefGoogle Scholar
  25. Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonellafoenum-graecum. Mycorrhiza 23:71–86CrossRefGoogle Scholar
  26. Fan L, Dalpé Y, Fang C, Dubé C, Khanizadeh S (2011) Influence of arbuscular mycorrhizae on biomass and root morphology of selected strawberry cultivars under salt stress. Botany 89:397–403CrossRefGoogle Scholar
  27. Fini A, Frangi P, Amoroso G (2011) Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes. Mycorrhiza 21:703–719CrossRefGoogle Scholar
  28. Gianinazzi-Pearson V, Gianinazzi S (1986) The physiology of improved phosphate nutrition in mycorrhizal plants. In: Les Mycorhizes, Physiologie et Génétique. INRA, Editions, Paris, pp 101–109Google Scholar
  29. Gianinazzi-Pearson V, Gianinazzi S (1988) Morphological integration and functional compatibility between symbionts in vesicular arbuscular mycorrhizal associations. In: Scannerini S, Smith D, Bonfante-Fasolo P, Gianinazzi-Pearson V (eds) Cell to cell signals in Plant, animal and microbial symbiosis. Springer, Berlin, pp 73–84CrossRefGoogle Scholar
  30. Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S (1996) Cellular and molecular defense-related root response to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45–57CrossRefGoogle Scholar
  31. Giri B (2017) Mycorrhizal dependency and growth response of Gliricidia sepium (Jacq.) Kunth ex Walp. under saline condition. Plant Sci Today 4(4):154–160CrossRefGoogle Scholar
  32. Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760CrossRefGoogle Scholar
  33. Harrison MJ (1997) The arbuscular mycorrhizal symbiosis. In: Stancey G, Keen NT (eds) Plant-microbe interactions, vol 3. Chapman and Hall, New York, pp 1–34Google Scholar
  34. Ismail Y, Hijri M (2012) Arbuscular mycorrhization with Glomus irregulare induces expression of potato PR homologues genes in response to infection by Fusarium sambucinum. Funct Plant Biol 39(3):236–245CrossRefGoogle Scholar
  35. Ismail Y, McCormick S, Hijri M (2011) A fungal symbiont of plant-roots modulates mycotoxin gene expression in the pathogen Fusarium sambucinum. PLoS One 6(3):e17990CrossRefGoogle Scholar
  36. Ismail Y, McCormick S, Hijri M (2013) The arbuscular mycorrhizal fungus, Glomus irregulare, controls the mycotoxin production of Fusarium sambucinum in the pathogenesis of potato. FEMS Microbiol Lett 348(1):46–51.  https://doi.org/10.1111/1574-6968.12236. PMID: 23964970CrossRefPubMedGoogle Scholar
  37. Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53CrossRefGoogle Scholar
  38. Jalali BL, Tharija ML (1981) Suppression of Fusarium wilt of chickpea in V.A.M. inoculated soils. International Chickpea Newsletter. Haryana. Agric Univ Hissar India 4:21–24Google Scholar
  39. Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91CrossRefGoogle Scholar
  40. Jung SC, Ainhoa MM, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664CrossRefGoogle Scholar
  41. Juniper S, Abbott L (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–58CrossRefGoogle Scholar
  42. Koske RE (1982) Evidence for a volatile attractant from plant roots affecting germ tubes of a VA mycorrhizal fungus. Trans Br Mycol Soc 79:305–310CrossRefGoogle Scholar
  43. Kothari SK, Marschner H, George E (1990) Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology growth and water relations in maize. New Phytol 116:303–311CrossRefGoogle Scholar
  44. Lawlor DW (1987) Stress metabolism: its implication in breeding programmes. In: Srivastava JP, Porceddu E, Acevedo E, Varma S (eds) Drought tolerance in winter cereals. ICARDA, Wiley, Chichester, pp 227–240Google Scholar
  45. Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. American Phytopathological Society, St. Paul, MN, pp 1–25Google Scholar
  46. Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M et al (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63.  https://doi.org/10.1038/nature09622. PMID: 21209659CrossRefPubMedGoogle Scholar
  47. Meddich A (2001) Rôle des endomycorhizes à vésicules et à arbuscules des Palmeraies Marocaines dans la tolérance des plantes de zones arides au stress hydrique. Thèse de Doctorat National. Département de Biologie, Université Cadi Ayyad de Marrakech, Faculté des Sciences Semlalia, Marrakech, Maroc, 234 pagesGoogle Scholar
  48. Meddich A, Boumezzough A (2017) First detection of Potosia opaca larva attacks on Phoenix dactylifera and P. canariensis in Morocco: focus on pests control strategies and soil quality of prospected palm groves. J Entomol Zool Stud 5(4):984–991Google Scholar
  49. Meddich A, Oihabi A, Abbass Y, Bizid E (2000) Rôle des champignons mycorhiziens à arbuscules de zones arides dans la résistance du trèfle (Trifolium alexandrinum L.) au déficit hydrique. Agronomie 20:283–295CrossRefGoogle Scholar
  50. Meddich A, Jaiti F, Bourzik W, El Asli A, Hafidi M (2015) Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera L.) Scientia Horticulturae 192:468–474CrossRefGoogle Scholar
  51. Navarro AG, Del Pilar Bañón Árias S, Morte A, Sánchez-Blanco MJ (2011) Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants. Mycorrhiza 21:53–64CrossRefGoogle Scholar
  52. Oihabi A (1991) Effet des endomycorhizes V.A sur la croissance et la nutrition minérale du palmier dattier. Thèse de Doctorat d’Etat, Univ. Cadi Ayyad Marrakech, Maroc/Univ. Bourgogne Dijon France, p 117Google Scholar
  53. Oihabi A (2001) Date palm in North Africa: trumps and problems. In: The second international conference on Date Palms, Department of Arid Land Agriculture and Department of Agriculture and Livestock College of Food Systems, UAE University, Ai-Ain, UAE, March, 25–27Google Scholar
  54. Oihabi A, Meddich A (1996) Effet des mycorhizes à arbuscules sur la croissance et la composition minérale du trèfle (Trifolium alexandrinum). Cahiers Agric 5:382–386Google Scholar
  55. Oruru MB, Njeru EM (2016) Upscaling arbuscular mycorrhizal symbiosis and related agroecosystems services in smallholder farming systems. Biomed Res Int 2016Google Scholar
  56. Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117CrossRefGoogle Scholar
  57. Peters RS, Meusemann K, Petersen M, Mayer C, Wilbrandt J, Ziesmann T, Donath A et al (2014) The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. BMC Evol Biol 14(1):52CrossRefGoogle Scholar
  58. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  59. Pitman M, Läuchli A (2004) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Springer, Dordrecht, pp 3–20CrossRefGoogle Scholar
  60. Plenchette C, Furlan V, Fortin JA (1982) Effects of different endomycorrhizal fungi on five host plants grown on calcined montmorillonite clay. J Am Soc Hortic Sci 107:535–538Google Scholar
  61. Porcel A, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. Agron Sustain Dev 32:181–200CrossRefGoogle Scholar
  62. Redecker D, Morton JB, Bruns TD (2000) Ancestral lineage of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276–284CrossRefGoogle Scholar
  63. Ruiz-Lozano JM, Porcel R, Azcon R, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants. New challenges in physiological and molecular studies. J Exp Bot 63:4033–4044.  https://doi.org/10.1093/jxb/ers126 CrossRefPubMedGoogle Scholar
  64. Saaidi M (1990) Amélioration génétique du palmier dattier critères de sélection, techniques et résultats. Options Méditerranéennes 11:133–154Google Scholar
  65. Sannazzaro AI, Ruíz OA, Alberto EO, Menendez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287CrossRefGoogle Scholar
  66. Scholander PF, Hammel HT, Bradstreet ED, Hemmingzen EA (1965) Sap pressure in vascular plants. Science 148:339–346CrossRefGoogle Scholar
  67. Shabbir G, Dakheel AJ, Brown GM, Rillig MC (2011) Potential of arbuscular mycorrhizal technology in date palm production. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 449–476CrossRefGoogle Scholar
  68. Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151CrossRefGoogle Scholar
  69. Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296CrossRefGoogle Scholar
  70. Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430CrossRefGoogle Scholar
  71. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  72. Strullu DG (1986) Micropropagation of chesnut and conditions of mycorrhizal synthesis in vitro. New Phytol 102:95–101CrossRefGoogle Scholar
  73. Symanczik S, Błaszkowski J, Chwat G, Boller T, Wiemken A, Al-Yahya’ei MN (2014) Three new species of arbuscular mycorrhizal fungi discovered at one location in a desert of Oman: Diversispora omaniana, Septoglomus nakheelum and Rhizophagus arabicus. Mycologia 106:243–259CrossRefGoogle Scholar
  74. Taffouo VD, Benard Ngwene B, Akoa A, Franken P (2014) Influence of phosphorus application and arbuscular mycorrhizal inoculation on growth, foliar nitrogen mobilization, and phosphorus partitioning in cowpea plants. Mycorrhiza 24:361–368CrossRefGoogle Scholar
  75. Thygesen K, Larsen J, Bodker L (2004) Arbuscular mycorrhizal fungi reduce development of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen inoculum. Eur J Plant Pathol 110:411–419CrossRefGoogle Scholar
  76. Tobar R, Azcon R, Barea JM (1994) Improved nitrogen uptake and transport from15N-labelled nitrate by external hyphae of arbuscular mycorrhiza underwater-stressed conditions. New Phytol 126:119–122CrossRefGoogle Scholar
  77. Trouvelot A, Kouch J, Gianinazzi-Pearson V (1986) Mesure du taux demycorhization VA d’un système radiculaire: Recherche de méthodesd’estimation ayant une signification fonctionnelle. In: Gianinazzi S (ed) Les Mycorhizes: Physiologie et Génétique, 1er Séminaire Europeen sur les Mycorhizes, Dijon. INRA, Paris, pp 217–221Google Scholar
  78. Vigo C, Norman JR, Hooker JE (2000) Biocontrol of the pathogen Phytophthoraparasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514CrossRefGoogle Scholar
  79. Xiao LS, Ai-Rong L, Yan C, Kai-Yun G, Lu Z, Yan YL (2014) Arbuscular mycorrhizal fungi: potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis. Mycorrhiza 24:187–195CrossRefGoogle Scholar
  80. Zézé A, Brou Y, Meddich A, Marty F (2007) Molecular characterisation of a mycorrhizal inoculant that enhances Trifolium alexandrium resistance underwater stress conditions. Afr J Biotechnol 6(13):1524–1528Google Scholar
  81. Zézé A, Brou Y, Meddich A, Marty F (2008) Molecular identification of MIP genes expressed in the roots of an arbuscular mycorrhizal Trifolium alexandrium L. under water stress. Afr J Agric Res 3(1):078–083Google Scholar
  82. Zhang HS, Fei FQ, Qin P, Pan SM (2014) Evidence that arbuscular mycorrhizal and phosphate-solubilizing fungi alleviate NaCl stress in the halophyte Kosteletzkya virginica: nutrient uptake and ion distribution within root tissues. Mycorrhiza 24:383–395CrossRefGoogle Scholar
  83. Zohary D, Hopf M (2000) The domestication of the plants in the old world: the origin and spread of cultivated plants in West Asia, Europe and Nile Valley, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  84. Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abdelilah Meddich
    • 1
    Email author
  • Mohamed Ait El Mokhtar
    • 1
  • Widad Bourzik
    • 2
  • Toshiaki Mitsui
    • 3
    • 4
  • Marouane Baslam
    • 5
  • Mohamed Hafidi
    • 6
  1. 1.Department of Biology Biotechnology and Plant Physiology UnitCadi Ayyad University, Faculty of Science SemlaliaMarrakeshMorocco
  2. 2.Environment ServiceWilaya of Marrakesh-Safi Region, Marrakesh PrefectureMarrakeshMorocco
  3. 3.Faculty of AgricultureUniversity of NiigataNiigataJapan
  4. 4.Graduate School of Science and TechnologyUniversity of NiigataNiigataJapan
  5. 5.Department of Applied Biological Chemistry, Faculty of AgricultureUniversity of NiigataNiigataJapan
  6. 6.Department of Biology Ecology and Environment UnitCadi Ayyad University, Faculty of Science SemlaliaMarrakeshMorocco

Personalised recommendations