Skip to main content
Book cover

Root Biology pp 181–220Cite as

Biocontrol of Soilborne Root Pathogens: An Overview

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 52))

Abstract

Antagonism is a natural phenomenon of negative interactions among organisms; one of its beneficial applications in agricultural sector is biocontrol method. Under biocontrol methods, antagonistic properties of certain organisms especially microbes, called biocontrol agents (BAs), are harnessed against plant pathogens to control or at least reduce the severity of plant diseases. Biocontrol methods are environment-friendly and do not affect nontarget organisms including human beings. Further, the chances of resistance of pathogen against these methods are little as BAs employed often possess multitarget action-mechanisms such as antibiosis, competition, parasitism, and induction of host defense system. A large number of microorganisms, particularly bacteria and fungi, have shown biocontrol potentials against various root pathogens. Despite a number of added benefits of biocontrol methods over synthetic chemical pesticides, the popularity of these methods among farmers is still very limited.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abeysinghe S (2009) Use of nonpathogenic Fusarium oxysporum and rhizobacteria for suppression of Fusarium root and stem rot of Cucumis sativus caused by Fusarium oxysporum f. sp. radicis – cucumerinum. Arch Phytopathol Plant Protect 42(1):73–82

    Article  CAS  Google Scholar 

  • Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Ahmed N, Abbasi MW, Shaukat SS, Zaki MJ (2009) Physiological changes in leaves of mungbean plants infected with Meloidogyne javanica. Phytopathol Mediterr 48:262–268

    Google Scholar 

  • Ajayi-Oyetunde OO, Bradley CA (2017) Identification and characterization of Rhizoctonia species associated with soybean seedling disease. Plant Dis 101(4):520–533

    Article  PubMed  Google Scholar 

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphate and micro nutrients by the plant growth promoting fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65(7):2926–2933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635

    Article  CAS  PubMed  Google Scholar 

  • Anita B, Samiyappan R (2012) Induction of systemic resistance in rice by Pseudomonas fluorescens against rice root knot nematode Meloidogyne graminicola. J Biopest 5:53–59

    CAS  Google Scholar 

  • Antoun H, Prevost D (2006) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Razi Ismail M, Anamul Hoque MD, Zahurul Islam M, Shahidullah SM, Meon S (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8(7):1247–1252

    CAS  Google Scholar 

  • Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil borne plant pathogens: an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Bagnasco P, De La Fuente L, Gualtieri G, Noya F, Arias A (1998) Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biol Biochem 30(10-11):1317–1322

    Article  CAS  Google Scholar 

  • Baker PA, Weisheek PJ, Schippers B (1986) The role of siderophores in plant growth stimulation by fluorescent Pseudomonas sp. Med Fac Landboucow Rijksumiv Gent 51(31):1357–1362

    Google Scholar 

  • Barari H, Foroutan A (2016) Biocontrol of soybean charcoal root rot disease by using Trichoderma spp. Cercetări Agronomice în Moldova 49(2):41–51

    Article  Google Scholar 

  • Barnes EM (1949) Laterosporin A and Laterosporin B antibiotics produced by B. laterosporus. Br J Exp Pathol 30(2):100–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlem DG, Jones MGK, Hammes UZ (2014) Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. J Exp Bot 65:1789–1798

    Article  CAS  PubMed  Google Scholar 

  • Basurto-Cadena MGL, Vázquez-Arista M, García-Jiménez J, Salcedo-Hernández R, Bideshi DK, Barboza-Corona JE (2012) Isolation of a New Mexican strain of Bacillus subtilis with antifungal and antibacterial activities. Sci World J 2012:384978. https://doi.org/10.1100/2012/384978

    Article  CAS  Google Scholar 

  • Battu PR, Reddy MS (2009) Siderophore mediated antibiosis of rhizobacterial fluorescent pseudomonads against rice fungal pathogens. Int J Pharm Tech Res 1:227–229

    Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11:557–574

    Article  Google Scholar 

  • Berditsch M, Afonin S, Ulrich AS (2007) The ability of Aneurinibacillus migulanus (Bacillus brevis) to produce the antibiotic gramicidin S is correlated with phenotype variation. Appl Environ Microbiol 73(20):6620–6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bignell DR, Huguet-Tapia JC, Joshi MV, Pettis GS, Loria R (2010) What does it take to be a plant pathogen: genomic insights from Streptomyces species. Antonie Van Leeuwenhoek 98(2):179–194

    Article  CAS  PubMed  Google Scholar 

  • Bird DMK, Opperman CH, Williamson VM (2009) Plant infection by root-knot nematode. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism, Plant Cell Monograph, vol 15. Springer, Berlin

    Chapter  Google Scholar 

  • Bot A, Benites J (2005) The importance of soil organic matter- Key to drought-resistant soil and sustained food production, FAO Soils Bulletin 80. Food and Agriculture Organization of the United Nations, Rome, pp 1–80

    Google Scholar 

  • Bravo A, Cristina del Rincon-Castro M, Ibarra JE, Soberon M (2011) Towards a healthy control of insect pests: potential use of microbial insecticides. In: Lopez O, Fernandez Bolanos JG (eds) Green trends in insect control. Royal Society of Chemistry, London, pp 266–299

    Chapter  Google Scholar 

  • Burges HD (1998) Formulation of microbial biopesticides: beneficial microorganisms, nematodes, and seed treatments. Kluwer Academic, Dordrecht, p 412. https://doi.org/10.1007/978-94-011-4926-6

  • Burkhead KD, Schisler DA, Slininger PJ (1994) Pyrrolnitrin production by biological control agent Pseudomonas cepacia b37w in culture and in colonized wounds of potatoes. Appl Environ Microbiol 60:2031–2039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron DD, Neal AL, Van Wees SCM, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao L, Qiu Z, Dai X, Tan H, Lin Y, Zhou S (2004) Isolation of endophytic actinomycetes from roots and leaves of banana (Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense. World J Microbiol Biotechnol 20:501–504

    Article  CAS  Google Scholar 

  • Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 16(11):91–97

    Article  CAS  Google Scholar 

  • Carson KC, Meyer JM, Dilworth MJ (2000) Hydroxamate siderophores of root nodule bacteria. Soil Biol Biochem 32:11–21

    Article  CAS  Google Scholar 

  • Castillo HFD, Reyes CF, Morales GG, Herrera RR, Aguilar C (2013) Biological control of root pathogens by plant-growth promoting Bacillus spp. https://doi.org/10.5772/54229

  • Chandrasekaran M, Subramanian D, Yoon E, Taehoon Kwon CS (2016) Meta-analysis reveals that the genus Pseudomonas can be a better choice of biological control agent against bacterial wilt disease caused by Ralstonia solanacearum. Plant Pathol J 32:216–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang I, Kommedahl T (1968) Biological control of seedling blight of corn by coating kernels with antagonistic microorganisms. Phytopathology 58:1395–1401

    Google Scholar 

  • Chen ZX, Dickson DW (1998) Review of Pasteuria penetrans: biology, ecology, and biological control potential. J Nematol 30(3):313–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Xu H, Zhou M, Wang Y, Wang S, Zhang J (2015) Salecan enhances the activities of β-1,3-glucanase and decreases the biomass of soilborne fungi. PLoS One 10(8):e0134799. https://doi.org/10.1371/journal.pone.0134799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernin L, Brandis A, Ismailov Z, Chet I (1996) Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr Microbiol 32:208–212

    Article  CAS  Google Scholar 

  • Cho C-F, Lee W-C (1999) Formulation of a biocontrol agent by entrapping biomass of Trichoderma viride in gluten matrix. J Biosci Bioeng 87(6):822–824

    Article  CAS  PubMed  Google Scholar 

  • Cochrane SA, Surgenor RR, Khey KMV, Vederas JC (2015) Total synthesis and stereochemical assignment of the antimicrobial lipopeptide cerexin A. Org Lett 17(21):5428–5431

    Article  CAS  PubMed  Google Scholar 

  • Collins DP, Jacobsen BJ (2003) Optimizing a Bacillus subtilis isolate for biocontrol of sugar beet Cercospora leaf spot. Biol Control 26(2):153–161

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clèment C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    Article  Google Scholar 

  • Cotxarrera L, Trillas-Gay M, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol Biochem 34(4):467–476

    Article  CAS  Google Scholar 

  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y (2009) Pseudomonas fluorescens and closely related fluorescent pseudomonads as biocontrol agents of soilborne phytopathogens. Lett Appl Microbiol 48(5):505–512

    Article  CAS  PubMed  Google Scholar 

  • Dahiya JS, Woods DL, Tewari JP (1988) Control of Rhizoctonia solani, causal agent of brown girdling root rot of rapeseed, by Pseudomonas fluorescens. Bot Bull Acad Sinica 29:135–142

    CAS  Google Scholar 

  • Dandurand LM, Knudsen GR (1993) Influence of Pseudomonas fluorescens on hyphal growth and biocontrol activity of Trichoderma harzianum in the spermosphere and rhizosphere of pea. Phytopathology 83:265–270

    Article  Google Scholar 

  • Datnoff L, Nemec S, Pernezny K (1995) Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5(3):427–431

    Article  Google Scholar 

  • de Vasconcellos RLF, Cardoso EJBN (2009) Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. BioControl 54:807–816

    Article  Google Scholar 

  • de Weert S, Vermeiren H, Mulders IH, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ (2002) Flagella driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15(11):1173–1180

    Article  PubMed  Google Scholar 

  • DeCleene M, DeLey J (1976) The host range of crown gall. Bot Rev 42:389–466

    Article  Google Scholar 

  • Deketelaere S, Tyvaert L, França SC, Höfte M (2017) Desirable traits of a good biocontrol agent against Verticillium Wilt. Front Microbiol 8:1186. https://doi.org/10.3389/fmicb.2017.01186

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz Arias MM, Leandro LF, Munkvold GP (2013) Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybean. Phytopathology 103(8):822–832

    Article  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Doornbos RF, Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Driks A (2004) The Bacillus spore coat. Phytopathology 94(11):1249–1251

    Article  CAS  PubMed  Google Scholar 

  • Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910

    Article  Google Scholar 

  • Ellis RA, Roberts EH (1981) The quantification of ageing and survival in orthodox seeds. Seed Sci Technol 9:373–409

    Google Scholar 

  • Elphinstone JG (2005) The current bacterial wilt situation: a global overview. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St Paul, pp 9–28

    Google Scholar 

  • Elsen A, Declerck S, De Wasele D (2002) Effects of three arbuscular mycorrhizal fungi on root knot nematode (Meloidogyne spp.) infection of Musa. Infomusa 11:21–23

    Google Scholar 

  • Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant-parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  CAS  PubMed  Google Scholar 

  • Emmert EA, Handelsman J (1999) Biocontrol of plant diseases: a (Gram-) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  CAS  PubMed  Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of diseases. Trends Plant Sci 8:380–385

    Article  CAS  PubMed  Google Scholar 

  • Evangelista-Martinez Z (2014) Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World J Microbiol Biotechnol 30:1639–1647

    Article  CAS  PubMed  Google Scholar 

  • Fiddman PJ, Rossall S (1993) The production of antifungal volatiles by Bacillus subtilis. J Appl Bacteriol 74:119–126

    Article  Google Scholar 

  • Fradin EF, Thomma BP (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86

    Article  CAS  PubMed  Google Scholar 

  • Franco-Correa M, Quintana A, Duque C, Suarez C, Rodriguez MX, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Fravel D (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  CAS  Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157(3):493–502

    Article  PubMed  Google Scholar 

  • García LE, Sánchez-Puerta MV (2012) Characterization of a root-knot nematode population of Meloidogyne arenaria from Tupungato (Mendoza, Argentina). J Nematol 44(3):291–301

    Google Scholar 

  • Gardner JM, Chandler L, Feldman AW (1984) Growth promotion and inhibition by antibiotics producing fluorescent pseudomonads on citrus root. Plant Soil 77:103–113

    Article  Google Scholar 

  • Georgakopoulos DG, Fiddaman P, Leifert C, Malathrakis NE (2002) Biological Control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. J Appl Microbiol 92:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Ghazalibiglar H, Kandula DRW, Hampton JG (2016) Biological control of Fusarium wilt of tomato by Trichoderma isolates. NZ Plant Prot 69:57–63

    Google Scholar 

  • Gheysen G, Mitchum MG (2011) How nematodes manipulate plant development pathways for infection. Curr Opin Plant Biol 14:415–421

    Article  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Gollotte A, Dumas-Gaudot E, Franken P, Gianinazzi S (1994) Gene expression and molecular modifications associated with plant responses to infection by arbuscular mycorrhizal fungi. In: Daniels M, Downic JA, Osbourn AE (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 179–186

    Chapter  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth promotion by free living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Guédez C, Castillo C, Cañizales L, Olivar R (2008) Biological control a tool for sustaining and sustainable development. Control Biol 7(13):50–74

    Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Dinoor A (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91:621–627

    Article  CAS  PubMed  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A (2002) Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology 92:976–985

    Article  PubMed  Google Scholar 

  • Guillén-Cruz R, Hernández-Castillo FD, Gallegos-Morales G, Rodríguez-Herrera R, Aguilar-González CN, PadrónCorral E, Reyes-Valdés MH (2006) Bacillus spp. como biocontrol en un suelo infestado con Fusarium spp., Rhizoctonia solani Kühn y Phytophthora capsici Leonina y su efecto en el desarrollo y rendimiento del cultivo de chile (Capsicum annuum L.) Rev Mex Fitopatol 24:105–114

    Google Scholar 

  • Haas D, Défago G (2005) Biological control of soilborne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8(10):1855–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanlon DW, Rosario MML, Ordal GW, Venema G, Van Sinderen D (1994) Identification of TipC, a novel 62 kDa MCP-like protein from Bacillus subtilis. Microbiologica 140:1847–1856

    CAS  Google Scholar 

  • Hao Z, Fayolle L, van Tuinen D, Chatagnier O, Xiaolin L, Gianinazzi S, Gianinazzi-Pearson V (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Hassan MN, Afghan S, Hafeez FY (2011) Biological control of red rot in sugarcane by native pyoluteorin-producing Pseudomonas putida strain NH-50 under field conditions and its potential modes of action. Pest Manag Sci 67(9):1147–1154

    CAS  PubMed  Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10(4):273–290

    Article  Google Scholar 

  • Hiltpold I, Hibbard B, French BW, Turlings TJ (2012) Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm. Plant Soil 358:11–25

    Article  CAS  Google Scholar 

  • Hiraoka H, Asaka O, Ano T, Shoda M (1992) Characterization of Bacillus subtilis RB14, coproducer of peptide antibiotics Iturin A and Surfactin. J Gen Appl Microbiol 38:635–640

    Article  CAS  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • Howell C (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87(1):4–10

    Article  PubMed  Google Scholar 

  • Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482

    Article  CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum-induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 70(8):712–715

    Article  CAS  Google Scholar 

  • Huang Y, Xu C, Ma L, Zhang K, Duan C, Mo M (2010) Characterization of volatiles produced from Bacillus megaterium YFM 3.25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126:417–422

    Article  CAS  Google Scholar 

  • Hussain I, Alam SS, Khan I, Shah B, Naeem A, Khan N, Ullah W, Adnan M, Shah SRA, Junaid K, Ahmed N, Iqbal M (2016) Medicinal plants rhizosphere exploration for the presence of potential biocontrol fungi. J Entomol Zool Stud 4(3):108–113

    CAS  Google Scholar 

  • Hussein AA, AL-Janabi S (2006) Identification of bacitracin produced by local isolate of Bacillus licheniformis. Afr J Biotechnol 18:1600–1601

    Google Scholar 

  • Inderbitzin P, Subbarao KV (2014) Verticillium systematics and evolution: how confusion impedes Verticillium wilt management and how to resolve it. Phytopathology 104:564–574

    Article  PubMed  Google Scholar 

  • Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94:1272–1275

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan S, Ramaswamy D, Dharmaraj S (2014) Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol 30(4):1159–1168

    Article  CAS  PubMed  Google Scholar 

  • John RP, Tyagi RD, Brar SK, Surampalli RY, Prevost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31:211–226

    Article  CAS  PubMed  Google Scholar 

  • Jonathan EI, Barker KR, Abdel-Alim FF, Vrain TC, Dickson DW (2000) Biological control of Meloidogyne incognita on tomato and banana with rhizobacteria, actinomycetes, and Pasteuria penetrans. Nematropica 30:231–240

    Google Scholar 

  • Jones KA, Burges HD (1998) Technology of formulation and application. In: Burges HD (ed) Formulation of microbial pesticides – beneficial microorganisms, nematodes and seed treatments. Springer, Dordrecht, pp 7–30

    Google Scholar 

  • Judelson HS, Blanco FA (2005) The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol 3:47–58

    Article  CAS  PubMed  Google Scholar 

  • Junaid JM, Dar NA, Bhat TA, Bhat AH, Bhat MA (2013) Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Mod Plant Anim Sci 1(2):39–57

    Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Article  CAS  PubMed  Google Scholar 

  • Kalbe C, Marten P, Berg G (1996) Members of the genus Serratia as beneficial rhizobacteria of oilseed rape. Microbiol Res 151:433–439

    Article  CAS  PubMed  Google Scholar 

  • Kariuki GM, Dickson DW (2007) Transfer and development of Pasteuria penetrans. J Nematol 39(1):55–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katz E, Demain AL (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 41(2):449–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya K, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206

    Article  Google Scholar 

  • Kazmar ER, Goodman RM, Grau CR, Johnson DW, Norrdheim EV, Undersander KJ, Handelsman J (2000) Regression analyses for evaluating the influence of Bacillus cereus on alfalfa yield under variable disease intensity. Phytopathology 90:657–665

    Article  CAS  PubMed  Google Scholar 

  • Keel C, Défago G (1997) Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial system. Blackwell Science, Oxford, pp 27–47

    Google Scholar 

  • Keel C, Voisard C, Berling CH, Kadr G, Defago G (1989) Iron sufficiency, a prerequisite for the suppression of tobacco root rot by Pseudomonas fluorescens strain CHAO under gnotobiotic conditions. Phytopathology 79:584–589

    Article  Google Scholar 

  • Kennedy BW (1980) Estimates of U.S. crop losses to prokaryote plant pathogens. Plant Dis 647:674–676

    Article  Google Scholar 

  • Kergunteuil A, Bakhtiari M, Formenti L, Xiao Z, Defossez E, Rasmann S (2016) Biological control beneath the feet: a review of crop protection against insect root herbivores. Insects 7(70):1–22. https://doi.org/10.3390/insects7040070

    Article  Google Scholar 

  • Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016) Formulation technology of biocontrol agents: present status and future prospects. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, p 299. https://doi.org/10.1007/978-81-322-2779-3

    Chapter  Google Scholar 

  • Khaledi N, Taheri P (2016) Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina. J Plant Prot Res 56(1):21–31

    Article  CAS  Google Scholar 

  • Khan MR, Fischer S, Egan D, Doohan FM (2006) Biological control of Fusarium seedling blight disease of wheat and barley. Phytopathology 96:386–394

    Article  CAS  PubMed  Google Scholar 

  • Khan AAH, Naseem RL, Prathibha B (2011) Screening and potency evaluation of antifungal from soil isolates of Bacillus subtilis on selected fungi. Adv Biotechnol 10(7):35–37

    Google Scholar 

  • Kiewnick S, Sikora RA (2006) Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol Control 38:179–187

    Article  Google Scholar 

  • Kim J, Jaffuel G, Turlings TJ (2015) Enhanced alginate capsule properties as a formulation of entomopathogenic nematodes. Biol Control 60:527–535

    CAS  Google Scholar 

  • Kim YS, Balaraju K, Jeon YH (2017) Biological characteristics of Bacillus amyloliquefaciens AK-0 and suppression of ginseng root rot caused by Cylindrocarpon destructans. J Appl Microbiol 122:166–179

    Article  CAS  PubMed  Google Scholar 

  • Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as bioagents. Pest Manag Sci 59:475–483

    Article  CAS  PubMed  Google Scholar 

  • Kissen R, Rossiter JT, Bones AM (2009) The “mustard oil bomb”: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8:69–86

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Novacky A (1988) Pseudomonas inoculation to benefit plant production. Anim Plant Sci 8:60–64

    Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Koike ST, Subbarao KV, Davis RM, Turini TA (2003) Vegetable diseases caused by soilborne pathogens. University of California, Publication 8099. http://anrcatalog.ucdavis.edu

  • Kumar RS, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2005) Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98(1):145–154

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. In: Maheshwari DK (ed) Bacteria in agrobiology: Crop ecosystem. Springer, Berlin, pp 37–59

    Chapter  Google Scholar 

  • Labuschagne N, Pretorius T, Idris AH (2010) Plant growth promoting rhizobacteria as biocontrol agents against soilborne plant diseases. In: Maheshwari DK (ed) Plant growth and health promoting bacteria Microbiology Monographs 18. https://doi.org/10.1007/978-3-642-13612-2_9

    Chapter  Google Scholar 

  • Lacey LA, Georgis R (2012) Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 44:218–225

    PubMed  PubMed Central  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    Article  CAS  Google Scholar 

  • Leggett M, Leland J, Kellar K, Epp B (2011) Formulation of microbial biocontrol agents – an industrial perspective. Can J Plant Pathol 33(2):101–107

    Article  CAS  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry, and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209

    Article  CAS  Google Scholar 

  • Li J, Yang Q, Zhao L, Zhang S, Wang Y, Zhao X (2009) Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. J Zhejiang Univ Sci B 10(4):264–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lifshitz R, Kloepper JW, Mozlowski M, Simonson C, Carlson J, Tipping EM, Zaleska I (1987) Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395

    Article  Google Scholar 

  • Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf H-J, van Pée K-H (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695. https://doi.org/10.1002/1526-4998(200008)56:8<688::AID-PS186>3.0.CO;2-V

    Article  CAS  Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40(9):2217–2224

    Article  CAS  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Logan NA, Halket G (2011) Developments in the taxonomy of aerobic, endospores-forming bacteria. In: Longan N, Vos P (eds) Endospore-forming soil bacteria. Soil biology, vol 27 Springer, Berlin, pp 1–29

    Google Scholar 

  • Loper JE, Buyer JW (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Int 4:5–13

    Article  CAS  Google Scholar 

  • Loria R, Kers J, Joshi M (2006) Evolution of plant pathogenicity in Streptomyces. Annu Rev Phytopathol 44:469–487

    Article  CAS  PubMed  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 86:1–25

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lumsden RD, Rldout CJ, Vendemia ME, Harrlson DJ, Waters RM, Walter JF (1992) Characterization of major secondary metabolites produced in soilless mix by a formulated strain of the biocontrol fungus Gliocladium virens. Can J Microbiol 38:1274–1280

    Article  CAS  Google Scholar 

  • Malik RJ, Dixon MH, Bever JD (2016) Mycorrhizal composition can predict foliar pathogen colonization in soybean. Biol Control 103:46–53

    Article  CAS  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Marro N, Lax P, Cabello M, Doucet ME, Becerra AG (2014) Use of the arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Braz Arch Biol Technol 57(5):668–675

    Article  Google Scholar 

  • Mavrodi DV, Mavrodi OV, Parejko JA, Bonsall RF, Kwak Y-S, Paulitz TC, Thomashow LS, Weller DM (2012) Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol 78(3):804–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3(8):977–991

    Article  CAS  PubMed  Google Scholar 

  • Mehta CM, Palni U, Franke-Whittle IH, Sharma AK (2014) Compost: its role, mechanism and impact on reducing soilborne plant diseases. Waste Manag 34:607–622

    Article  CAS  PubMed  Google Scholar 

  • Miller JR, Hare EW, Wu J (1990) Quantitative characterization of the vegetation red edge reflectance. I. An inverted-Gaussian reflectance model. Int J Rem Sens 11:1755–1773

    Article  Google Scholar 

  • Moens M, Perry RN, Starr JL (2009) Meloidogyne species – a diverse group of novel and important plant parasites. In: Perry RN, Moens M, Starr JL (eds) Root knot nematodes. CAB International, Oxfordshire

    Google Scholar 

  • Motlagh MRS, Samimi Z (2013) Evaluation of Trichoderma spp., as biological agents in some of plant pathogens. Ann Biol Res 4(3):173–179

    Google Scholar 

  • Nalisha I, Muskhazli M, Nor Farizan T (2006) Production of bioactive compounds by Bacillus subtilis against Sclerotium rolfsii. Mal J Microbiol 2(2):19–23

    Google Scholar 

  • Nawar LS (2016) Interactions between vascular arbuscular mycorrhizal fungi and Streptomyces as biocontrol agent for tomato damping-off disease caused by Rhizoctonia Solani Kuhn. IOSR-JPBS 11(6):89–96

    Google Scholar 

  • Nega A (2014) Review on concepts in biological control of plant pathogens. J Biol Agri Healthcare 4(27):33–54

    Google Scholar 

  • Neilands JB (1989) Siderophore systems of bacteria and fungi. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. Wiley, Somerset, pp 141–164

    Google Scholar 

  • Nielsen MN, Sorensen J (1999) Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol Ecol 30(3):217–227

    Article  Google Scholar 

  • Nuss DL (2005) Hypovirulence: mycoviruses at the fungal plant interface. Nat Rev Microbiol 3:632–642

    Article  CAS  PubMed  Google Scholar 

  • O’Bannon J, Inserra R, Nemec S, Vovlas N (1979) The influence of Glomus mosseae on Tylenchulus semipenetrans-infected and uninfected Citrus limon seedlings. J Nematol 11:247–250

    PubMed  PubMed Central  Google Scholar 

  • Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Belanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores antibiosis. Plant Pathol 48:66–76

    Article  Google Scholar 

  • Otten L, Burr T, Szegedi E (2008) Agrobacterium: a disease-causing bacterium. In: Tzfira T, Citovsky V (eds) Agrobacterium: From biology to biotechnology. Springer, New York, pp 1–46. https://doi.org/10.1007/978-0-387-72290-0_1

    Chapter  Google Scholar 

  • Pegg K, Manners A (2014a) Soil borne root pathogens in production nurseries. Nursery production plant health & biosecurity project, Plant health biosecurity, risk management and capacity building for the nursery industry. Agri-science Queensland, Department of Agriculture, Fisheries and Forestry (DAFF)

    Google Scholar 

  • Pegg K, Manners A (2014b) Rhizoctonia – A variable and versatile nursery pathogen. Nursery production plant health & biosecurity project, Plant health biosecurity, risk management and capacity building for the nursery industry. Agri-science Queensland, Department of Agriculture, Fisheries and Forestry (DAFF)

    Google Scholar 

  • Pelletier A, Sygusch J (1990) Purification and characterization of three chitosanase activities from Bacillus megaterium P1. Appl Environ Microbiol 56(4):844–848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira P, Nesci A, Etcheverrg MG (2009) Efficacy of bacterial seed treatments for the control of Fusarium verticillioides in maize. Biol Control 54:103–111

    Google Scholar 

  • Pereira JAP, Vieira IJC, Freitas MSM, Prins CL, Martins MA, Rodrigues R (2016) Effects of arbuscular mycorrhizal fungi on Capsicum spp. J Agric Sci 154(5):828–849

    Article  Google Scholar 

  • Perry RN, Moens M (2011) Introduction to plant-parasitic nematodes; modes of parasitism. In: Jones JT, Gheysen L, Fenoll C (eds) Genomics and molecular genetics of plant–nematode interactions. Springer, Heidelberg, pp 3–20

    Chapter  Google Scholar 

  • Pierre E, Louise NW, Marie TKR, Valère TFP, Arc-en-ce JM, Fekam BF (2016) Integrated assessment of phytostimulation and biocontrol potential of endophytic Trichoderma spp against common bean (Phaseolus vulgaris L.) root rot fungi complex in centre region, Cameroon. Int J Pure App Biosci 4(4):50–68

    Article  Google Scholar 

  • Pieterse CMJ, van Pelt JA, Verhagen BWM, Ton J, van Wees ACM, Léon-Kloosterziel KM, van Loon LC (2003) Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis 35(1–3):39–54

    CAS  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D (2009) Environmental and economic costs of the application of pesticides primarily in the United States. In: Peshin R, Dhawan AK (eds) Integrated pest management: innovation-development process, vol 1. Springer, Dordrecht, pp 89–111

    Chapter  Google Scholar 

  • Pineda A, Zheng SJ, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soilborne microbes. Trends Plant Sci 15:507–514

    Article  CAS  PubMed  Google Scholar 

  • Pleban S, Chernin L, Shet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25(1):284–288

    Article  CAS  PubMed  Google Scholar 

  • Poinar GO (1990) Taxonomy and biology of Steinernematidae and Heterorhabditidae. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton

    Google Scholar 

  • Ponmurugan P, Baby UI (2007) Evaluation of fungicides and biocontrol agents against Phomopsis canker of tea under field conditions. Aust Plant Pathol 36:68–72

    Article  CAS  Google Scholar 

  • Potter MJ, Davies K, Rathjen AJ (1998) Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus. J Chem Ecol 24:67–80

    Article  CAS  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10(4):393–398

    Article  CAS  PubMed  Google Scholar 

  • Priest FG (1977) Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 41(3):711–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman L (2003) Root knot diseases and its control. Agfact AB1, 3rd edn, pp 1–10

    Google Scholar 

  • Rahman M (2016) Bacillus spp.: a promising biocontrol agent of root, foliar and postharvest diseases of plants. In: Islam MT, Rahman MM, Pandey P, Jha CK, Aeron A (eds) Bacilli and agrobiotechnology. Springer, New York, p 416. https://doi.org/10.1007/978-3-319-44409-3_6

    Chapter  Google Scholar 

  • Ralmi NHAA, Khandaker MM, Mat N (2016) Occurrence and control of root knot nematode in crops: a review. Aust J Crop Sci (AJCS) 10(12):1649–1654

    Article  Google Scholar 

  • Ramadan EM, AbdelHafez AA, Hassan EA, Saber FM (2016) Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr J Microbiol Res 10(15):486–504

    Article  CAS  Google Scholar 

  • Raza W, Ling N, Yang L, Huang Q, Shen Q (2016a) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep 6:24856. https://doi.org/10.1038/srep24856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raza W, Ling N, Liu D, Wei Z, Huang Q, Shen Q (2016b) Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol Res 192:103–113

    Article  CAS  PubMed  Google Scholar 

  • Rosendahl CN, Rosendahl S (1990) The role of vesicular arbuscular mycorrhizal fungi in controlling damping-off and growth reduction in cucumber caused by Pythium ultimum. Symbiosis 9:363–366

    Google Scholar 

  • Rothrock CS, Gottlieb D (1984) Role of antibiosis in antagonism of Streptomyces hygroscopicus var geldanus to Rhizoctonia solani in soil. Can J Microbiol 30:1440–1447

    Article  Google Scholar 

  • Ryder MH, Yan Z, Terrace TE, Rovira AD, Tang W, Correll RL (1999) Use of Bacillus isolated in China to suppress take-all and rhizoctonia root rot, and promote seedling growth of glass house grown wheat in Australian soils. Soil Biol Biochem 31:19–29

    Article  CAS  Google Scholar 

  • Sabaté DC, Brandan CP, Petroselli G, Erra-Balsells R, Audisio MC (2017) Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties. Biol Control 113:1–8

    Article  CAS  Google Scholar 

  • Sadfi N, Chérif M, Fliss I, Boudabbous A, Antoun H (2001) Evaluation of Bacillus isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. J Plant Pathol 83:101–118

    CAS  Google Scholar 

  • Scarpellini M, Franzetti L, Galli A (2004) Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiol Lett 236:257–260

    Article  CAS  PubMed  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25(1):339–358

    Article  Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94(11):1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280. https://doi.org/10.3389/fmicb.2015.01280

    Article  PubMed  PubMed Central  Google Scholar 

  • Schroth MN, Loper JE, Hildebrand DC (1984) Bacteria as biocontrol agents of plant disease. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 362–369

    Google Scholar 

  • Schünemann R, Knaak N, Fiuza LM (2014) Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiol pages12 ID135675. https://doi.org/10.1155/2014/135675

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31(3):446–459

    Article  CAS  Google Scholar 

  • Sharma IP, Sharma AK (2017) Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of mycorrhiza and PGPR against root-knot nematode. Symbiosis 71:175–183

    Article  CAS  Google Scholar 

  • Shirifi A, Zala M, Natsch A, Dejaga G (1998) Biocontrol of soil borne fungi plant diseases by 2,4-diacetlyphloroglucinol producing Pseudomonas fluorescens. Eur J Plant Pathol 104:631–643

    Article  Google Scholar 

  • Shoji J, Hinoo H, Wakisaka Y, Koizumi K, Mayama M, Matsuura S, Matsumoto K (1975) Isolation of two new related peptide antibiotics, cerexin A and B. J Antibiot 28:56–59

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Siasou E, Standing D, Killham K, Johnson D (2009) Mycorrhizal fungi increase biocontrol potential of Pseudomonas fluorescens. Soil Biol Biochem 41:1341–1343

    Article  CAS  Google Scholar 

  • Sid AA, Ezziyyani M, Pérez-Sanchez C, Candela ME (2003) Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur J Plant Pathol 109(6):633–637

    Article  Google Scholar 

  • Siddiqui IA, Shaukat SS, Sheikh IH Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22(6):641–650

    Article  CAS  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J (1998) Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37(1):6–11

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Rakshia YS, Sahu G (2009) Biological control of soil borne plant pathogens with rhizosphere bacteria. Pest Control 3:10–21

    Google Scholar 

  • Singh I (2017) Antimicrobials in higher plants: classification, mode of action and bioactivities. Chem Bio Lett 4(1):48–62

    Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393

    Article  CAS  PubMed  Google Scholar 

  • Singh DP, Singh HB, Prabha R (2016) Microbial inoculants in sustainable agricultural productivity: functional applications, vol 2. Springer, New York, p 308

    Google Scholar 

  • Sood GS (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219–227

    Article  CAS  Google Scholar 

  • Stirling GR (2014) Biological control of plant-parasitic nematodes: soil ecosystem management in sustainable agriculture. Biological Crop Protection/CAB International, Brisbane/Oxfordshire

    Book  Google Scholar 

  • Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385

    Article  CAS  Google Scholar 

  • Tahat MM, Sijam K, Othman R (2012) The potential of endomycorrhizal fungi in controlling tomato bacterial wilt Ralstonia solanacearum under glasshouse conditions. Afr J Biotechnol 11(67):13085–13094

    Google Scholar 

  • Tari PH, Anderson AJ (1988) Fusarium wilt suppression and agglutinability of Pseudomonas putida. Appl Environ Microbiol 54(8):2037–2041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terkina IA, Parfenova VV, Ahn TS (2006) Antagonistic activity of actinomycetes of Lake Baikal. Appl Biochem Microbiol 42:173–176

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological control: mechanisms and antifungal metabolites. In: Stacey G, Keen NT (eds) Plant-microbe interactions, vol 1. Chapman & Hall, New York, pp 187–235

    Chapter  Google Scholar 

  • Thomashow LS, Bonsall RF, Weller DM (1997) Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst CJ, Knudsen GR, McInervey MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 493–499

    Google Scholar 

  • Thrane C, Harder Nielsen T, Neiendam Nielsen M, Sørensen J, Olsson S (2000) Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33(2):139–146

    Article  CAS  PubMed  Google Scholar 

  • Timper P (2014) Conserving and enhancing biological control of nematodes. J Nematol 46(2):75–89

    PubMed  PubMed Central  Google Scholar 

  • Tranier M-S, Pognant-Gros J, Quiroz RDC, González CNA, Mateille T, Roussos S (2014) Commercial biological control agents targeted against plant-parasitic root-knot nematodes. Braz Arch Biol Technol 57(6):831–841

    Article  Google Scholar 

  • Tu L, He Y, Shan C, Wu Z (2016) Preparation of microencapsulated Bacillus subtilis SL-13 seed coating agents and their effects on the growth of cotton seedlings. Biomed Res Int 1–7. https://doi.org/10.1155/2016/3251357

    CAS  Google Scholar 

  • Van Dijk K, Nelson EB (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl Environ Microbiol 66:5340–5347

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Driesche RG, Bellows TS Jr (1996) Methods for biological control of plant pathogens. Biological control. Springer, Boston, pp 235–256

    Google Scholar 

  • Vemmer M, Patel AV (2013) Review of encapsulation methods suitable for microbial biological control agents. Biol Control 67:380–389

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8:127–139

    Article  Google Scholar 

  • Von Graevenitz A (1977) The role of opportunistic bacteria in human disease. Annu Rev Microbiol 31:447–471

    Article  Google Scholar 

  • Vos C, Schouteden N, Tuinen D, Chatagnier O, Elsen A, De Waele D, Panis B, Gianinazzi-Pearson V (2013) Mycorrhiza-induced resistance against the root-knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol Biochem 60:45–54

    Article  CAS  Google Scholar 

  • Webster J, Weber R (2007) Introduction to fungi, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Weibelzahl-Fulton E, Dickson DW, Whitty EB (1996) Suppression of Meloidogyne incognita and M. javanica by Pasteuria penetrans in field soil. J Nematol 28:43–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weller DM, Cook RJ (1983) Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463–469

    Article  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms: biotechnology and the release of GMOs. Wiley, Weinheim. https://doi.org/10.1002/9783527615810.ch1

    Chapter  Google Scholar 

  • Weller DM, Raajimakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Wesemael WML, Viaene N, Moens M (2011) Roor-knot nematodes (Meloidogyne spp.) in Europe. Nematology 13:3–16

    Article  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wu L, Wu H, Chen L, Yu X, Borriss R, Gao X (2015) Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep 5:12975. https://doi.org/10.1038/srep12975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Reddy MS, Kloepper JW (2003) Survival and colonization of rhizobacteria in tomato transplant system. Can J Microbiol 49:383–389

    Article  CAS  PubMed  Google Scholar 

  • Yao M, Tweddell R, Désilets H (2002) Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 12:235–242

    Article  CAS  PubMed  Google Scholar 

  • Yigit F, Dikilitas M (2007) Control of Fusarium wilt of tomato by combination of fluorescent Pseudomonas, non-pathogen Fusarium and Trichoderma harzianum T-22 in greenhouse conditions. Plant Pathol J 6(2):159–163

    Article  Google Scholar 

  • Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. Cubense. Appl Environ Microbiol 78(16):5942–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen GY, Schroth MN (1986) Interaction of Pseudomonas fluorescens strains E6 with ornamental plants and its effect on the composition of root colonization microflora. Phytopathology 76:176–179

    Article  Google Scholar 

  • Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CMJ (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol 162:304–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zentmyer GA (1980) Phytophthora cinnamomi and the diseases it causes. Monograph No. 10. APS Press, St. Paul

    Google Scholar 

  • Zhang Y, Loria R (2017) Emergence of novel pathogenic Streptomyces species by site-specific accretion and cis-mobilization of pathogenicity islands. Mol Plant Microbe Interact (MPMI) 30(1):72–82

    Article  CAS  Google Scholar 

  • Zhang JX, Xue AG, Tambong JT (2009) Evaluation of seed and soil treatments with novel Bacillus subtilis strains for control of soybean root rot caused by Fusarium oxysporum and F. graminearum. Plant Dis 93(12):1317–1323

    Article  PubMed  Google Scholar 

  • Zhang Q, Ji Y, Xiao Q, Chng S, Tong Y, Chen X, Liu F (2016) Role of Vfr in the regulation of antifungal compound production by Pseudomonas fluorescens FD6. Microbiol Res 188–189:106–112. https://doi.org/10.1016/j.micres.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Gan Y, Ji W, Xu B, Hou B, Liu J (2017) Mechanisms and characterization of Trichoderma longibrachiatum T6 in suppressing nematodes (Heterodera avenae) in wheat. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01491

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, P., Singh, I. (2018). Biocontrol of Soilborne Root Pathogens: An Overview. In: Giri, B., Prasad, R., Varma, A. (eds) Root Biology. Soil Biology, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-75910-4_7

Download citation

Publish with us

Policies and ethics