Root Biology pp 181-220 | Cite as

Biocontrol of Soilborne Root Pathogens: An Overview

  • Pratibha Thakur
  • Ishwar Singh
Part of the Soil Biology book series (SOILBIOL, volume 52)


Antagonism is a natural phenomenon of negative interactions among organisms; one of its beneficial applications in agricultural sector is biocontrol method. Under biocontrol methods, antagonistic properties of certain organisms especially microbes, called biocontrol agents (BAs), are harnessed against plant pathogens to control or at least reduce the severity of plant diseases. Biocontrol methods are environment-friendly and do not affect nontarget organisms including human beings. Further, the chances of resistance of pathogen against these methods are little as BAs employed often possess multitarget action-mechanisms such as antibiosis, competition, parasitism, and induction of host defense system. A large number of microorganisms, particularly bacteria and fungi, have shown biocontrol potentials against various root pathogens. Despite a number of added benefits of biocontrol methods over synthetic chemical pesticides, the popularity of these methods among farmers is still very limited.


Biological control Plant diseases Biopesticides Soilborne diseases Integrated pest management 


  1. Abeysinghe S (2009) Use of nonpathogenic Fusarium oxysporum and rhizobacteria for suppression of Fusarium root and stem rot of Cucumis sativus caused by Fusarium oxysporum f. sp. radicis – cucumerinum. Arch Phytopathol Plant Protect 42(1):73–82CrossRefGoogle Scholar
  2. Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20CrossRefGoogle Scholar
  4. Ahmed N, Abbasi MW, Shaukat SS, Zaki MJ (2009) Physiological changes in leaves of mungbean plants infected with Meloidogyne javanica. Phytopathol Mediterr 48:262–268Google Scholar
  5. Ajayi-Oyetunde OO, Bradley CA (2017) Identification and characterization of Rhizoctonia species associated with soybean seedling disease. Plant Dis 101(4):520–533CrossRefGoogle Scholar
  6. Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphate and micro nutrients by the plant growth promoting fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65(7):2926–2933PubMedPubMedCentralGoogle Scholar
  7. Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635PubMedCrossRefGoogle Scholar
  8. Anita B, Samiyappan R (2012) Induction of systemic resistance in rice by Pseudomonas fluorescens against rice root knot nematode Meloidogyne graminicola. J Biopest 5:53–59Google Scholar
  9. Antoun H, Prevost D (2006) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38Google Scholar
  10. Ashrafuzzaman M, Hossen FA, Razi Ismail M, Anamul Hoque MD, Zahurul Islam M, Shahidullah SM, Meon S (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8(7):1247–1252Google Scholar
  11. Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil borne plant pathogens: an overview of the mechanisms involved. Mycorrhiza 6:457–464CrossRefGoogle Scholar
  12. Bagnasco P, De La Fuente L, Gualtieri G, Noya F, Arias A (1998) Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biol Biochem 30(10-11):1317–1322CrossRefGoogle Scholar
  13. Baker PA, Weisheek PJ, Schippers B (1986) The role of siderophores in plant growth stimulation by fluorescent Pseudomonas sp. Med Fac Landboucow Rijksumiv Gent 51(31):1357–1362Google Scholar
  14. Barari H, Foroutan A (2016) Biocontrol of soybean charcoal root rot disease by using Trichoderma spp. Cercetări Agronomice în Moldova 49(2):41–51CrossRefGoogle Scholar
  15. Barnes EM (1949) Laterosporin A and Laterosporin B antibiotics produced by B. laterosporus. Br J Exp Pathol 30(2):100–104PubMedPubMedCentralGoogle Scholar
  16. Bartlem DG, Jones MGK, Hammes UZ (2014) Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. J Exp Bot 65:1789–1798PubMedCrossRefGoogle Scholar
  17. Basurto-Cadena MGL, Vázquez-Arista M, García-Jiménez J, Salcedo-Hernández R, Bideshi DK, Barboza-Corona JE (2012) Isolation of a New Mexican strain of Bacillus subtilis with antifungal and antibacterial activities. Sci World J 2012:384978. CrossRefGoogle Scholar
  18. Battu PR, Reddy MS (2009) Siderophore mediated antibiosis of rhizobacterial fluorescent pseudomonads against rice fungal pathogens. Int J Pharm Tech Res 1:227–229Google Scholar
  19. Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11:557–574CrossRefGoogle Scholar
  20. Berditsch M, Afonin S, Ulrich AS (2007) The ability of Aneurinibacillus migulanus (Bacillus brevis) to produce the antibiotic gramicidin S is correlated with phenotype variation. Appl Environ Microbiol 73(20):6620–6628PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bignell DR, Huguet-Tapia JC, Joshi MV, Pettis GS, Loria R (2010) What does it take to be a plant pathogen: genomic insights from Streptomyces species. Antonie Van Leeuwenhoek 98(2):179–194PubMedCrossRefGoogle Scholar
  22. Bird DMK, Opperman CH, Williamson VM (2009) Plant infection by root-knot nematode. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism, Plant Cell Monograph, vol 15. Springer, BerlinCrossRefGoogle Scholar
  23. Bot A, Benites J (2005) The importance of soil organic matter- Key to drought-resistant soil and sustained food production, FAO Soils Bulletin 80. Food and Agriculture Organization of the United Nations, Rome, pp 1–80Google Scholar
  24. Bravo A, Cristina del Rincon-Castro M, Ibarra JE, Soberon M (2011) Towards a healthy control of insect pests: potential use of microbial insecticides. In: Lopez O, Fernandez Bolanos JG (eds) Green trends in insect control. Royal Society of Chemistry, London, pp 266–299CrossRefGoogle Scholar
  25. Burges HD (1998) Formulation of microbial biopesticides: beneficial microorganisms, nematodes, and seed treatments. Kluwer Academic, Dordrecht, p 412.
  26. Burkhead KD, Schisler DA, Slininger PJ (1994) Pyrrolnitrin production by biological control agent Pseudomonas cepacia b37w in culture and in colonized wounds of potatoes. Appl Environ Microbiol 60:2031–2039PubMedPubMedCentralGoogle Scholar
  27. Cameron DD, Neal AL, Van Wees SCM, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cao L, Qiu Z, Dai X, Tan H, Lin Y, Zhou S (2004) Isolation of endophytic actinomycetes from roots and leaves of banana (Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense. World J Microbiol Biotechnol 20:501–504CrossRefGoogle Scholar
  29. Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 16(11):91–97CrossRefGoogle Scholar
  30. Carson KC, Meyer JM, Dilworth MJ (2000) Hydroxamate siderophores of root nodule bacteria. Soil Biol Biochem 32:11–21CrossRefGoogle Scholar
  31. Castillo HFD, Reyes CF, Morales GG, Herrera RR, Aguilar C (2013) Biological control of root pathogens by plant-growth promoting Bacillus spp.
  32. Chandrasekaran M, Subramanian D, Yoon E, Taehoon Kwon CS (2016) Meta-analysis reveals that the genus Pseudomonas can be a better choice of biological control agent against bacterial wilt disease caused by Ralstonia solanacearum. Plant Pathol J 32:216–227PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chang I, Kommedahl T (1968) Biological control of seedling blight of corn by coating kernels with antagonistic microorganisms. Phytopathology 58:1395–1401Google Scholar
  34. Chen ZX, Dickson DW (1998) Review of Pasteuria penetrans: biology, ecology, and biological control potential. J Nematol 30(3):313–340PubMedPubMedCentralGoogle Scholar
  35. Chen Y, Xu H, Zhou M, Wang Y, Wang S, Zhang J (2015) Salecan enhances the activities of β-1,3-glucanase and decreases the biomass of soilborne fungi. PLoS One 10(8):e0134799. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chernin L, Brandis A, Ismailov Z, Chet I (1996) Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr Microbiol 32:208–212CrossRefGoogle Scholar
  37. Cho C-F, Lee W-C (1999) Formulation of a biocontrol agent by entrapping biomass of Trichoderma viride in gluten matrix. J Biosci Bioeng 87(6):822–824PubMedCrossRefGoogle Scholar
  38. Cochrane SA, Surgenor RR, Khey KMV, Vederas JC (2015) Total synthesis and stereochemical assignment of the antimicrobial lipopeptide cerexin A. Org Lett 17(21):5428–5431PubMedCrossRefGoogle Scholar
  39. Collins DP, Jacobsen BJ (2003) Optimizing a Bacillus subtilis isolate for biocontrol of sugar beet Cercospora leaf spot. Biol Control 26(2):153–161CrossRefGoogle Scholar
  40. Compant S, Duffy B, Nowak J, Clèment C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  41. Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80PubMedCrossRefGoogle Scholar
  43. Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209CrossRefGoogle Scholar
  44. Cotxarrera L, Trillas-Gay M, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol Biochem 34(4):467–476CrossRefGoogle Scholar
  45. Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y (2009) Pseudomonas fluorescens and closely related fluorescent pseudomonads as biocontrol agents of soilborne phytopathogens. Lett Appl Microbiol 48(5):505–512PubMedCrossRefGoogle Scholar
  46. Dahiya JS, Woods DL, Tewari JP (1988) Control of Rhizoctonia solani, causal agent of brown girdling root rot of rapeseed, by Pseudomonas fluorescens. Bot Bull Acad Sinica 29:135–142Google Scholar
  47. Dandurand LM, Knudsen GR (1993) Influence of Pseudomonas fluorescens on hyphal growth and biocontrol activity of Trichoderma harzianum in the spermosphere and rhizosphere of pea. Phytopathology 83:265–270CrossRefGoogle Scholar
  48. Datnoff L, Nemec S, Pernezny K (1995) Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5(3):427–431CrossRefGoogle Scholar
  49. de Vasconcellos RLF, Cardoso EJBN (2009) Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. BioControl 54:807–816CrossRefGoogle Scholar
  50. de Weert S, Vermeiren H, Mulders IH, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ (2002) Flagella driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15(11):1173–1180PubMedCrossRefGoogle Scholar
  51. DeCleene M, DeLey J (1976) The host range of crown gall. Bot Rev 42:389–466CrossRefGoogle Scholar
  52. Deketelaere S, Tyvaert L, França SC, Höfte M (2017) Desirable traits of a good biocontrol agent against Verticillium Wilt. Front Microbiol 8:1186. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Diaz Arias MM, Leandro LF, Munkvold GP (2013) Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybean. Phytopathology 103(8):822–832CrossRefGoogle Scholar
  54. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  55. Doornbos RF, Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Agron Sustain Dev 32:227–243CrossRefGoogle Scholar
  56. Driks A (2004) The Bacillus spore coat. Phytopathology 94(11):1249–1251PubMedCrossRefGoogle Scholar
  57. Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910CrossRefGoogle Scholar
  58. Ellis RA, Roberts EH (1981) The quantification of ageing and survival in orthodox seeds. Seed Sci Technol 9:373–409Google Scholar
  59. Elphinstone JG (2005) The current bacterial wilt situation: a global overview. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St Paul, pp 9–28Google Scholar
  60. Elsen A, Declerck S, De Wasele D (2002) Effects of three arbuscular mycorrhizal fungi on root knot nematode (Meloidogyne spp.) infection of Musa. Infomusa 11:21–23Google Scholar
  61. Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant-parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256PubMedCrossRefGoogle Scholar
  62. Emmert EA, Handelsman J (1999) Biocontrol of plant diseases: a (Gram-) positive perspective. FEMS Microbiol Lett 171:1–9PubMedCrossRefGoogle Scholar
  63. Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of diseases. Trends Plant Sci 8:380–385PubMedCrossRefGoogle Scholar
  64. Evangelista-Martinez Z (2014) Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World J Microbiol Biotechnol 30:1639–1647PubMedCrossRefGoogle Scholar
  65. Fiddman PJ, Rossall S (1993) The production of antifungal volatiles by Bacillus subtilis. J Appl Bacteriol 74:119–126CrossRefGoogle Scholar
  66. Fradin EF, Thomma BP (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86PubMedCrossRefGoogle Scholar
  67. Franco-Correa M, Quintana A, Duque C, Suarez C, Rodriguez MX, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217CrossRefGoogle Scholar
  68. Fravel D (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91CrossRefGoogle Scholar
  69. Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157(3):493–502CrossRefGoogle Scholar
  70. García LE, Sánchez-Puerta MV (2012) Characterization of a root-knot nematode population of Meloidogyne arenaria from Tupungato (Mendoza, Argentina). J Nematol 44(3):291–301Google Scholar
  71. Gardner JM, Chandler L, Feldman AW (1984) Growth promotion and inhibition by antibiotics producing fluorescent pseudomonads on citrus root. Plant Soil 77:103–113CrossRefGoogle Scholar
  72. Georgakopoulos DG, Fiddaman P, Leifert C, Malathrakis NE (2002) Biological Control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. J Appl Microbiol 92:1078–1086PubMedCrossRefGoogle Scholar
  73. Ghazalibiglar H, Kandula DRW, Hampton JG (2016) Biological control of Fusarium wilt of tomato by Trichoderma isolates. NZ Plant Prot 69:57–63Google Scholar
  74. Gheysen G, Mitchum MG (2011) How nematodes manipulate plant development pathways for infection. Curr Opin Plant Biol 14:415–421PubMedCrossRefGoogle Scholar
  75. Gianinazzi-Pearson V, Gollotte A, Dumas-Gaudot E, Franken P, Gianinazzi S (1994) Gene expression and molecular modifications associated with plant responses to infection by arbuscular mycorrhizal fungi. In: Daniels M, Downic JA, Osbourn AE (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 179–186CrossRefGoogle Scholar
  76. Glick BR (1995) The enhancement of plant growth promotion by free living bacteria. Can J Microbiol 41(2):109–117CrossRefGoogle Scholar
  77. Guédez C, Castillo C, Cañizales L, Olivar R (2008) Biological control a tool for sustaining and sustainable development. Control Biol 7(13):50–74Google Scholar
  78. Guetsky R, Shtienberg D, Elad Y, Dinoor A (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91:621–627PubMedCrossRefGoogle Scholar
  79. Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A (2002) Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology 92:976–985PubMedCrossRefGoogle Scholar
  80. Guillén-Cruz R, Hernández-Castillo FD, Gallegos-Morales G, Rodríguez-Herrera R, Aguilar-González CN, PadrónCorral E, Reyes-Valdés MH (2006) Bacillus spp. como biocontrol en un suelo infestado con Fusarium spp., Rhizoctonia solani Kühn y Phytophthora capsici Leonina y su efecto en el desarrollo y rendimiento del cultivo de chile (Capsicum annuum L.) Rev Mex Fitopatol 24:105–114Google Scholar
  81. Haas D, Défago G (2005) Biological control of soilborne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319PubMedCrossRefGoogle Scholar
  82. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153PubMedCrossRefGoogle Scholar
  83. Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8(10):1855–1869PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hanlon DW, Rosario MML, Ordal GW, Venema G, Van Sinderen D (1994) Identification of TipC, a novel 62 kDa MCP-like protein from Bacillus subtilis. Microbiologica 140:1847–1856Google Scholar
  85. Hao Z, Fayolle L, van Tuinen D, Chatagnier O, Xiaolin L, Gianinazzi S, Gianinazzi-Pearson V (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672PubMedPubMedCentralCrossRefGoogle Scholar
  86. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56PubMedCrossRefGoogle Scholar
  87. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42CrossRefPubMedGoogle Scholar
  88. Hassan MN, Afghan S, Hafeez FY (2011) Biological control of red rot in sugarcane by native pyoluteorin-producing Pseudomonas putida strain NH-50 under field conditions and its potential modes of action. Pest Manag Sci 67(9):1147–1154PubMedGoogle Scholar
  89. Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10(4):273–290CrossRefGoogle Scholar
  90. Hiltpold I, Hibbard B, French BW, Turlings TJ (2012) Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm. Plant Soil 358:11–25CrossRefGoogle Scholar
  91. Hiraoka H, Asaka O, Ano T, Shoda M (1992) Characterization of Bacillus subtilis RB14, coproducer of peptide antibiotics Iturin A and Surfactin. J Gen Appl Microbiol 38:635–640CrossRefGoogle Scholar
  92. Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83PubMedCrossRefGoogle Scholar
  93. Howell C (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87(1):4–10CrossRefGoogle Scholar
  94. Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482CrossRefGoogle Scholar
  95. Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum-induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 70(8):712–715CrossRefGoogle Scholar
  96. Huang Y, Xu C, Ma L, Zhang K, Duan C, Mo M (2010) Characterization of volatiles produced from Bacillus megaterium YFM 3.25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126:417–422CrossRefGoogle Scholar
  97. Hussain I, Alam SS, Khan I, Shah B, Naeem A, Khan N, Ullah W, Adnan M, Shah SRA, Junaid K, Ahmed N, Iqbal M (2016) Medicinal plants rhizosphere exploration for the presence of potential biocontrol fungi. J Entomol Zool Stud 4(3):108–113Google Scholar
  98. Hussein AA, AL-Janabi S (2006) Identification of bacitracin produced by local isolate of Bacillus licheniformis. Afr J Biotechnol 18:1600–1601Google Scholar
  99. Inderbitzin P, Subbarao KV (2014) Verticillium systematics and evolution: how confusion impedes Verticillium wilt management and how to resolve it. Phytopathology 104:564–574PubMedCrossRefGoogle Scholar
  100. Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94:1272–1275PubMedCrossRefGoogle Scholar
  101. Jayaseelan S, Ramaswamy D, Dharmaraj S (2014) Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol 30(4):1159–1168PubMedCrossRefGoogle Scholar
  102. John RP, Tyagi RD, Brar SK, Surampalli RY, Prevost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31:211–226PubMedCrossRefGoogle Scholar
  103. Jonathan EI, Barker KR, Abdel-Alim FF, Vrain TC, Dickson DW (2000) Biological control of Meloidogyne incognita on tomato and banana with rhizobacteria, actinomycetes, and Pasteuria penetrans. Nematropica 30:231–240Google Scholar
  104. Jones KA, Burges HD (1998) Technology of formulation and application. In: Burges HD (ed) Formulation of microbial pesticides – beneficial microorganisms, nematodes and seed treatments. Springer, Dordrecht, pp 7–30Google Scholar
  105. Judelson HS, Blanco FA (2005) The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol 3:47–58PubMedCrossRefGoogle Scholar
  106. Junaid JM, Dar NA, Bhat TA, Bhat AH, Bhat MA (2013) Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Mod Plant Anim Sci 1(2):39–57Google Scholar
  107. Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360PubMedCrossRefGoogle Scholar
  109. Kalbe C, Marten P, Berg G (1996) Members of the genus Serratia as beneficial rhizobacteria of oilseed rape. Microbiol Res 151:433–439PubMedCrossRefGoogle Scholar
  110. Kariuki GM, Dickson DW (2007) Transfer and development of Pasteuria penetrans. J Nematol 39(1):55–61PubMedPubMedCentralGoogle Scholar
  111. Katz E, Demain AL (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 41(2):449–474PubMedPubMedCentralGoogle Scholar
  112. Kaya K, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206CrossRefGoogle Scholar
  113. Kazmar ER, Goodman RM, Grau CR, Johnson DW, Norrdheim EV, Undersander KJ, Handelsman J (2000) Regression analyses for evaluating the influence of Bacillus cereus on alfalfa yield under variable disease intensity. Phytopathology 90:657–665PubMedCrossRefGoogle Scholar
  114. Keel C, Défago G (1997) Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial system. Blackwell Science, Oxford, pp 27–47Google Scholar
  115. Keel C, Voisard C, Berling CH, Kadr G, Defago G (1989) Iron sufficiency, a prerequisite for the suppression of tobacco root rot by Pseudomonas fluorescens strain CHAO under gnotobiotic conditions. Phytopathology 79:584–589CrossRefGoogle Scholar
  116. Kennedy BW (1980) Estimates of U.S. crop losses to prokaryote plant pathogens. Plant Dis 647:674–676CrossRefGoogle Scholar
  117. Kergunteuil A, Bakhtiari M, Formenti L, Xiao Z, Defossez E, Rasmann S (2016) Biological control beneath the feet: a review of crop protection against insect root herbivores. Insects 7(70):1–22. CrossRefGoogle Scholar
  118. Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016) Formulation technology of biocontrol agents: present status and future prospects. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, p 299. CrossRefGoogle Scholar
  119. Khaledi N, Taheri P (2016) Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina. J Plant Prot Res 56(1):21–31CrossRefGoogle Scholar
  120. Khan MR, Fischer S, Egan D, Doohan FM (2006) Biological control of Fusarium seedling blight disease of wheat and barley. Phytopathology 96:386–394PubMedCrossRefGoogle Scholar
  121. Khan AAH, Naseem RL, Prathibha B (2011) Screening and potency evaluation of antifungal from soil isolates of Bacillus subtilis on selected fungi. Adv Biotechnol 10(7):35–37Google Scholar
  122. Kiewnick S, Sikora RA (2006) Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol Control 38:179–187CrossRefGoogle Scholar
  123. Kim J, Jaffuel G, Turlings TJ (2015) Enhanced alginate capsule properties as a formulation of entomopathogenic nematodes. Biol Control 60:527–535Google Scholar
  124. Kim YS, Balaraju K, Jeon YH (2017) Biological characteristics of Bacillus amyloliquefaciens AK-0 and suppression of ginseng root rot caused by Cylindrocarpon destructans. J Appl Microbiol 122:166–179PubMedCrossRefGoogle Scholar
  125. Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as bioagents. Pest Manag Sci 59:475–483PubMedCrossRefGoogle Scholar
  126. Kissen R, Rossiter JT, Bones AM (2009) The “mustard oil bomb”: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8:69–86CrossRefGoogle Scholar
  127. Kloepper JW, Lifshitz R, Novacky A (1988) Pseudomonas inoculation to benefit plant production. Anim Plant Sci 8:60–64Google Scholar
  128. Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266PubMedCrossRefGoogle Scholar
  129. Koike ST, Subbarao KV, Davis RM, Turini TA (2003) Vegetable diseases caused by soilborne pathogens. University of California, Publication 8099.
  130. Kumar RS, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2005) Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98(1):145–154PubMedCrossRefGoogle Scholar
  131. Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. In: Maheshwari DK (ed) Bacteria in agrobiology: Crop ecosystem. Springer, Berlin, pp 37–59CrossRefGoogle Scholar
  132. Labuschagne N, Pretorius T, Idris AH (2010) Plant growth promoting rhizobacteria as biocontrol agents against soilborne plant diseases. In: Maheshwari DK (ed) Plant growth and health promoting bacteria Microbiology Monographs 18. CrossRefGoogle Scholar
  133. Lacey LA, Georgis R (2012) Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 44:218–225PubMedPubMedCentralGoogle Scholar
  134. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41PubMedCrossRefGoogle Scholar
  135. Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115CrossRefGoogle Scholar
  136. Leggett M, Leland J, Kellar K, Epp B (2011) Formulation of microbial biocontrol agents – an industrial perspective. Can J Plant Pathol 33(2):101–107CrossRefGoogle Scholar
  137. Leong J (1986) Siderophores: their biochemistry, and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209CrossRefGoogle Scholar
  138. Li J, Yang Q, Zhao L, Zhang S, Wang Y, Zhao X (2009) Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. J Zhejiang Univ Sci B 10(4):264–272PubMedPubMedCentralCrossRefGoogle Scholar
  139. Lifshitz R, Kloepper JW, Mozlowski M, Simonson C, Carlson J, Tipping EM, Zaleska I (1987) Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395CrossRefGoogle Scholar
  140. Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf H-J, van Pée K-H (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695.<688::AID-PS186>3.0.CO;2-V CrossRefGoogle Scholar
  141. Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40(9):2217–2224CrossRefGoogle Scholar
  142. Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544PubMedCrossRefGoogle Scholar
  143. Logan NA, Halket G (2011) Developments in the taxonomy of aerobic, endospores-forming bacteria. In: Longan N, Vos P (eds) Endospore-forming soil bacteria. Soil biology, vol 27 Springer, Berlin, pp 1–29Google Scholar
  144. Loper JE, Buyer JW (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Int 4:5–13CrossRefGoogle Scholar
  145. Loria R, Kers J, Joshi M (2006) Evolution of plant pathogenicity in Streptomyces. Annu Rev Phytopathol 44:469–487PubMedCrossRefGoogle Scholar
  146. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 86:1–25CrossRefGoogle Scholar
  147. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  148. Lumsden RD, Rldout CJ, Vendemia ME, Harrlson DJ, Waters RM, Walter JF (1992) Characterization of major secondary metabolites produced in soilless mix by a formulated strain of the biocontrol fungus Gliocladium virens. Can J Microbiol 38:1274–1280CrossRefGoogle Scholar
  149. Malik RJ, Dixon MH, Bever JD (2016) Mycorrhizal composition can predict foliar pathogen colonization in soybean. Biol Control 103:46–53CrossRefGoogle Scholar
  150. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629PubMedCrossRefGoogle Scholar
  151. Marro N, Lax P, Cabello M, Doucet ME, Becerra AG (2014) Use of the arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Braz Arch Biol Technol 57(5):668–675CrossRefGoogle Scholar
  152. Mavrodi DV, Mavrodi OV, Parejko JA, Bonsall RF, Kwak Y-S, Paulitz TC, Thomashow LS, Weller DM (2012) Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol 78(3):804–812PubMedPubMedCentralCrossRefGoogle Scholar
  153. Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3(8):977–991PubMedCrossRefGoogle Scholar
  154. Mehta CM, Palni U, Franke-Whittle IH, Sharma AK (2014) Compost: its role, mechanism and impact on reducing soilborne plant diseases. Waste Manag 34:607–622PubMedCrossRefGoogle Scholar
  155. Miller JR, Hare EW, Wu J (1990) Quantitative characterization of the vegetation red edge reflectance. I. An inverted-Gaussian reflectance model. Int J Rem Sens 11:1755–1773CrossRefGoogle Scholar
  156. Moens M, Perry RN, Starr JL (2009) Meloidogyne species – a diverse group of novel and important plant parasites. In: Perry RN, Moens M, Starr JL (eds) Root knot nematodes. CAB International, OxfordshireGoogle Scholar
  157. Motlagh MRS, Samimi Z (2013) Evaluation of Trichoderma spp., as biological agents in some of plant pathogens. Ann Biol Res 4(3):173–179Google Scholar
  158. Nalisha I, Muskhazli M, Nor Farizan T (2006) Production of bioactive compounds by Bacillus subtilis against Sclerotium rolfsii. Mal J Microbiol 2(2):19–23Google Scholar
  159. Nawar LS (2016) Interactions between vascular arbuscular mycorrhizal fungi and Streptomyces as biocontrol agent for tomato damping-off disease caused by Rhizoctonia Solani Kuhn. IOSR-JPBS 11(6):89–96Google Scholar
  160. Nega A (2014) Review on concepts in biological control of plant pathogens. J Biol Agri Healthcare 4(27):33–54Google Scholar
  161. Neilands JB (1989) Siderophore systems of bacteria and fungi. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. Wiley, Somerset, pp 141–164Google Scholar
  162. Nielsen MN, Sorensen J (1999) Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol Ecol 30(3):217–227CrossRefGoogle Scholar
  163. Nuss DL (2005) Hypovirulence: mycoviruses at the fungal plant interface. Nat Rev Microbiol 3:632–642PubMedCrossRefGoogle Scholar
  164. O’Bannon J, Inserra R, Nemec S, Vovlas N (1979) The influence of Glomus mosseae on Tylenchulus semipenetrans-infected and uninfected Citrus limon seedlings. J Nematol 11:247–250PubMedPubMedCentralGoogle Scholar
  165. Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Belanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores antibiosis. Plant Pathol 48:66–76CrossRefGoogle Scholar
  166. Otten L, Burr T, Szegedi E (2008) Agrobacterium: a disease-causing bacterium. In: Tzfira T, Citovsky V (eds) Agrobacterium: From biology to biotechnology. Springer, New York, pp 1–46. CrossRefGoogle Scholar
  167. Pegg K, Manners A (2014a) Soil borne root pathogens in production nurseries. Nursery production plant health & biosecurity project, Plant health biosecurity, risk management and capacity building for the nursery industry. Agri-science Queensland, Department of Agriculture, Fisheries and Forestry (DAFF)Google Scholar
  168. Pegg K, Manners A (2014b) Rhizoctonia – A variable and versatile nursery pathogen. Nursery production plant health & biosecurity project, Plant health biosecurity, risk management and capacity building for the nursery industry. Agri-science Queensland, Department of Agriculture, Fisheries and Forestry (DAFF)Google Scholar
  169. Pelletier A, Sygusch J (1990) Purification and characterization of three chitosanase activities from Bacillus megaterium P1. Appl Environ Microbiol 56(4):844–848PubMedPubMedCentralGoogle Scholar
  170. Pereira P, Nesci A, Etcheverrg MG (2009) Efficacy of bacterial seed treatments for the control of Fusarium verticillioides in maize. Biol Control 54:103–111Google Scholar
  171. Pereira JAP, Vieira IJC, Freitas MSM, Prins CL, Martins MA, Rodrigues R (2016) Effects of arbuscular mycorrhizal fungi on Capsicum spp. J Agric Sci 154(5):828–849CrossRefGoogle Scholar
  172. Perry RN, Moens M (2011) Introduction to plant-parasitic nematodes; modes of parasitism. In: Jones JT, Gheysen L, Fenoll C (eds) Genomics and molecular genetics of plant–nematode interactions. Springer, Heidelberg, pp 3–20CrossRefGoogle Scholar
  173. Pierre E, Louise NW, Marie TKR, Valère TFP, Arc-en-ce JM, Fekam BF (2016) Integrated assessment of phytostimulation and biocontrol potential of endophytic Trichoderma spp against common bean (Phaseolus vulgaris L.) root rot fungi complex in centre region, Cameroon. Int J Pure App Biosci 4(4):50–68CrossRefGoogle Scholar
  174. Pieterse CMJ, van Pelt JA, Verhagen BWM, Ton J, van Wees ACM, Léon-Kloosterziel KM, van Loon LC (2003) Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis 35(1–3):39–54Google Scholar
  175. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375PubMedCrossRefGoogle Scholar
  176. Pimentel D (2009) Environmental and economic costs of the application of pesticides primarily in the United States. In: Peshin R, Dhawan AK (eds) Integrated pest management: innovation-development process, vol 1. Springer, Dordrecht, pp 89–111CrossRefGoogle Scholar
  177. Pineda A, Zheng SJ, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soilborne microbes. Trends Plant Sci 15:507–514PubMedCrossRefGoogle Scholar
  178. Pleban S, Chernin L, Shet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25(1):284–288PubMedCrossRefGoogle Scholar
  179. Poinar GO (1990) Taxonomy and biology of Steinernematidae and Heterorhabditidae. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca RatonGoogle Scholar
  180. Ponmurugan P, Baby UI (2007) Evaluation of fungicides and biocontrol agents against Phomopsis canker of tea under field conditions. Aust Plant Pathol 36:68–72CrossRefGoogle Scholar
  181. Potter MJ, Davies K, Rathjen AJ (1998) Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus. J Chem Ecol 24:67–80CrossRefGoogle Scholar
  182. Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10(4):393–398PubMedCrossRefGoogle Scholar
  183. Priest FG (1977) Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 41(3):711–753PubMedPubMedCentralGoogle Scholar
  184. Rahman L (2003) Root knot diseases and its control. Agfact AB1, 3rd edn, pp 1–10Google Scholar
  185. Rahman M (2016) Bacillus spp.: a promising biocontrol agent of root, foliar and postharvest diseases of plants. In: Islam MT, Rahman MM, Pandey P, Jha CK, Aeron A (eds) Bacilli and agrobiotechnology. Springer, New York, p 416. CrossRefGoogle Scholar
  186. Ralmi NHAA, Khandaker MM, Mat N (2016) Occurrence and control of root knot nematode in crops: a review. Aust J Crop Sci (AJCS) 10(12):1649–1654CrossRefGoogle Scholar
  187. Ramadan EM, AbdelHafez AA, Hassan EA, Saber FM (2016) Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr J Microbiol Res 10(15):486–504CrossRefGoogle Scholar
  188. Raza W, Ling N, Yang L, Huang Q, Shen Q (2016a) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep 6:24856. CrossRefPubMedPubMedCentralGoogle Scholar
  189. Raza W, Ling N, Liu D, Wei Z, Huang Q, Shen Q (2016b) Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol Res 192:103–113PubMedCrossRefGoogle Scholar
  190. Rosendahl CN, Rosendahl S (1990) The role of vesicular arbuscular mycorrhizal fungi in controlling damping-off and growth reduction in cucumber caused by Pythium ultimum. Symbiosis 9:363–366Google Scholar
  191. Rothrock CS, Gottlieb D (1984) Role of antibiosis in antagonism of Streptomyces hygroscopicus var geldanus to Rhizoctonia solani in soil. Can J Microbiol 30:1440–1447CrossRefGoogle Scholar
  192. Ryder MH, Yan Z, Terrace TE, Rovira AD, Tang W, Correll RL (1999) Use of Bacillus isolated in China to suppress take-all and rhizoctonia root rot, and promote seedling growth of glass house grown wheat in Australian soils. Soil Biol Biochem 31:19–29CrossRefGoogle Scholar
  193. Sabaté DC, Brandan CP, Petroselli G, Erra-Balsells R, Audisio MC (2017) Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties. Biol Control 113:1–8CrossRefGoogle Scholar
  194. Sadfi N, Chérif M, Fliss I, Boudabbous A, Antoun H (2001) Evaluation of Bacillus isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. J Plant Pathol 83:101–118Google Scholar
  195. Scarpellini M, Franzetti L, Galli A (2004) Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiol Lett 236:257–260PubMedCrossRefGoogle Scholar
  196. Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25(1):339–358CrossRefGoogle Scholar
  197. Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94(11):1267–1271PubMedCrossRefGoogle Scholar
  198. Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280. CrossRefPubMedPubMedCentralGoogle Scholar
  199. Schroth MN, Loper JE, Hildebrand DC (1984) Bacteria as biocontrol agents of plant disease. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 362–369Google Scholar
  200. Schünemann R, Knaak N, Fiuza LM (2014) Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiol pages12 ID135675.
  201. Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31(3):446–459CrossRefGoogle Scholar
  202. Sharma IP, Sharma AK (2017) Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of mycorrhiza and PGPR against root-knot nematode. Symbiosis 71:175–183CrossRefGoogle Scholar
  203. Shirifi A, Zala M, Natsch A, Dejaga G (1998) Biocontrol of soil borne fungi plant diseases by 2,4-diacetlyphloroglucinol producing Pseudomonas fluorescens. Eur J Plant Pathol 104:631–643CrossRefGoogle Scholar
  204. Shoji J, Hinoo H, Wakisaka Y, Koizumi K, Mayama M, Matsuura S, Matsumoto K (1975) Isolation of two new related peptide antibiotics, cerexin A and B. J Antibiot 28:56–59PubMedCrossRefGoogle Scholar
  205. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131PubMedCrossRefGoogle Scholar
  206. Siasou E, Standing D, Killham K, Johnson D (2009) Mycorrhizal fungi increase biocontrol potential of Pseudomonas fluorescens. Soil Biol Biochem 41:1341–1343CrossRefGoogle Scholar
  207. Sid AA, Ezziyyani M, Pérez-Sanchez C, Candela ME (2003) Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur J Plant Pathol 109(6):633–637CrossRefGoogle Scholar
  208. Siddiqui IA, Shaukat SS, Sheikh IH Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22(6):641–650CrossRefGoogle Scholar
  209. Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030PubMedPubMedCentralGoogle Scholar
  210. Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J (1998) Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37(1):6–11PubMedCrossRefGoogle Scholar
  211. Sindhu SS, Rakshia YS, Sahu G (2009) Biological control of soil borne plant pathogens with rhizosphere bacteria. Pest Control 3:10–21Google Scholar
  212. Singh I (2017) Antimicrobials in higher plants: classification, mode of action and bioactivities. Chem Bio Lett 4(1):48–62Google Scholar
  213. Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393PubMedCrossRefGoogle Scholar
  214. Singh DP, Singh HB, Prabha R (2016) Microbial inoculants in sustainable agricultural productivity: functional applications, vol 2. Springer, New York, p 308Google Scholar
  215. Sood GS (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219–227CrossRefGoogle Scholar
  216. Stirling GR (2014) Biological control of plant-parasitic nematodes: soil ecosystem management in sustainable agriculture. Biological Crop Protection/CAB International, Brisbane/OxfordshireCrossRefGoogle Scholar
  217. Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385CrossRefGoogle Scholar
  218. Tahat MM, Sijam K, Othman R (2012) The potential of endomycorrhizal fungi in controlling tomato bacterial wilt Ralstonia solanacearum under glasshouse conditions. Afr J Biotechnol 11(67):13085–13094Google Scholar
  219. Tari PH, Anderson AJ (1988) Fusarium wilt suppression and agglutinability of Pseudomonas putida. Appl Environ Microbiol 54(8):2037–2041PubMedPubMedCentralGoogle Scholar
  220. Terkina IA, Parfenova VV, Ahn TS (2006) Antagonistic activity of actinomycetes of Lake Baikal. Appl Biochem Microbiol 42:173–176CrossRefGoogle Scholar
  221. Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological control: mechanisms and antifungal metabolites. In: Stacey G, Keen NT (eds) Plant-microbe interactions, vol 1. Chapman & Hall, New York, pp 187–235CrossRefGoogle Scholar
  222. Thomashow LS, Bonsall RF, Weller DM (1997) Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst CJ, Knudsen GR, McInervey MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 493–499Google Scholar
  223. Thrane C, Harder Nielsen T, Neiendam Nielsen M, Sørensen J, Olsson S (2000) Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33(2):139–146PubMedCrossRefGoogle Scholar
  224. Timper P (2014) Conserving and enhancing biological control of nematodes. J Nematol 46(2):75–89PubMedPubMedCentralGoogle Scholar
  225. Tranier M-S, Pognant-Gros J, Quiroz RDC, González CNA, Mateille T, Roussos S (2014) Commercial biological control agents targeted against plant-parasitic root-knot nematodes. Braz Arch Biol Technol 57(6):831–841CrossRefGoogle Scholar
  226. Tu L, He Y, Shan C, Wu Z (2016) Preparation of microencapsulated Bacillus subtilis SL-13 seed coating agents and their effects on the growth of cotton seedlings. Biomed Res Int 1–7. Google Scholar
  227. Van Dijk K, Nelson EB (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl Environ Microbiol 66:5340–5347PubMedPubMedCentralCrossRefGoogle Scholar
  228. Van Driesche RG, Bellows TS Jr (1996) Methods for biological control of plant pathogens. Biological control. Springer, Boston, pp 235–256Google Scholar
  229. Vemmer M, Patel AV (2013) Review of encapsulation methods suitable for microbial biological control agents. Biol Control 67:380–389CrossRefGoogle Scholar
  230. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  231. Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8:127–139CrossRefGoogle Scholar
  232. Von Graevenitz A (1977) The role of opportunistic bacteria in human disease. Annu Rev Microbiol 31:447–471CrossRefGoogle Scholar
  233. Vos C, Schouteden N, Tuinen D, Chatagnier O, Elsen A, De Waele D, Panis B, Gianinazzi-Pearson V (2013) Mycorrhiza-induced resistance against the root-knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol Biochem 60:45–54CrossRefGoogle Scholar
  234. Webster J, Weber R (2007) Introduction to fungi, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  235. Weibelzahl-Fulton E, Dickson DW, Whitty EB (1996) Suppression of Meloidogyne incognita and M. javanica by Pasteuria penetrans in field soil. J Nematol 28:43–49PubMedPubMedCentralGoogle Scholar
  236. Weller DM, Cook RJ (1983) Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463–469CrossRefGoogle Scholar
  237. Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms: biotechnology and the release of GMOs. Wiley, Weinheim. CrossRefGoogle Scholar
  238. Weller DM, Raajimakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348PubMedPubMedCentralCrossRefGoogle Scholar
  239. Wesemael WML, Viaene N, Moens M (2011) Roor-knot nematodes (Meloidogyne spp.) in Europe. Nematology 13:3–16CrossRefGoogle Scholar
  240. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227CrossRefGoogle Scholar
  241. Wu L, Wu H, Chen L, Yu X, Borriss R, Gao X (2015) Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep 5:12975. CrossRefPubMedPubMedCentralGoogle Scholar
  242. Yan Z, Reddy MS, Kloepper JW (2003) Survival and colonization of rhizobacteria in tomato transplant system. Can J Microbiol 49:383–389PubMedCrossRefGoogle Scholar
  243. Yao M, Tweddell R, Désilets H (2002) Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 12:235–242PubMedCrossRefGoogle Scholar
  244. Yigit F, Dikilitas M (2007) Control of Fusarium wilt of tomato by combination of fluorescent Pseudomonas, non-pathogen Fusarium and Trichoderma harzianum T-22 in greenhouse conditions. Plant Pathol J 6(2):159–163CrossRefGoogle Scholar
  245. Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. Cubense. Appl Environ Microbiol 78(16):5942–5944PubMedPubMedCentralCrossRefGoogle Scholar
  246. Yuen GY, Schroth MN (1986) Interaction of Pseudomonas fluorescens strains E6 with ornamental plants and its effect on the composition of root colonization microflora. Phytopathology 76:176–179CrossRefGoogle Scholar
  247. Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CMJ (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol 162:304–318PubMedPubMedCentralCrossRefGoogle Scholar
  248. Zentmyer GA (1980) Phytophthora cinnamomi and the diseases it causes. Monograph No. 10. APS Press, St. PaulGoogle Scholar
  249. Zhang Y, Loria R (2017) Emergence of novel pathogenic Streptomyces species by site-specific accretion and cis-mobilization of pathogenicity islands. Mol Plant Microbe Interact (MPMI) 30(1):72–82CrossRefGoogle Scholar
  250. Zhang JX, Xue AG, Tambong JT (2009) Evaluation of seed and soil treatments with novel Bacillus subtilis strains for control of soybean root rot caused by Fusarium oxysporum and F. graminearum. Plant Dis 93(12):1317–1323CrossRefGoogle Scholar
  251. Zhang Q, Ji Y, Xiao Q, Chng S, Tong Y, Chen X, Liu F (2016) Role of Vfr in the regulation of antifungal compound production by Pseudomonas fluorescens FD6. Microbiol Res 188–189:106–112. CrossRefPubMedGoogle Scholar
  252. Zhang S, Gan Y, Ji W, Xu B, Hou B, Liu J (2017) Mechanisms and characterization of Trichoderma longibrachiatum T6 in suppressing nematodes (Heterodera avenae) in wheat. Front Plant Sci 8.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pratibha Thakur
    • 1
  • Ishwar Singh
    • 1
  1. 1.Department of Botany, Hansraj CollegeUniversity of DelhiDelhiIndia

Personalised recommendations