Advertisement

Root Biology pp 487-500 | Cite as

From Mycorrhizosphere to Rhizosphere Microbiome: The Paradigm Shift

  • Manju M. Gupta
  • Ashima Aggarwal
  • Asha
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 52)

Abstract

Mycorrhizosphere or the niche of mycorrhizal roots, is made of diverse microorganisms and represents a complex phenomenon in terms of microbe–root–environment interactions. The microbiome refers to coolective genome of all asociated microrganisms in the region. Synthetic microbial consortia, i.e., co-cultures of microbial species with specific functions such as biofertilizers or biocontrol agents that are developed to accomplish specific targets of crop productivity in agroecosystems, are mainly based on management of these microbial interactions. In order to develop a viable system for increasing soil fertility and crop production through application of these bioinoculants, it is necessary to have a clear understanding of the diversity, interactions, and functioning of microbiome associated with roots. The present chapter introduces paradigm shift from usage of term mycorrhizosphere to microbiome of mycorrhizal roots, along with certain important concepts like core and minimal communities, rhizosphere engineering, etc. The content is divided into different sections, which deal with diversity, interaction, and management of mycorrhizal microbiome for better plant health and crop productivity.

Keywords

Arbuscular mycorrhiza Rhizosphere engineering Rhizomicrobiome Plant health 

Notes

Acknowledgments

MMG and AA are grateful to the University Grants Commission for funding the UGC-Major Project MRP-MAJOR-BOTA-2013-21235.

References

  1. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:1–31CrossRefGoogle Scholar
  2. Ahkami A, White RA, Handakumbura PP, Jansson C (2017) Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3:233–243CrossRefGoogle Scholar
  3. Aira M, GoÂmez-BrandoÂn M, Lazcano C, Bååth E, DomõÂnguez J (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 2:2276–2281CrossRefGoogle Scholar
  4. Alves-de-Souza C, Pecqueur D, Le Floc’h E, Mas S, Roques C, Mostajir B (2015) Significance of plankton community structure and nutrient availability for the control of dinoflagellate blooms by parasites: a modeling approach. PLoS One 10:e0127623CrossRefGoogle Scholar
  5. Bais HP, Weir TL, Perry LG, Gilory S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266CrossRefGoogle Scholar
  6. Bansal M, Mukerji KG (1994) Positive correlation between root exudation and VAM induced changes in rhizosphere mycoflora. Mycorrhiza 5:39–44CrossRefGoogle Scholar
  7. Bansal M, Mukerji KG (1996) Root exudates in rhizosphere biology. In: Mukerji KG, Singh VP, Dwivedi S (eds) Concepts in applied microbiology and biotechnology. Aditya, New Delhi, pp 98–120Google Scholar
  8. Bansal M, Naqvi N, Chamola BP, Mukerji KG (2000) Mycorrhizosphere: interaction between rhizosphere microflora and VAM fungi. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer, Dordrecht, pp 143–152CrossRefGoogle Scholar
  9. Bell TH, Hurteau BC, Al-Otaibi F, Turmel MC, Yergeau E, Courchesne F, St-Arnaud M (2015) Early rhizosphere microbiome composition is related to the growth and Zn uptake of willows introduced to a former landfill. J Environ Biol 17:3025–3038Google Scholar
  10. Berg G, Rube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:1–7Google Scholar
  11. Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559CrossRefGoogle Scholar
  12. Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83CrossRefGoogle Scholar
  13. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95CrossRefGoogle Scholar
  14. Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403CrossRefGoogle Scholar
  15. Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:1–14CrossRefGoogle Scholar
  16. Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP, Tringe SG (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811CrossRefGoogle Scholar
  17. Cúcio C, Engelen AH, Costa R, Muyzer G (2016) Rhizosphere Microbiomes of European Seagrasses are selected by the plant, but are not species specific. Front Microbiol 7:440–456CrossRefGoogle Scholar
  18. De Roy K, Marzorati M, Van den Abbeele P, Van de Wiele T, Boon N (2014) Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environ Microbiol 16:1472–1481CrossRefGoogle Scholar
  19. Dennis CY, Jennifer AM, Thomas KW (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64:112–118Google Scholar
  20. Dessaux Y, Grandclement C, Faure D (2016) Engineering the rhizosphere. Trends Plant Sci 21:266–278CrossRefGoogle Scholar
  21. Dickie AI, Alexander I, Lennon S, Opik M, Selosse M, Marcel HAG, Martin MF (2015) Evolving insights to understanding mycorrhizas. New Phytol 205:1369–1374CrossRefGoogle Scholar
  22. Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17:610–621CrossRefGoogle Scholar
  23. Dopheide A, Lear G, He Z, Zhou J, Lewis GD (2015) Functional gene composition, diversity and redundancy in microbial stream biofilm communities. PLoS One 10:e0123179 (1–21)CrossRefGoogle Scholar
  24. Edwards J, Johnson C, Santos-MedellõÂn C, Lurie E, Podishetty NK, Bhatnagar S (2015) Structure, variation and assembly of the root-associated microbiomes of rice. PNAS 112:E91–E20CrossRefGoogle Scholar
  25. Fonseca-García C, Coleman-Derr D, Garrido E, Visel A, Tringe SG, Partida-Martínez LP (2016) The cacti microbiome: interplay between habitat-filtering and host-specificity. Front Microbiol 7:150CrossRefGoogle Scholar
  26. Großkopf T, Soyer OS (2014) Synthetic microbial community. Curr Opin Microbiol 18:72–77CrossRefGoogle Scholar
  27. Guttman DS, McHardy AC, Schulze-Lefert P (2014) Microbial genome-enables insights into plant-microorganism interactions. Nat Rev Genet 15:797–813CrossRefGoogle Scholar
  28. Hacquard S (2016) Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytol 209:454–457CrossRefGoogle Scholar
  29. Hacquard S, Schadt CW (2015) Towards a holistic understanding of the beneficial interactions across the Populus microbiome. New Phytol 205:1424–1430CrossRefGoogle Scholar
  30. Hamady M, Knight R (2009) Microbial community profiling for human microbiome projects: tools, techniques and challenges. Genome Res 19:1141–1152CrossRefGoogle Scholar
  31. Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present and the future. New Phytol 205:1406–1423CrossRefGoogle Scholar
  32. Hernández M, Dumon M, Yuan Q, Conrad R (2015) Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Appl Environ Microbiol 81:2244–2253CrossRefGoogle Scholar
  33. Huang XF, Chaparro JM, Reardon KF, Zhang RF, Shen QR, Vivanco JM (2014) Rhizosphere interactions root exudates microbes and microbial communities. Botany 92:267–275CrossRefGoogle Scholar
  34. Jiao X, Lyu Y, Wu X, Li H, Cheng L, Zhang C, Shen J (2016) Grain production versus resource and environmental costs: towards increasing sustainability of nutrient use in China. J Exp Bot 67:4935–4949CrossRefGoogle Scholar
  35. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13CrossRefGoogle Scholar
  36. Kiers ET, West SA, Wyatt GA, Gardner A, Bücking H, Werner GD (2016) Misconceptions on the application of biological market theory to the mycorrhizal symbiosis. Nat Plants 2:160–163Google Scholar
  37. Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984CrossRefGoogle Scholar
  38. Kumar A, Munder A, Aravind R, Eapen SJ, Tümmler B, Raaijmakers JM (2013) Friend or foe: genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environ Microbiol 15:764–779CrossRefGoogle Scholar
  39. Lakshmanan V (2015) Root microbiome assemblage is modulated by plant host factors. Adv Bot Res 75:57–79CrossRefGoogle Scholar
  40. Lakshmanan V, Selvaraj G, Bais H (2014) Functional soil microbiome: belowground solutions to an above ground problem. Plant Physiol 166:689–700CrossRefGoogle Scholar
  41. Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115CrossRefGoogle Scholar
  42. Linderman RG (2008) The mycorrhizosphere phenomenon. In: Feldman F, Kapulnik Y, Barr J (eds) Mycorrhiza works. Deutsche Phytomedizinische Gesellschaft, Braunschweig, pp 341–355Google Scholar
  43. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90CrossRefGoogle Scholar
  44. McNear DH Jr (2013) The rhizosphere—roots, soil and everything in between. Nat Educ Knowl 4:1Google Scholar
  45. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663CrossRefGoogle Scholar
  46. Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 2:606–661CrossRefGoogle Scholar
  47. Nogales A, Nobre T, Valadas V, Ragonezi C, Döring M, Polidoros A, Arnholdt-Schmitt B (2016) Can functional hologenomics aid tackling current challenges in plant breeding? Brief Funct Genomics 15:288–297CrossRefGoogle Scholar
  48. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241CrossRefGoogle Scholar
  49. Öpik M, Davison J, Moora M, Partel M, Zobel M (2016) Response to comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science 351:826CrossRefGoogle Scholar
  50. Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989CrossRefGoogle Scholar
  51. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS 110:6548–6553CrossRefGoogle Scholar
  52. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and function. Plant Mol Biol 90:635–644CrossRefGoogle Scholar
  53. Powell JR, Bennett AE (2016) Unpredictable assembly of arbuscular mycorrhizal fungal communities. Pedobiologia 59:11–15CrossRefGoogle Scholar
  54. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRefGoogle Scholar
  55. Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507–519CrossRefGoogle Scholar
  56. Raaijmakers JM (2015) The minimal rhizosphere microbiome. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Heidelberg, pp 411–417Google Scholar
  57. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and benefical microorganisms. Plant Soil 321:341–361CrossRefGoogle Scholar
  58. Rascovan N, Carbonetto B, Perrig D, Díaz M, Canciani W, Abalo M, Alloati J, González-Anta G, Vazquez MP (2016) Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep 6:28084CrossRefGoogle Scholar
  59. Rasmann S, Turlings T (2016) Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol 32:62–68CrossRefGoogle Scholar
  60. Rich MK, Nouri E, Courty PE, Reinhardt D (2017) Diet of arbuscular mycorrhizal fungi—bread & butter? Trends Plant Sci 22:652–660CrossRefGoogle Scholar
  61. Rosier CL, Hoye AT, Rillig MC (2006) Glomalin related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem 38:2205–2211CrossRefGoogle Scholar
  62. Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. PNAS 111:585–592CrossRefGoogle Scholar
  63. Sessitsch A, Mitter B (2015) 21st century agriculture: integration of plant microbiomes for improved crop production and food security. Microbial Biotechnol 8:32–33CrossRefGoogle Scholar
  64. Shade A, Handelsman J (2012) Beyond the venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12CrossRefGoogle Scholar
  65. Shakya M, Gottel N, Castro H, Yang ZK, Gunter L, Labbe ÂJ (2013) A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populusdeltoides trees. PLoS One 8:e76382CrossRefGoogle Scholar
  66. Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK, Johnson N (2016) The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol Lett 1–11Google Scholar
  67. Soussi A, Ferjani R, Marasco R, Guesmi A, Cherif H, Rolli E, Mapelli F, Ouzari HI, Daffonchio D, Cherif A (2015) Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant Soil 405:357–370CrossRefGoogle Scholar
  68. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI (2007) The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449:804–810CrossRefGoogle Scholar
  69. Valverde A, Pieter DM, Oberholster T, Henschel J, LouwM K, Donald C (2016) Specific microbial communities associate with the rhizosphere of Welwitschia mirabilis, a living fossil. PLoS One 11:1–11Google Scholar
  70. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206CrossRefGoogle Scholar
  71. Van der Heijden MGA, Schlaeppi K (2015) Root surface as a frontier for plant microbiome research. PNAS 112:2299–2300CrossRefGoogle Scholar
  72. Van der Heijden MGA, de Bruin S, Luckerhoff L, van Logtestijn RSP, Schlaeppi K (2016) A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J 10:389–399CrossRefGoogle Scholar
  73. Verbruggen E, Heijden MG, Rillig MC, Kiers ET (2013) Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol 197:1104–1109CrossRefGoogle Scholar
  74. Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T (2014) Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett 17:717–726CrossRefGoogle Scholar
  75. Weller DM, Mavrodi DV, van Pelt JA, Pieterse CM, van Loon LC, Bakker PA (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–412CrossRefGoogle Scholar
  76. Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type IH+-pyrophosphatase. Plant Biotechnol J 5:735–745CrossRefGoogle Scholar
  77. Yuan Z, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R et al (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:32467CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Manju M. Gupta
    • 1
  • Ashima Aggarwal
    • 1
  • Asha
    • 2
  1. 1.Department of Botany, Sri Aurobindo CollegeUniversity of DelhiDelhiIndia
  2. 2.Department of Energy and EnvironmentTERI UniversityDelhiIndia

Personalised recommendations